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ON THE ESSENTIAL SPECTRA OF UNBOUNDED OPERATOR

MATRICES WITH NON DIAGONAL DOMAIN AND AN APPLICATION
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Abstract. This paper is devoted to the investigation of the spectral stability of unbounded oper-
ator matrices with non diagonal domain in product of Banach spaces. Our results are aimed to
characterize some essential spectra of this kind of operators in terms of the union of the essential
spectra of the restriction of its diagonal operators entries. The abstract results are illustrated by
an example of two-group transport equations with perfect periodic boundary conditions.

1. Introduction

Block operator matrices arise in various areas of mathematical physics such as
ordinary differential equations [28], transport operator [11, 16, 22]. The spectral prop-
erties of block operator matrices are of vital importance as they govern for instance the
solvability and stability of the underlying physical systems.

Spectral analysis is one of several techniques necessary for characterizing and
investigating some essential spectra of block operator matrices with unbounded entries
associated to the following operator:

A :=
(

A B
C D

)
(1)

defined on the product E ×F of Banach spaces. These problems have attracted con-
siderable attention and have been investigated by several authors involving the corre-
sponding Schur-complement with maximal domain case (see [1, 13, 22, 29]). Later,
many authors are interesting with the same problem where the domain consists of vec-
tors satisfying one relation between their components expressed as: ΓX f = ΓY g, for(

f
g

)
∈ (D(A)∩D(C))× (D(B)∩D(D)) where ΓX and ΓY are two linear operators

(see [2, 16] for more details).
In [25], R. Nagel has paid attention to the research of the problem related to spec-

tral properties of 2×2 operators matrices A with non diagonal domain D(A ) defined
by two relations between their components. Particularly, he presented some conditions
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on the entries of the operator matrix A in order to provide the expression of its resol-
vent.

In this paper, we deal with unbounded block operator matrix having the form (1)
with domain containing two supplemented conditions relating the components entries
with the continuous linear operators φi and ψi , i = 1,2, as:

D(A ) :=
{(

f
g

)
:

f ∈ D(Am), φ1( f ) = ψ2(g)
g ∈ D(Dm), φ2(g) = ψ1( f )

}
,

and defined by

A

(
f
g

)
:=

(
Am B
C Dm

)(
f
g

)
, ∀

(
f
g

)
∈ D(A ),

where Am (resp. Dm ) is closed densely defined linear operator with maximal domain
D(Am) (resp. D(Dm)) in E (resp. F ).

Under this conditions, new results and techniques are obtained to investigate some
essential spectra of the operator matrix A in a fast manner of computations. More
precisely, this study involves an elegant use of the notion of Fredholm-type properties
of 2× 2 operator matrices in order to characterize some essential spectra of A as
the following form and independently of their Schur-complement but in terms of their
diagonal components entries:

σek(A ) := σek(A0)∪σek(D0), k = {r, l,4,5,6},

where the operators A0 and D0 denote the restrictions of Am and Dm to kerφ1 and
kerφ2 , respectively, (see Section 2 for the definition of the essential spectra σek(.)).
Our results provide an improvements of some earlier works ([1, 2, 16, 22, 25, 29]).

A typical example of a problem of one-dimensional problem of transport operator
is given to show the efficiency and accuracy of this work on Xp × Xp -space, where
Xp = Lp((−a,a)× (−1,1),dxdξ ) , a > 0 and 1 � p < ∞ as follows:

AH =
(

T1 K12

K21 T2

)
.

The operator AH has a non diagonal domain expressed as follows:

D(AH) =
{

ϑ =
(

f
g

)
∈ D(T1)×D(T2) : ϑ i = Hϑ o

}
,

where ϑ o and ϑ i represent the outgoing and the incoming fluxes related by the perfect
periodic boundary operator H .

Each closed linear operator Ti , i = 1,2, is defined on its maximal domain

D(Ti) :=
{

f ∈ Xp such that ξ
∂ f
∂x

∈ Xp

}
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as: {
Ti : D(Ti) ⊂ Xp −→ Xp

f �−→ Ti f , (x,ξ ) �−→−ξ
∂ f
∂x

(x,ξ )−σi(ξ ) f (x,ξ )

and the bounded linear collision operator Ki j, for (i, j) ∈ {(1,2),(2,1)} is defined on
Xp by: ⎧⎨⎩Ki j : Xp −→ Xp

u �−→ Ki ju, (x,ξ ) �−→
∫ 1

−1
κi j(x,ξ ,ξ ′)u(x,ξ ′)dξ ′,

(see Section 4 for more details).
Next, we outline the content of the present study. In Section 2, we provide some

basic notations and auxiliary results, which we apply in the proof of our main aim in
Sections 3 and 4. New characterization of the some essential spectra of unbounded op-
erator matrix with domain contains two supplemented conditions involving the pertur-
bation theory of Fredholm operators is given in Section 3. Finally, Section 4 is devoted
to illustrate the efficiency and accuracy ideas of this paper with a physical example of
integro-differential operators with non maximal domain on Banach space.

2. Preliminaries results

In this section, we gather some auxiliary notations and definitions that we will
need in the rest of the paper.

Let X and Y be two Banach spaces. We denote by L (X ,Y ) (resp. C (X ,Y ))
the set of all bounded (resp. closed, densely defined) linear operators from X into Y.
We denote by K (X ,Y ) the subspace of all compact operators of L (X ,Y ) . For A ∈
C (X ,Y ) , we write D(A)⊂ X for the domain, ker(A) = {x ∈D(A) : Ax = 0} ⊂ X for
the null space and R(A) ⊂ Y for the range of A. The nullity, α(A), of A is defined as
the dimension of ker(A) and the deficiency, β (A), of A is defined as the codimension
of R(A) in Y. The spectrum of A will be denoted by σ(A) . The resolvent set ρ(A) of
A is the complemented of σ(A) in the complex plane.

An operator A ∈ C (X ,Y ) is semi-Fredholm if R(A) is closed and at least one of
α(A) and β (A) is finite. For such an operator, we define an index i(A) by: i(A) =
α(A)− β (A). Let Φ+(X ,Y ) (resp. Φ−(X ,Y )) denote the set of upper (resp. lower)
semi-Fredholm operators, that is, the set of semi-Fredholm operators with α(A) < ∞
(resp. β (A) < ∞). An operator A is Fredholm if it is both upper semi-Fredholm and
lower semi-Fredholm. Let Φ(X ,Y ) = Φ+(X ,Y )∩Φ−(X ,Y ) denote the set of Fredholm
operators from X into Y.

If X =Y, then L (X ,Y ) , C (X ,Y ) , K (X ,Y ) , Φ(X ,Y ) , Φ+(X ,Y ) and Φ−(X ,Y )
are replaced by L (X), C (X), K (X), Φ(X), Φ+(X) and Φ−(X) respectively.

A complex number λ is in Φ+A , Φ−A or ΦA if λ −A is in Φ+(X) , Φ−(X) or
Φ(X) , respectively.

Let A ∈ C (X ,Y ). It follows from the closedness of A that D(A) endowed with
the graph norm ‖.‖A (‖x‖A = ‖x‖+‖Ax‖ ) is a Banach space denoted by XA. Clearly,
for x ∈ D(A) , we have ‖Ax‖ � ‖x‖A, so A ∈ L (XA,Y ). Let B be a linear operator
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with D(A) ⊆ D(B), then B is said to be A-defined. The restriction of B to D(A) will
be denoted by B̂. Moreover, if B̂ ∈ L (XA,Y ), we say that B is A-bounded.

In this work, we are interested with the theory of Fredholm inverse of unbounded
operators. For this purpose, we start with the following definition considered as an
extension of the definition of the Fredholm inverse for a bounded operator given by V.
Müller in [24].

DEFINITION 2.1. Let X and Y be two Banach spaces. An operator A ∈ C (X ,Y )
is said to have a left (resp. a right) Fredholm inverse if there exists an operator Al ∈
L (Y,XA) (resp. Ar ∈L (Y,XA)) such that AlÂ− I ∈K (XA) (resp. ÂAr− I ∈K (Y )).
The operator Al (resp. Ar ) is called left (resp. right) Fredholm inverse of A.

We will denote by Φl(X ,Y ) (resp. Φr(X ,Y )) the set of operators which have left
(resp. right) Fredholm inverse.

We denote the sets Φb
l (X ,Y ) , Φb

r (X ,Y ) , Φb(X ,Y ) , Φb
+(X ,Y ) and Φb−(X ,Y ) by

Φl(X ,Y )∩L (X ,Y ) , Φr(X ,Y )∩L (X ,Y ) , Φ(X ,Y )∩L (X ,Y ) , Φ+(X ,Y )∩L (X ,Y )
and Φ−(X ,Y )∩L (X ,Y ) , respectively, satisfying the following inclusions:

Φb(X ,Y ) ⊂ Φb
l (X ,Y ) ⊂ Φb

+(X ,Y )

and
Φb(X ,Y ) ⊂ Φb

r (X ,Y ) ⊂ Φb
−(X ,Y ).

When dealing with closed, densely defined linear operator, A , on a Banach space,
various notions of essential spectra involving the theory of Fredholm operators appear.
In this work, we are concerned with some of them:

σer(A) := {λ ∈ C : λ −A /∈ Φr(X)},
σel(A) := {λ ∈ C : λ −A /∈ Φl(X)},
σe1(A) := {λ ∈ C : λ −A /∈ Φ+(X)},
σe2(A) := {λ ∈ C : λ −A /∈ Φ−(X)},
σe4(A) := {λ ∈ C : λ −A /∈ Φ(X)},
σe5(A) := C\ρ5(A),
σe6(A) := C\ρ6(A),

where ρ5(A) := {λ ∈ΦA : i(A−λ ) = 0} and ρ6(A) denotes the set of those λ ∈ ρ5(A)
such that all scalars near λ are in ρ(A).

Clearly, these sets can be ordered as:

σe1(A)∩σe2(A) := σe3(A) ⊆ σe4(A) ⊆ σe5(A) ⊆ σe6(A),

and
σe1(A) ⊂ σel(A) ⊂ σe4(A), (2)

σe2(A) ⊂ σer(A) ⊂ σe4(A). (3)

In this work, we are interested with several facts about perturbation theory of Fred-
holm operators. For this purpose, we recall the following definition.
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DEFINITION 2.2. Let X and Y be two Banach spaces and let F ∈ L (X ,Y ).
(i) The operator F is called a Fredholm perturbation if A+F ∈Φ(X ,Y ) whenever

A ∈ Φ(X ,Y ) .
(ii) The operator F is called an upper (resp. lower) semi-Fredholm perturbation

if A+F ∈ Φ+(X ,Y ) (resp. A+F ∈ Φ−(X ,Y )) whenever A ∈ Φ+(X ,Y ) (resp. A ∈
Φ−(X ,Y )).

(iii) F is called a left (resp. right) Fredholm perturbation if A +F ∈ Φl(X ,Y )
(resp. A+F ∈ Φr(X ,Y )) whenever A ∈ Φl(X ,Y ) (resp. A ∈ Φr(X ,Y )).

We denote by F (X ,Y ) the set of Fredholm perturbation, by F+(X ,Y ) (resp.
F−(X ,Y )) the set of upper semi-Fredholm (resp. lower semi-Fredholm) perturbation
and by Fl(X ,Y ) (resp. Fr(X ,Y )) the set of left (resp. right) Fredholm perturbation.

If X = Y, we write F (X), F+(X) , F−(X) , Fl(X) and Fr(X) for F (X ,X),
F+(X ,X), F−(X ,X), Fl(X ,X) and Fr(X ,X), respectively.

REMARK 2.1. If in Definition 2.2 we replace Φ(X ,Y ), Φ+(X ,Y ) , Φ−(X ,Y ) ,
Φl(X ,Y ) and Φr(X ,Y ) by Φb(X ,Y ) , Φb

+(X ,Y ) , Φb−(X ,Y ), Φb
l (X ,Y ) and Φb

r (X ,Y ),
we obtain the sets F b(X ,Y ) , F b

+(X ,Y ) , F b−(X ,Y ) , F b
l (X ,Y ) and F b

r (X ,Y ), re-
spectively.

In [6], it is shown that F b(X ,Y ) , F b
+(X ,Y ) and F b−(X ,Y ) are closed sub-

set of L (X ,Y ) and if X = Y, then F b(X) := F b(X ,X) , F b
+(X) := F b

+(X ,X) and
F b−(X) := F b−(X ,X) are closed two-sided ideals of L (X).

In [15], it is shown that if X =Y, then F b
l (X) := F b

l (X ,X) F b
r (X) := F b

r (X ,X)
are two-sided ideals of L (X), satisfying:

K (X ,Y ) ⊆ W (X ,Y ) ⊆ F b
+(X ,Y ) ⊆ F b

l (X ,Y ) ⊆ F b(X ,Y ) (4)

and
K (X ,Y ) ⊆ W (X ,Y ) ⊆ F b

−(X ,Y ) ⊆ F b
r (X ,Y ) ⊆ F b(X ,Y ). (5)

The following Theorem is fundamental for proofs of Section 3 and 4.

THEOREM 2.1. [15, Theorem 3.2] Let X ,Y and Z be Banach spaces.
If the set Φb(Y,Z) is not empty, then

F ∈ F b
l (X ,Y ) and A ∈ L (Y,Z), imply AF ∈ F b

l (X ,Z).

F ∈ F b
r (X ,Y ) and A ∈ L (Y,Z), imply AF ∈ F b

r (X ,Z).

Let us recall the following results on Fredholm perturbations theory of 2×2 block
operator matrix established by M. Moalla et al. in [15].

THEOREM 2.2. [15, Theorem 3.1–3.2] Let X1 and X2 be two Banach spaces and

F :=
(

F11 F12

F21 F22

)
,



236 M. BELGHITH, N. MOALLA AND I. WALHA

where Fi j ∈ L (Xj,Xi) , i, j = 1,2. Then:
(i) F ∈ F b(X1 ×X2) if and only if Fi j ∈ F b(Xj,Xi) , ∀i, j = 1,2.
(ii) F ∈ F b

l (X1 ×X2) (resp. F ∈ F b
r (X1 ×X2)) if and only if Fi j ∈ F b

l (Xj,Xi),
(resp. Fi j ∈ F b

r (Xj,Xi)) for all i, j = 1,2 .

We recall stability results of essential spectra of unbounded operator subjected to
Fredholm perturbation which is essential to provide the main purpose of this paper.

THEOREM 2.3. [3] Let X be a Banach space, T1 , T2 be two closed densely
defined linear operators on X .

(i) If for some λ ∈ ρ(T1)∩ρ(T2), the operator (λ −T1)−1−(λ −T2)−1 ∈F b
r (X) ,

then
σer(T1) = σer(T2).

(ii) If for some λ ∈ ρ(T1)∩ρ(T2), the operator

(λ −T1)−1− (λ −T2)−1 ∈ F b
l (X),

then σel(T1) = σel(T2) .

When dealing with essential spectra of closed, densely defined linear operators
on Banach spaces, one of the main problems consists of studying the invariance of the
essential spectra of these operators subjected to various kind of perturbations. In this
vein, we need to introduce the following definitions:

DEFINITION 2.3. Let X and Y be two Banach spaces. An operator A ∈L (X ,Y )
is said to be weakly compact if A(B) is relatively weakly compact in Y for every
bounded B ⊂ X .

The family of weakly compact operators from X into Y is denoted by W (X ,Y ) .
If X = Y the family of weakly compact operators on X ,W (X) := W (X ,X) is a closed
two-sided ideal of L (X) containing K (X) (see [7]).

DEFINITION 2.4. Let X and Y be two Banach spaces. An operator A ∈L (X ,Y )
is said to be strictly singular if the restriction of A to any infinite-dimensional subspace
of X is not an homeomorphism.

Let S(X ,Y ) denote the set of strictly singular operators from X to Y. The concept
of strictly singular operators was introduced in the pioneering paper by T. Kato [17]. In
general, strictly singular operators are not compact (see [6, 17]). Note that, S(X ,Y ) is a
closed subspace of L (X ,Y ) . If X =Y, S(X) := S(X ,X) is a closed two-sided ideal of
L (X) containing K (X). If X is a separable Hilbert space, then S(X) = K (X). For
basic properties of strictly singular operators, we refer readers to [6, 21, 30, 31].

REMARK 2.2. (i) Let Xp denotes the space Lp(Ω,dμ) (1 � p � ∞) , where
(Ω,Σ,μ) stands for a positive measure space.
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According to Theorem 1 in [26], in a special case for X1 = L1 -space (respectively
C(Ω)-spaces, with Ω is a compact Hausdorff space), we have

W (X1) = S (X1).

However, if 1 < p < ∞ , Xp is reflexive and then L (Xp) = W (Xp) . On the other hand,
it follows from Theorem 5.2 in [7] that K (Xp) ⊂�= S (Xp) ⊂�= W (Xp) with p �= 2.
For p = 2 we have K (Xp) = S (Xp) = W (Xp).

Therefore, from [20, pp. 779], we get

F+(Xp) = F−(Xp) = F (Xp) = S (Xp) = CS (Xp), p � 1.

(ii) Using the last equality and the Eqs. (4) and (5), we deduce that:

F b
r (Xp) = F b

l (Xp) = F b(Xp), ∀p � 1.

Throughout this paper, we will consider the set of polynomially compact operators
which denoted by PK (X) and defined as:

PK (X) =
{

A ∈ L (X) such that there exists a nonzero complex polynomial

P(z) =
n

∑
k=0

akz
k satisfying P(A) ∈ K (X) and P(1) �= 0

}
.

REMARK 2.3. (i) Note that in general, we have:

K (X) ⊂ PK (X).

(ii) Let (Ω,μ) be a σ -finite measure space. Note that, if X = L1(Ω,dμ) (respec-
tively X = C(Ω)-spaces with Ω is a compact Hausdorff space), then we have:

W (X) ⊂ PK (X).

Indeed, from [27] (respectively [9]), the product of two weakly compact linear
operators in L1(Ω) (respectively C(Ω) , where Ω is a compact Hausdorff space) is
compact. So, for A ∈ W (X) and taking P(z) = z2 , then P(1) �= 0 and P(A) ∈ K (X) ,
this implies that A ∈ PK (X).

3. Essential spectra of operator matrix with non zero off diagonal entries

The main purpose of this section is to discuss the essential spectra of unbounded
operator matrix A with non-diagonal domain in terms of the essential spectra of a
diagonal operator matrix A0 associated to A which is easier to compute its essential
spectra.

Let X , Y , E and F be Banach spaces. First, suppose that:
(H1) Am and Dm are closed, densely defined linear operators with domains

D(Am) in E and D(Dm) in F .
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Consider the continuous linear operators φ1 , φ2 , ψ1 and ψ2 as in the following
diagram:

E ⊃ D(Am)
φ1 ��

ψ1������������������ X

F ⊃ D(Dm)
φ2

��

ψ2
�����������������
Y

where the Banach spaces X and Y (called “spaces of boundary conditions”) endow
D(Am) and D(Dm) with the graph norm.

In addition, we shall assume that:
(H2) φ1 and φ2 are surjective.
Let consider the unbounded operator matrix A in Banach space E × F corre-

sponding to the matrix form

A =
(

A B
C D

)
for given bounded operator B ∈ L (D(Dm),E) and C ∈ L (D(Am),F).

On the non diagonal domain

D(A ) =
{(

f
g

)
∈ D(Am)×D(Dm) such that φ1( f ) = ψ2(g) and φ2(g) = ψ1( f )

}
,

the operator A is defined by:

A

(
f
g

)
= Am

(
f
g

)
, ∀

(
f
g

)
∈ D(A ),

where the maximal operator Am is expressed by:

Am :=
(

Am B
C Dm

)
on the maximal domain D(Am) := D(Am)×D(Dm) .

As a first towards, the description of the essential spectra of unbounded operator
matrix A with non diagonal domain will be investigated in terms of the essential spec-

tra of the entries of an associated diagonal matrix operator A0 :=
(

A0 0
0 D0

)
with diag-

onal domain in a good and an easy manner, where A0 := Am|kerφ1 and D0 := Dm|kerφ2 .

REMARK 3.1. From the definition of the operator A0 (resp. D0 ), based on the
continuity assumptions on the φ j , j = 1,2, one can easily check that φ1(D(A0)) = {0}
(resp. φ2(D(D0)) = {0} ) and thus the operator A0 (resp. D0 ) is closed, whence D(A0)
(resp. D(D0)) is a closed subspace of E (resp. F ). Hence, the matrix operator A0 is
closed.

Now, let us recall the following lemma explaining the relation between the matrix
operators A and A0 .
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LEMMA 3.1. [8, Lemma 1.2]
(i) For λ ∈ ρ(A0) (resp. λ ∈ ρ(D0)) the following decomposition holds:

D(Am) = D(A0)⊕ker(λ −Am)

(resp. D(Dm) = D(D0)⊕ker(λ −Dm)).
(ii) For λ ∈ ρ(A0) and λ ∈ ρ(D0). Then,

φ1λ := φ1|ker(λ−Am)

and
φ2λ := φ2|ker(λ−Dm)

are continuous bijections from ker(λ −Am) onto X and from ker(λ −Dm) onto Y.

As a direct consequence of the above Lemma, for λ ∈ ρ(A0)∩ρ(D0) , the inverse
of φ1λ and φ2λ will play an important role to define the bounded operators Kλ and Lλ
as follows:{

Kλ : D(Dm) −→ D(Am)
g �−→ Kλ (g) = φ−1

1λ ◦ψ2(g)
and

{
Lλ : D(Am) −→ D(Dm)

f �−→ Lλ ( f ) = φ−1
2λ ◦ψ1( f ).

(see Lemma 2.5 in [25] for more explanation).
To introduce a fine decomposition of the unbounded operator matrix with non

diagonal domain, we start to define for λ ∈ ρ(A)∩ρ(D), the bounded operators G(λ )
and F(λ ) as well:⎧⎨⎩

G(λ ) = −Kλ − (λ −A0)−1B ∈ L (D(Dm),D(Am)),

F(λ ) = −Lλ − (λ −D0)−1C ∈ L (D(Am),D(Dm)).

The following factorization may be used to formulate the key tool for our investi-
gations.

LEMMA 3.2. [25] For λ ∈ ρ(A0)∩ρ(D0) , consider the linear bounded operator
matrix on D(Am)×D(Dm)

Qλ =
(

I G(λ )
F(λ ) I

)
. (6)

Then, we have
λ −A := (λ −A0)Qλ , on D(A ).

The last decomposition may be used to describe the resolvent of block operator
matrix A . Therefore, our interest in the last part of this paper consists of showing
what are the conditions that we impose on the operators entries of λ −A0 and Qλ
which make λ −A be invertible.

For this vein, let us introduced the invertibility of the matrix operator Qλ .
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PROPOSITION 3.1. Let λ ∈ ρ(A0)∩ρ(D0) . Then, Qλ is invertible (resp. injec-
tive) in L (D(Am)×D(Dm)) if and only if Id−G(λ )F(λ ) (resp. Id−F(λ )G(λ )) is
invertible (resp. injective) in L (D(Am)) (resp. L (D(Dm))).

Proof. We can easily derive the result from the Frobenuis-Schur factorization of
the operator Qλ . �

THEOREM 3.1. Let λ ∈ ρ(A0)∩ρ(D0).
(i) If I−F(λ )G(λ ) ∈ L (D(Dm)) or I−G(λ )F(λ ) ∈ L (D(Am)) is invertible,

then λ −A is invertible in L (E ×F).
(ii) If F(λ )G(λ ) ∈ PK (D(Dm)) or G(λ )F(λ ) ∈ PK (D(Am)) , then

λ −A is invertible in L (E ×F) ⇐⇒ I−F(λ )G(λ ) ∈ L (D(Dm)) is invertible

⇐⇒ I−G(λ )F(λ ) ∈ L (D(Am)) is invertible.

Proof. Let λ ∈ ρ(A0)∩ρ(D0).
(i) The result of this assertion was established in [25] and follows immediately

from Lemma 3.2 and Proposition 3.1.
(ii) We prove the first equivalence, the second one can be done using the same

argument.
The indirect implication follows from item (i) .
Conversely, assume that λ −A is invertible in L (E × F) , that is λ −A is

injective. Therefore, Lemma 3.2 in conjunction with Proposition 3.1 revel that I −
F(λ )G(λ ) is injective. Following Theorem 2.2 in [12], under the assumption that
F(λ )G(λ ) ∈ PK (D(Dm)) , amounts that I−F(λ )G(λ )) is invertible. �

REMARK 3.2. (i) Theorem 3.1 shows that the results established in [25, Theo-
rem 2.9] for compact operators remain valid in the context of polynomially compact
operators. Therefore, it can be applied also for the case of weakly compact operators
acting in L1(Ω) or C(Ω) (see Remark 2.3-(ii)).

(ii) It follows from Theorem 3.1-(i) , that if λ ∈ ρ(A0)∩ ρ(D0) such that 1 ∈
ρ(F(λ )G(λ )) or 1 ∈ ρ(G(λ )F(λ )) , then ρ(A ) �= /0 , which ensures that A is closed
operator matrix.

It is now our intention to memorize that the above result yields an easier for-
mula for the computation of the essential spectra of unbounded operator matrix A
with non-diagonal domain expressed as follows, for λ ∈ ρ(A0) ∩ ρ(D0) such that
1 ∈ ρ(F(λ )G(λ )) :

(λ −A )−1

=

⎛⎜⎜⎜⎝
(λ −A0)−1 + −(I−G(λ )F(λ ))−1G(λ )(λ −D0)−1

(I−G(λ )F(λ ))−1
G(λ )F(λ )(λ −A0)−1

−F(λ )(λ −A0)−1 − (λ −D0)−1 +
F(λ )(I−G(λ )F(λ ))−1G(λ )F(λ )(λ −A0)−1 F(λ )(I−G(λ )F(λ ))−1G(λ )(λ −D0)−1

⎞⎟⎟⎟⎠ .
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or

(λ −A )−1 (7)

=

⎛⎜⎜⎜⎝
(λ−A0)−1 −G(λ )(λ−D0)−1

+G(λ )(I−F(λ )G(λ ))−1F(λ )(λ−A0)−1 −G(λ )(I−F(λ )G(λ ))−1F(λ )G(λ )(λ−D0)−1

−(I−F(λ )G(λ ))−1F(λ )(λ−A0)−1 (λ−D0)−1

+(I−F(λ )G(λ ))−1F(λ )G(λ )(λ−D0)−1

⎞⎟⎟⎟⎠ .

Now, we are in the position to express the first main results of this section. We
will denote by CΩ the complement of a subset Ω ⊂ C.

THEOREM 3.2. Let λ ∈ ρ(A0)∩ρ(D0) and 1 ∈ ρ(F(λ )G(λ )) .
Then, we have:
(i) If G(λ )(λ −D0)−1 ∈F b

r (F,D(Am)) and F(λ )(λ −A0)−1 ∈F b
r (E,D(Dm)),

then
σer(A ) = σer(A0)∪σer(D0).

(ii) If G(λ )(λ −D0)−1 ∈F b
l (F,D(Am)) and F(λ )(λ −A0)−1 ∈F b

l (E,D(Dm)),
then

σel(A ) = σel(A0)∪σel(D0).

(iii) If G(λ )(λ −D0)−1 ∈F b(F,D(Am)) and F(λ )(λ −A0)−1 ∈F b(E,D(Dm)),
then

σe4(A ) = σe4(A0)∪σe4(D0)

and
σe5(A ) ⊆ σe5(A0)∪σe5(D0).

Moreover,
(iv) If Cσe4(A0) is connected, then

σe5(A ) = σe5(A0)∪σe5(D0).

(v) If Cσe5(A ) and Cσe5(D0) are connected with ρ(A ) �= /0 , then

σe6(A ) = σe6(A0)∪σe6(D0).

Proof. In view of Theorem 2.2, to prove the Fredholmness perturbation of oper-
ator matrix (λ −A )−1 − (λ −A0)−1 it suffices to show that all entries of this block
operator matrix are Fredholm perturbations.

Consider λ ∈ ρ(A0)∩ρ(D0) such that 1∈ ρ(F(λ )G(λ )). It follows from Eq. (7)
that:

(λ −A )−1 − (λ −A0)−1 (8)

=

⎛⎜⎜⎜⎜⎝
G(λ )(I−F(λ )G(λ ))−1

F(λ )(λ−A0)−1 −G(λ )(λ−D0)−1

−G(λ )(I−F(λ )G(λ ))−1

×F(λ )G(λ )(λ−D0)−1

−(I−F(λ )G(λ ))−1
F(λ )(λ−A0)−1 (I−F(λ )G(λ ))−1

F(λ )G(λ )(λ−D0)−1

⎞⎟⎟⎟⎟⎠ .
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(i) From the assumptions F(λ )(λ −A0)−1 ∈F b
r (E,D(Dm)) , G(λ )(λ −D0)−1 ∈

F b
r (F,D(Am)) and Theorem 2.1, we deduce that the operators

G(λ )(I−F(λ )G(λ ))−1
F(λ )(λ −A0)−1,

−(I−F(λ )G(λ ))−1
F(λ )(λ −A0)−1,

−G(λ )(I−F(λ )G(λ ))−1
F(λ )G(λ )(λ −D0)−1

and
(I−F(λ )G(λ ))−1

F(λ )G(λ )(λ −D0)−1

are right Fredholm perturbations operators.
According to Theorems 2.2 in [14] and 2.3, one gets σer(A ) = σer(A0). There-

fore,
σer(A ) = σer(A0)∪σer(D0).

The use of Theorems 2.3 and 2.2 in [14] allows us to reach the result of assertion
(ii) in a similar ways as in the item (i).

(iii) The results of this item are an immediate consequence of the items (i) and
(ii).

(iv) According to item (iii) , we will prove the opposite inclusion. For this pur-
pose, let consider λ /∈ σe5(A ) , that is, λ −A is Fredholm operator if and only if
λ −A0 and λ −D0 are Fredholm operators with

i(λ −A ) = i(λ −A0)+ i(λ −D0) = 0.

Assume that Cσe4(A0) is connected. Hence, ρ(A0) is not empty. That is, for γ ∈
ρ(A0) , we have γ −A0 is Fredholm operator with null index. One has ρ(A0)⊂ ρe4(A0)
and i(γ −A0) is constant on any component of ΦA0 (see [6] for more details), we revels
that i(λ −A0) = 0 for all λ ∈ ρe4(A0). Consequently, i(λ −D0) = 0.

(v) According to Lemma 2.1 in [14], we get

σe6(A ) = σe6(A0)∪σe6(D0). �

REMARK 3.3. In view of Eqs. (4) and (5), Theorem 3.2 remains true by consid-
ering compactness or weakly compactness assumptions.

We can translate the results of Theorem 3.2 in terms of Gustafson, Weidmann and
Kato essential spectra as follows:

THEOREM 3.3. Let λ ∈ ρ(A0)∩ρ(D0) and 1 ∈ ρ(G(λ )F(λ )).
(i) If (λ −A )−1− (λ −A0)−1 ∈ F b

+(E ×F), then

σe1(A ) = σe1(A0)∪σe1(D0).

(ii) If (λ −A )−1− (λ −A0)−1 ∈ F b−(E ×F), then

σe2(A ) = σe2(A0)∪σe2(D0).
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(iii) (λ −A )−1 − (λ −A0)−1 ∈ F b
+(E ×F)∩F b−(E ×F), then

σe3(A ) = σe3(A0)∪ [σe1(A0)∩σe2(D0)]∪ [σe2(A0)∩σe1(D0)]∪σe3(D0).

Proof. (i) For λ ∈ ρ(A0)∩ρ(D0) and 1∈ ρ(G(λ )F(λ )), we infer by Proposition
3.1 that λ ∈ρ(A )∩ρ(A0). This property together with the fact that (λ −A )−1−(λ −
A0)−1 ∈ F b

+(E ×F), leads from Theorem 3.2-(ii) in [19] to σe1(A ) = σe1(A0).
As A0 is a diagonal operator matrix, this shows that

σe1(A0) = σe1(A0)∪σe1(D0).

So, we infer that σe1(A ) = σe1(A0)∪σe1(D0).
(ii) A same reasoning allows us to reach the result of item (ii) .
(iii) Assertion (iii) is a consequence of the items (i) and (ii) .

REMARK 3.4. (i) It should be observe that Theorem 3.2 holds also true for max-
imal domain case, that is, suppose that the operators φk ≡ ψk ≡ 0, k = 1,2, then we
obtain

σek(A ) := σek(A)∪σek(D), k = {r, l,4,5,6}.
So, in this case an amelioration of the results given in [1, 22, 29] can be obtained.

(ii) Note that for ψ2 ≡ ψ1 ≡ 0, we recover the case of unbounded operator matrix
with non maximal domain and with one condition on its domain. Moreover, the analysis
in our case is easier and better than those given in [2, 16] because, our procedure works
deals with a new decomposition of this kind of operator matrix and provides under less
assumptions an easier form of the essential spectra of A independently of the Schur
complement, that is:

σek(A ) := σek(A0)∪σek(D), k = {r, l,4,5,6}.

4. The motivating example

Once we obtain the well-possedness for the unbounded operator matrix with non
diagonal domain, we can discuss a typical example motivating the abstract theoreti-
cal results. The main features of our approach already appear for integro-differential
equation with a non diagonal domain.

4.1. Intergro-differential equation

In this subsection, we study the essential spectra of two-group transport operators
with non maximal domain on Lp×Lp , 1 � p < ∞.

We first make the functional setting of the problem. Let

Xp = Lp((−a,a)× (−1,1),dxdξ ), a > 0 and p ∈ [1,∞),

equipped with the norm

‖ f‖p =
(∫ a

−a

∫ 1

−1
| f (x,ξ )|pdxdξ

) 1
p

.
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We define the partial Sobolev space Wp by:

Wp =
{

f ∈ Xp such that ξ
∂ f
∂x

∈ Xp

}
.

It is well known that any function ϕ ∈ Wp has traces on {−a}× (−1,0) and
{a}× (0,1) which respectively belongs to the spaces Xo

p and Xi
p (see, for instance,

[4]). They are denoted, respectively, by ϕo and ϕ i , represent the outgoing and the
incoming fluxes (“o” for outgoing and “ i” for incoming) and given by:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϕ i : ξ ∈ (0,1) −→ ϕ(−a,ξ ),

ϕ i : ξ ∈ (−1,0) −→ ϕ(a,ξ ),

ϕo : ξ ∈ (−1,0)−→ ϕ(−a,ξ ),

ϕo : ξ ∈ (0,1) −→ ϕ(a,ξ ).

Now, we will consider on the product Xp×Xp of Banach spaces, the unbounded oper-
ator matrices

AH =
(

T1 K12

K21 T2

)
,

where the closed linear operator Ti , i = 1,2, is defined on its maximal domain D(Ti)
as: {

Ti : D(Ti) = Wp ⊂ Xp −→ Xp

f �−→ Ti f , (Ti f )(x,ξ ) := −ξ
∂ f
∂x

(x,ξ )−σi(ξ ) f (x,ξ ),

and the bounded linear collision operator Ki j, for (i, j) ∈ {(1,2),(2,1)} is defined on
Xp by: ⎧⎨⎩Ki j : Xp −→ Xp

u �−→ Ki ju, (Ki ju)(x,ξ ) :=
∫ 1

−1
κi j(x,ξ ,ξ ′)u(x,ξ ′)dξ ′.

The operator AH describes the transport of particles (neutrons, photons, molecules
of gas, etc.) in a plane parallel domain with a width of 2a mean free paths. The
function f (., .) (resp. g(., .)) represents the number (or probability) density of gas
particles having the position x and the direction cosine of propagation ξ . The vari-
able ξ may be thought of as the cosine of the angle between the velocity of parti-
cles and the x -direction. The functions σi(.) ∈ L∞(−1,1) , i = 1,2 and κi j(., ., .) ,
(i, j) = {(1,2),(2,1)} (which is assumed to be measurable) are called, respectively,
the collision frequency and the scattering kernel.

The operator AH defined on its non diagonal domain D(AH) as:

D(AH) :=
{

ϑ =
(

f
g

)
∈ Wp×Wp such that ϑ i = Hϑ o

}
,
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where ϑ o and ϑ i represent the outgoing and the incoming fluxes related by the follow-
ing perfect periodic boundaries operator H which is expressed by:⎧⎪⎪⎨⎪⎪⎩

H : Xo
p ×Xo

p −→ Xi
p×Xi

p(
f
g

)
�−→ H

(
f
g

)
=

(
0 H12

H21 0

)(
f
g

)
where: Hk j is bounded operator and the boundary spaces Xo

p and Xi
p are given by:

Xo
p := Lp({−a}× (−1,0), |ξ |dξ )×Lp({a}× (0,1), |ξ |dξ ) := Xo

1,p×Xo
2,p

and

Xi
p := Lp({−a}× (0,1), |ξ |dξ )×Lp({a}× (−1,0), |ξ |dξ ) := Xi

1,p×Xi
2,p

(see [4] for more details).
Using the notations of Section 3, we write AH as a 2×2 block operator matrices

Am :=
(

Am K12

K21 Dm

)
with diagonal entries Am and Dm correspond to the maximal oper-

ators Am = T1 and Dm = T2 on D(Am) = D(Dm) = Wp ⊂Xp = E = F , the off-diagonal
entries B and C correspond to the bounded collisions operators B = K12 and C = K21 .

The corresponding transport problem presented with boundary conditions mod-
eled by the relations f i = H12go and gi = H21 f o satisfying the following diagram:

Xp ⊃ D(Am) = Wp
φ1 ��

ψ2��������������������
Xi

p

Xp ⊃ D(Dm) = Wp φ2

��

ψ1
��������������������
Xi

p

The above diagram takes the form of the previous section upon the following iden-
tification for the spaces and operators involved: X = Y = Xi

p , φk and ψk for k = 1,2
as the mapping:⎧⎨⎩

φk : Wp −→ Xi
p

ϕ �−→ ϕ i

⎧⎨⎩ ψ2 : Wp −→ Xi
p

g �−→ H12g
o

and

⎧⎨⎩ ψ1 : Wp −→ Xi
p

f �−→ H21 f o.

REMARK 4.1. (i) It should be noticed that, we deals with perfect periodic bound-
ary conditions, i.e., ⎧⎪⎪⎨⎪⎪⎩

H12 : Xo
p −→ Xi

p

H12

(
u1

u2

)
:=

(
0 I12

I21 0

)(
u1

u2

)
where:

I12 : Xo
2,p −→ Xi

1,p, u(a,ξ ) −→ u(−a,ξ )
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I21 : Xo
1,p −→ Xi

2,p, u(−a,ξ )−→ u(a,ξ )

(ii) Obviously, H21 possesses the same structure as H12 , i.e.,⎧⎪⎪⎨⎪⎪⎩
H21 : Xo

p −→ Xi
p

H21

(
u1

u2

)
:=

(
0 I12

I21 0

)(
u1

u2

)
.

Under these arguments, it suffices to verify the assumptions (H1)–(H2) of the
previous section. The first one is a consequence of the following remark.

REMARK 4.2. (i) It is well known from Remark 4.1 in [22], that the operators
Tk , k = 1,2 are closed, densely defined linear operators with non empty resolvent set.
Hence, the assumption (H1) is satisfied.

(ii) Following Theorem 1 p. 252 in [5], the trace mapping φ j , j = 1,2, are
continuous and surjective, which ensure the validity of the hypothesis (H2).

To compute the essential spectra of the operator matrix AH , we proceed in 5
steps:

Step 1. Consider the restrictions A0 and D0 of Am = T1 and Dm = T2 to D(A0) :=
{ f ∈Wp such that f i = 0} and D(D0)=

{
g ∈ Wp such that gi = 0

}
, respectively. Then,

we obtain the operator matrix

A0 :=
(

Am 0
0 Dm

)
:=

(−ξ d
dx −σ1(ξ ) 0

0 −ξ d
dx −σ2(ξ )

)
on Xp×Xp with diagonal domain

D(A0) =
{(

f
g

)
∈ Wp×Wp such that f i = 0 and gi = 0

}
.

Step 2. The following Lemma is useful to formulate the proposed problem:

LEMMA 4.1. Let λ ∈ ρ(A0)∩ ρ(D0) . The bounded operators Kλ and Lλ are
expressed as:⎧⎪⎪⎨⎪⎪⎩

Kλ : Wp −→ Wp

g �−→ (Kλ g)(x,ξ ) = χ(−1,0)(ξ )(I21g)(−a,ξ )e−
(λ+σ1(ξ ))

|ξ | |a+x|

+χ(0,1)(ξ )(I12g)(a,ξ )e−
(λ+σ1(ξ ))

|ξ | |a−x|
,

and ⎧⎪⎪⎨⎪⎪⎩
Lλ : Wp −→ Wp

f �−→ (Lλ f )(x,ξ ) = χ(−1,0)(ξ )(I21 f )(−a,ξ )e−
(λ+σ2(ξ ))

|ξ | |a+x|

+χ(0,1)(ξ )(I12 f )(a,ξ )e−
(λ+σ2(ξ ))

|ξ | |a−x|
,
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Proof. Let λ ∈ ρ(A0)∩ρ(D0). Note that the expression of Kλ and Lλ may be
checked by steps:

∗ We start firstly to revels the expression of ker(λ −Am) and ker(λ −Dm) . For
this, we consider ϕ ∈ D(Am) and γ ∈ D(Dm) . A short computation revels that:

ϕ ∈ ker(λ −Am) means that ϕ(x,ξ ) :=

⎧⎪⎨⎪⎩ ϕ(−a,ξ )e−
λ+σ1(ξ )

|ξ | |a+x|
, 0 < ξ < 1

ϕ(a,ξ )e−
λ+σ1(ξ )

|ξ | |a−x|
, −1 < ξ < 0

γ ∈ ker(λ −Dm) means that γ(x,ξ ) :=

⎧⎪⎨⎪⎩ γ(−a,ξ )e−
λ+σ2(ξ )

|ξ | |a+x|
, 0 < ξ < 1

γ(a,ξ )e−
λ+σ2(ξ )

|ξ | |a−x|
, −1 < ξ < 0

∗ Secondly, taking into account the Remark 4.1, one finds that{
ϕ(−a,ξ ) = I12g(a,ξ ), ξ > 0,

ϕ(a,ξ ) = I21g(−a,ξ ), ξ < 0

and {
γ(−a,ξ ) = I12 f (a,ξ ), ξ > 0,

γ(a,ξ ) = I21 f (−a,ξ ), ξ < 0

satisfy φ1(ϕ) = ψ2(g) and ϕ2(γ) = ψ1( f ) for f ∈ D(Am) and g ∈ D(Dm), which
yields an explicit formula for Kλ and Lλ :

(Kλ g)(x,ξ ) :=

⎧⎪⎨⎪⎩ I12g(a,ξ )e−
λ+σ1(ξ )

|ξ | |a+x|
, 0 < ξ < 1,

I21g(−a,ξ )e−
λ+σ1(ξ )

|ξ | |a−x|
, −1 < ξ < 0

(Lλ f )(x,ξ ) :=

⎧⎪⎨⎪⎩ I12 f (a,ξ )e−
λ+σ2(ξ )

|ξ | |a+x|
, 0 < ξ < 1,

I21 f (−a,ξ )e−
λ+σ2(ξ )

|ξ | |a−x|
, −1 < ξ < 0.

�

Step 3. To compute the essential spectra of AH , we shall prove the Fredholmness
perturbations of the operators G(λ ) , F(λ )(λ −A0)−1 and G(λ )(λ −D0)−1 . To do
this, the following definition introduced by M. Kharroubi in [23] is required.

DEFINITION 4.1. [23] A collision operator Ki j in the form (4.1), is said to be
regular if it satisfies the following conditions:⎧⎪⎪⎨⎪⎪⎩

− the function Ki j(.) is mesurable,
− there exists a compact subset C ⊂ L (Lp((−1,1), dξ )) such that:

Ki j(x) ∈ C a.e. on(−a,a),
− Ki j(x) ∈ K (Lp((−1,1), dξ ))a.e. on(−a,a)

where K (Lp((−1,1), dξ )) is the set of compact operators on Lp((−1,1), dξ ) .
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Taking into account the result of compactness and weakly compactness established
by N. Moalla et al. in [22], we are in the position to state the following results:

LEMMA 4.2. Let λ ∈ ρ(A0)∩ρ(D0) .

(i) If H21 ∈ W (X1) (resp. H12 ∈ W (X1)) and
κ21(x,ξ ,ξ ′)

|ξ ′| (resp. K12 ) defines a

regular operator, then the operator F(λ )(λ −A0)−1 (resp. G(λ )) is weakly compact
on X1 .

(ii) If H21 ∈ K (Xp) (resp. H12 ∈K (Xp)) and K21 (resp. K12 ) defines a regular
operator, then the operator F(λ )(λ −A0)−1 (resp. G(λ )) is compact on Xp , for p > 1 .

Proof. Let us written, for λ ∈ ρ(A0)∩ρ(D0) , the operators F(λ )(λ −A0)−1 and
G(λ ) as:

F(λ )(λ −A0)−1 := −Lλ (λ −A0)−1− (λ −D0)−1K21(λ −A0)−1

and
G(λ ) := −Kλ − (λ −A0)−1K12.

(i) The weak compactness assumption for the operator H21 (resp. H12 ) revels
that the operator Lλ (resp. Kλ ) is weakly compacts on X1 .

Following Lemma 4.2 in [22] (resp. Lemma 3.1 in [10]), the operator K21(λ −
A0)−1 (resp. (λ −A0)−1K12 ) is weakly compact on X1.

Hence, the fact that the set W (X1) is a closed two sided-ideal of L (X1) , allows
us to conclude the desired results.

(ii) It is easy to check the results of this item, it is sufficient to use Theorem 2.2 in
[18] and the compactness arguments of the operator H21 (resp. H12 ) and the regularity
of the collision operator K21 (resp. K12 ). �

REMARK 4.3. For the remainder, we observe that if H12 is compact on Xp , p >
1 (resp. weakly compact on X1 ), K12 defines a regular operator, then F(λ )G(λ ) ∈
K (Xp) (resp. F(λ )G(λ )∈W (X1)). Hence, one has [F(λ )G(λ )]2 ∈K (Xp) , ∀p � 1,
we deduce that F(λ )G(λ ) ∈ PK (Xp) , p � 1.

Step 4. We claim that 1 ∈ ρ(F(λ )G(λ )) .
Indeed:
Let λ ∈ ρ(A0)∩ρ(D0) and h∈ ker(I−F(λ )G(λ )) . Then, the following equation

can be solved:

(I−F(λ )G(λ ))h = 0

⇐⇒ Lλ
[
Kλ +(λ −A0)−1K12

]
h+(λ −D0)−1K21

[
Kλ +(λ −A0)−1K12

]
h = h

⇐⇒ (λ −Dm)[Lλ
[
Kλ +(λ −A0)−1K12

]
h]

+(λ −Dm)(λ −D0)−1K21
[
Kλ +(λ −A0)−1K12

]
h = (λ −Dm)h,

since Lλ ∈ ker(λ −Dm)
⇐⇒ K21(λ −A0)−1[(λ −A0)Kλ +K12]h = (λ −Dm)h
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⇐⇒ K21(λ −A0)−1K12h = (λ −Dm)h, while Kλ ∈ ker(λ −Am)
⇐⇒ [λ −Dm−K21(λ −A0)−1K12]h = 0.

Since we can find λ ∈ ρ(A0)∩ρ(D0)∩ρ(D0 +K21(λ −A0)−1K12) (see [13]), then
λ −D0 −K21(λ −A0)−1K12 is invertible. So, one has λ −Dm −K21(λ −A0)−1K12 is
injective, thus we conclude that h = 0. This argument yields the injectivity of the
operator I −F(λ )G(λ ) and therefore, invertible by Remark 4.3. Following Theorem
3.1, allows us to deduce that the matrix operator AH is invertible with bounded inverse.

It is now quite simple to characterize the essential spectra of AH .
Step 5. We compute easily the essential spectra of AH .

THEOREM 4.1. Assume that H21 ∈S (Xp) (resp. H12 ∈S (Xp)) and
κ21(x,ξ ,ξ ′)

|ξ ′|
(resp. K12 ) defines a regular operator, then

σei(AH) = σei(A0)∪σei(D0) = {λ ∈ C : Reλ � −min(λ ∗
1 ,λ ∗

2 )} , ∀i ∈ {r, l,4,5,6}.
Proof. Remark 4.3 in [22] revels that the essential spectra of the operators A0

and D0 (A0 and D0 are nothing else the streaming operators with vacuum boundary
conditions) are expressed as:

σei(A0) = {λ ∈ C such that Reλ � −λ ∗
1 } , i ∈ {4,5,6}

and
σei(D0) = {λ ∈ C such that Reλ � −λ ∗

2 } , i ∈ {4,5,6}
where λ ∗

k is defined for k = 1,2 as:

λ ∗
k := liminf

|ξ |−→0
σk(ξ ), k = 1,2.

Consequently, Eqs. (2) and (3) amounts that the right and left essential spectra of
A0 (resp. D0 ) are just

σer(A0) = σel(A0) = σei(A0), (resp. σer(D0) = σel(D0) = σei(D0)), i ∈ {4,5,6}.
Therefore, according with Theorem 3.2, Remark 2.2 and Lemma 4.2, we have

σei(A0) = σei(A0)∪σei(D0) = {λ ∈ C such that Reλ � −min(λ ∗
1 ,λ ∗

2 )}
for i ∈ {r, l,4,5,6}. �

Conclusion. Sufficient conditions are reduced to the study of invertibility problem
of unbounded operator matrices block 2×2. This study is applied to develop innovative
ways leading to a rigorous study of spectral properties of matrix operator with non
diagonal domain (see Theorems 3.2 and 3.3) in a fast manner of computation. Such
a result exploit the resolvent expression involving an elegant use of the perturbation
theory of Fredholm operators and improve under less hypotheses many earlier works.
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