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ON SOME p–ALMOST HADAMARD MATRICES
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(Communicated by G. Misra)

Abstract. Let M(n,R) be the space of all real valued n× n matrices and O(n,R) be the or-
thogonal group. A square matrix Hn ∈ M(n,R) is called “almost Hadamard” if Un := Hn/

√
n

is orthogonal, and locally maximizes the 1-norm on O(n,R) . The matrix Hn is “ p -almost
Hadamard” if it maximizes the p -norm on O(n,R) for p∈ [1,2) and minimizes the p -norm on
O(n,R) for p ∈ (2,∞] . In this work, we consider the Conjecture 4.4 stated in [8] and discuss its
truth content. For n ∈ N\{2} , we show that the matrix

Kn :=
1√
n

⎛⎜⎜⎜⎝
2−n 2 · · · 2

2 2−n · · · 2
...

...
. . .

...
2 2 · · · 2−n

⎞⎟⎟⎟⎠
is p -almost Hadamard, for any p ∈ (2,∞) such that

(p−1)
[
(n−2)2p +(n−2)22p−2 +22(n−2)p−2] > (n−2)p +2p(n−1).

We also establish that for any p ∈ [1,2) and n ∈ N\{2} , Kn is p -almost Hadamard and hence
the Conjecture is valid for this case. Finally, we give some particular examples of p -almost
Hadamard matrices of different orders, incorporating conference and weighing matrices.

1. Introduction

Optimization problems involving orthogonal and unitary matrix constraints play
an important role in the theory of engineering and technology, quantum information,
physics and statistics; including linear and nonlinear eigenvalue problems, electronic
structures computations, low-rank matrix optimization, polynomial optimization, sub-
space tracking, combinatorial optimization, sparse principal component analysis, etc
(see [5, 1, 15, 21] for more details and references therein). These problems are difficult
because the constraints are non-convex and the orthogonality constraints may lead to
several local optimum and, in particular, many of these problems in special forms are
non-deterministic polynomial-time hard (NP-hard). There is no assurance for obtaining
the global optimizer, except for a few simple cases and hence is a tedious task for the
numerical analysts to find a global optimum (see [21] for more details). The works
[14, 10, 2, 3, 4], etc considered several optimization problems involving orthogonal
matrix constrains.
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The concept of almost and p-almost Hadamard matrices introduced in [7, 8], is
closely related to the optimization of a suitable cost functional over orthogonal groups.
Some of the optimum values of this problem also have an interesting connection with
the Hadamard, conference and weighing matrices. We explore these relationships in
this work and give some concrete examples of p -almost Hadamard matrices. The
complex Hadamard (Zeilinger) matrices are proved to be useful in several branches
of quantum physics (see [20]). This connection also opens up various possibilities of
application of the almost and p -almost Hadamard matrices to different problems in
quantum physics.

Conjecture 4.4 in [8] states that the matrix Kn := 2√
nIn−√

nIn , where In is the n×
n matrix with all entires 1 and In is the n×n identity matrix, is a p-almost Hadamard
matrix for any p ∈ [1,∞)−{2} and n ∈ N . In this work, using multi-variable analysis
tools, we prove that for n ∈ N\{2} , the matrix Kn is p -almost Hadamard for any
p ∈ (2,∞) satisfying (see Proposition 6)

(p−1)
[
(n−2)2p +(n−2)22p−2 +22(n−2)p−2] > (n−2)p +2p(n−1).

We also establish that the matrix Kn is p -almost Hadamard for any p ∈ (1,2) and
n∈N\{2} (see Proposition 7 and Remark 11), and hence the Conjecture 4.4 in [8] holds
true for this case. In particular, one can also obtain that Kn is almost Hadamard for
all n ∈ N\{2} (see Corollary 1). With the help of Hadamard, conference and weighing
matrices, we give some particular examples of p -almost Hadamard matrices for various
orders (see Propositions 3 and 4).

2. Mathematical preliminaries

In this section, we give some mathematical preliminaries needed to establish the
main results for this paper. We denote M(n,R), the vector space of all real valued n×n
matrices over R .

2.1. Real Hadamard, conference and weighing matrices

Let us first give the definition and characterizations of real Hadamard, conference
and weighing matrices.

DEFINITION 1. For every positive integer n , the orthogonal group O(n,R) ⊂
M(n,R) is the group of n×n real orthogonal matrices Mn with the group operation of
matrix multiplication, satisfying

MnM
�
n = In = M�

n Mn,

where M�
n is the transpose of Mn .

Because the determinant of an orthogonal matrix is either 1 or −1, the orthogonal
group has two components. The component containing the identity In is the special
orthogonal group SO(n,R) . That is,

SO(n,R) = {Mn ∈ O(n,R) : det(Mn) = 1} ,
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and is a normal subgroup of O(n,R) and O(n,R)/SO(n,R) ∼= Z2 . It should also
be noted that SO(n,R) = det−1({1}) is an open, connected subset of O(n,R) , and
both O(n,R) and SO(n,R) are smooth submanifolds of the n2 -dimensional Euclidean
space.

DEFINITION 2. (Real Hadamard matrix) A real Hadamard matrix Hn of order n
is defined as an n×n square matrix with entries from {1,−1} such that

HnH�
n = nIn.

The following theorem discusses the existence of real Hadamard matrices.

THEOREM 1. (Theorem 4.4, [18]) If a real Hadamard matrix of order n exists,
then n = 1,2 or n ≡ 0(mod 4) .

CONJECTURE 1. (The Hadamard conjecture, [17]) If n ≡ 0(mod 4) , then there is
a real Hadamard matrix of order n.

Two Hadamard matrices of order n are said to be equivalent if and only if one can
be transformed into the other by using the following operations,

(1) multiply any row or column by −1, and

(2) interchange two rows or two columns.

If Hn1 is a Hadamard matrix of order n1 and Hn2 is a Hadamard matrix of order n2 ,
then Hn1 ⊗Hn2 is a Hadamard matrix of order n1n2 , where Hn1 ⊗Hn2 denotes the
Kronecker product of the matrices Hn1 and Hn2 .

Let H (n,R) be the set of n× n matrices with ±1 entries. The Hadamard in-
equality is given by

det(Mn) �
(

n

∏
i=1

n

∑
j=1

a2
i j

)1/2

� nn/2,

where Mn = (ai j)n
i, j=1 ∈ H (n,R) . It should be noted that the equality holds only for

Hadamard matrices.

DEFINITION 3. (Real conference matrix) A real conference matrix of order n >
1 is an n× n matrix Cn with diagonal entries 0 and off-diagonal entries ±1 which
satisfies

CnC�
n = (n−1)In.

A conference matrix Cn = (ci j)n
i, j=1 is a symmetric conference matrix if ci j = c ji

for all 1 � i, j � n and is a skew-symmetric conference matrix if ci j = −c ji for all
1 � i, j � n .

LEMMA 1. (Corollary 2.2, [11]) Any real conference matrix of order n > 2 is
equivalent, under multiplication of rows and columns by −1 , to a conference symmetric
or to a skew-symmetric matrix according as n satisfies n≡ 2(mod 4) or n≡ 0(mod 4) .
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The following theorem gives the existence of symmetric conference matrices. The
existence theorem for skew-symmetric conference matrices is same as Theorem 1.

THEOREM 2. (Theorem 4.11, [18]) If a symmetric conference matrix of order n
exists, then n ≡ 2(mod 4) and n−1 is the sum of two integral squares or equivalently,
the square free part of n−1 must not contain a prime factor ≡ 3(mod 4) .

DEFINITION 4. (Real weighing matrix) A real weighing matrix Wn,k is a square
matrix with entries 0,±1 having k non-zero entries per row and column and inner
product of distinct rows zero. Hence, Wn,k satisfies Wn,kW�

n,k = kIn . The number k is
called the weight of Wn,k .

The determinant of Wn,k is ±kn/2 and if n is odd, [det(Wn,k)]2 = kn implies k
must be a square. Note that a Wn,n , n ≡ 0(mod 4) , is a real Hadamard matrix of order
n and a Wn,n−1 , n ≡ 2(mod 4) , is equivalent to a symmetric conference matrix. Using
this definition, the zero element is no more required to be on the diagonal, and hence
Wn,n−1 is a relaxed definition of real conference matrices. The following theorem gives
the existence of real weighing matrices.

THEOREM 3. (Proposition 23, [12]) 1. If n is odd, then a Wn,k exists only if

(i) k is a square and

(ii) (n− k)2− (n− k)+1 � n.

2. If n ≡ 2(mod 4) , then for a Wn,k to exist,

(i) k � n−1 and

(ii) k is the sum of two integral squares.

It has been conjectured that n ≡ 0(mod 4) , then a Wn,k exists for all 1 � k � n
([13]).

2.2. p -almost Hadamard matrices

Now we give the definition and characterizations of p -almost Hadamard matrices.

DEFINITION 5. Let Hn ∈ M(n,R) . We say that Hn is an “almost Hadamard ma-
trix” if Un := Hn/

√
n is orthogonal and is a local maximum of the 1-norm on O(n,R) ,

i.e., Un is a local maximum of ‖Un‖1 =
n
∑

i, j=1
|Ui j| , where Ui j is an entry of Un .

Equivalently, Ui j 
= 0, and the matrix

SnU�
n , with Si j = sgn(Ui j) =

{
1, if Ui j > 0,

−1, if Ui j < 0,

must be positive definite.
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For the equivalence between the two conditions in Definition 5, we refer the read-
ers to see [6, 7]. Using the Cauchy-Schwarz inequality, we have

‖Un‖1 =
n

∑
i, j=1

|Ui j|

� n

(
n

∑
i, j=1

|Ui j|2
)1/2

= n
√

n,

since Un is orthogonal and we know that
n
∑

i, j=1
|Ui j|2 = n . Let us now define

‖Un‖p
p :=

n

∑
i, j=1

|Ui j|p.

DEFINITION 6. A matrix Hn ∈ M(n,R) such that Un = Hn/
√

n is orthogonal is
called:

(1) p-almost Hadamard (p < 2) , if Un locally maximizes the p -norm on O(n,R) .

(2) p-almost Hadamard (p > 2) , if Un locally minimizes the p -norm on O(n,R) .

REMARK 1. Strictly speaking, one should use the terminology “real p -almost
Hadamard matrices” instead of “ p -almost Hadamard matrices”, as the matrices under
our consideration are real orthogonal matrices.

PROPOSITION 1. Let Un ∈ O(n,R) , and let p ∈ [1,∞]\{2} .

(1) If p < 2 , then ‖Un‖p � n2/p−1/2 , with equality if and only if Hn =
√

nUn is
Hadamard.

(2) If p > 2 then ‖Un‖p � n2/p−1/2 , with equality if and only if Hn =
√

nUn is
Hadamard.

For a proof Proposition 1, see Proposition 7.1, [6] or Proposition 2.1, [8]. It should
be noted that for p = 1,4,∞ , we obtain ‖Un‖1 � n

√
n , ‖Un‖4 � 1, ‖Un‖∞ � 1/

√
n and

in all cases equality holds if and only if the rescaled matrix Hn =
√

nUn is Hadamard.
As we discussed earlier, given an exponent p 
= 2 and a number n∈ {2}∪4N , where the
Hadamard conjecture holds, the Hadamard matrices of order n are the best examples
of p -almost Hadamard matrices. That is, Hn ∈ M(n,R) are “optimal”, in the sense
that the rescaled matrix Un = Hn/

√
n is a global maximum/minimum of the p -norm

on O(n,R) , for p ∈ [1,∞]\{2} .



258 M. T. MOHAN

2.3. Complex Hadamard matrices

Next, we consider the complex Hadamard matrices and discuss about the existence
of such matrices.

DEFINITION 7. For every positive integer n , the n× n unitary group U(n,C) is
the group of n×n unitary matrices with the group operation of matrix multiplication,
satisfying

UnU∗
n = U∗

nUn = In,

where U∗
n is the conjugate transpose of Un .

The n×n special orthogonal group is

SU(n,C) =
{

Un ∈ U(n,C) : det(Un) = 1
}
.

Note that unitary and special unitary groups are smooth manifolds, compact and path-
connected.

DEFINITION 8. A complex Hadamard matrix Hn is an n×n matrix with complex
entries of modulus 1 such that HnH∗

n = nIn .

Thus a complex Hadamard matrix Hn is having unimodular entries such that
1√
nHn is unitary.

LEMMA 2. For every n � 1 , there exists a complex Hadamard matrix of order n.

Proof. The Fourier matrix

[Fn]i j = e2π i(i−1)( j−1)/n, i, j = 1, . . . ,n, (1)

where i =
√−1, is an example of a complex Hadamard matrix of order n . �

The following are complex Hadamard matrices of orders n = 1,2 and 3, respec-
tively:

F1 = [1], F2 =
(

1 1
1 −1

)
, F3 =

⎛⎝1 1 1
1 ω ω2

1 ω2 ω

⎞⎠ , (2)

where {1,ω ,ω2} are the cube roots of unity. In general, Fn is given by the scaled
Vandermonde’s matrix:

Fn =

⎛⎜⎜⎜⎜⎜⎝
1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...

1 ωn−1 ω2(n−1) · · · ω(n−1)2

⎞⎟⎟⎟⎟⎟⎠ .

For more details on the complex Hadamard matrices, the interested readers may refer
to [19].
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3. The optimization problem

The main objective of this work is to find p -almost Hadamard matrices of different
orders and thus we formulate it as a constrained optimization problem (see Definition
6). For notational simplification, we use the symbols A,B,G, I,W,X,Y,Z, etc as n×
n matrices. We also use the symbols Ai, j for matrices and ai j for matrix entires.
The general minimization problem (see [21]) over the real orthogonal matrices can be
formulated as:

min
X∈Rn×n

F (X), such that X�X = I, (3)

where Rn×n := M(n,R) , I is the n×n identity matrix and F (·) : Rn×n → R is a twice

continuously differentiable function. The feasible set Mn :=
{

X ∈ Rn×n : X�X = I
}

is often referred to as the Stiefel Manifold.
Given a differentiable function, F (·) : Rn×n → R , the gradient of F with respect

to X is denoted by G := DF (X) =
(

∂F (X)
∂Xi j

)n

i, j=1
. The derivative of F at X in the

direction Z is defined as

DF (X)[Z] := lim
t→0

F (X+ tZ)−F (X)
t

= 〈DF (X),Z〉 .

Here 〈·, ·〉 denotes the Euclidean inner product between two matrices and is defined by

〈A,B〉 :=
n

∑
j,k=1

a jkb jk = Tr(A�B), for all A = (ai j)n
i, j=1,B = (bi j)n

i, j=1 ∈ Rn×n,

where Tr(A) is the trace of A, i.e., the sum of the diagonal elements of A. We use
∇F for gradients in tangent planes. Given a feasible point X and the gradient G, we
define a skew-symmetric matrix A as either

A := GX�−XG� or

A := (PXG)X�−X(PXG)�, where PX :=
(

I− 1
2
XX�

)
.

⎫⎪⎬⎪⎭ (4)

REMARK 2. We know that SO(n,R) is the connected component of the identity
in O(n,R) . The subsets of SO(n,R), whose members are connected to the identity

by paths (path-connected component). Let us now find Z ∈ TXMn :=
{

Z ∈ Rn×n :

X�Z+Z�X = 0
}

, which is the tangent space of Mn at X.

Let γ : (−a,a)→ SO(n,R), a ∈ R be a smooth curve with γ(0) = I . Since, it is a
curve in SO(n,R) , for each s , we have γ(s)γ(s)� = I. Let us differentiate this relation
with respect to s to obtain

γ ′(s)γ(s)� + γ(s)γ ′(s)� = 0.
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For s = 0, we have γ ′(0)+ γ ′(0)� = 0, so that γ ′(0) is skew-symmetric. Hence, every
tangent vector to SO(n,R) at I is a skew-symmetric matrix. Since TIM

SO
n ⊂ so(n,R),

where
M SO

n :=
{

X ∈ Rn×n : X�X = I, det(X) = 1
}
,

and so(n,R) denotes the n× n skew-symmetric matrices, and both are vector spaces

of dimension n(n−1)
2 , they must be equal.

In general, the tangent space of a matrix X ∈ SO(n,R) is given by

TXM SO
n =

{
XA : A ∈ so(n,R)

}
,

where the dimension of TXM SO
n is n2−n

2 . This means that any tangent vector at X
is X times some skew-symmetric matrix. Since SO(n,R) is a connected component
of O(n,R) containing I , the group SO(n,R) has the same tangent space at the neutral
element I, because all members of O(n,R) near the identity are members of SO(n,R) .
Thus we denote TXM SO

n = TXM O
n := TXMn .

Following [21], we next state the first and second order optimality conditions for
the optimization problem (3) in the following lemmas. Since the matrix X�X = I is
symmetric, the Lagrangian multiplier Λ corresponding to X�X = I is a symmetric
matrix. The Lagrangian function for the optimization problem (3) is given by

L (X,Λ) = F (X)− 1
2
Tr
(

Λ
(
X�X− I

))
. (5)

Let us now give the first order necessary condition and second order necessary and
sufficient conditions of optimality for the problem (3).

LEMMA 3. (First order necessary condition, Lemma 1, [21]) If X is a local mini-
mizer of the problem (3), then X satisfies the first order optimality conditions,

DXL (X,Λ) = G−XG�X = 0 and X�X = I,

with the associated Lagrangian multiplier Λ = G�X . Define

∇F (X) := G−XG�X, and A := GX�−XG�. (6)

Then, ∇F (X) = AX . Moreover, ∇F (X) = 0 , if and only if A = 0 .

LEMMA 4. (Second order necessary condition, Theorem 12.5, [16], Lemma 2, [21])
Suppose that X ∈ Mn is a local minimizer for the problem (3). Then X satisfies

Tr
(
Z�D (DF (X)) [Z]

)
−Tr

(
ΛZ�Z

)
� 0, where Λ = G�X, (7)

for all Z ∈ TXMn :=
{

Z ∈ Rn×n : X�Z + Z�X = 0
}

, which is the tangent space of

Mn at X .
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LEMMA 5. (Second order sufficient condition, Theorem 12.6, [16], Lemma 2, [21])
Suppose that for X∈Mn , there exists a Lagrange multiplier Λ such that the first order
conditions are satisfied. Suppose also that

Tr
(
Z�D (DF (X)) [Z]

)
−Tr

(
ΛZ�Z

)
> 0, (8)

for any matrix Z ∈ TXMn . Then X is a strict local minimizer for the problem (3).

REMARK 3. For the corresponding maximization problem, Lemma 3 remains the
same and the inequalities (7) and (8) in the second order necessary and sufficient con-
ditions (Lemma 4 and Lemma 5) are reversed.

Since the orthogonality constraint is non-convex, the optimization problem (3)
may lead to several local extrema, even if the cost functional is convex. Different
optimization problems involving orthogonal matrix constraints can be found in [14, 21,
2, 3, 4], etc.

3.1. The optimization problem for p -almost Hadamard matrices

Let p ∈ (2,∞) and consider

min
X∈Rn×n

n

∑
i, j=1

|ai j|p, such that
n

∑
k=1

akiak j =
{

1 if i = j,
0 if i 
= j.

(9)

In this case, the derivative matrix G and the matrix A are given by

G :=
(

∂F (X)
∂Xi j

)n

i, j=1
= p

(|ai j|p−2ai j
)n
i, j=1 , (10)

and

A := GX�−XG� = p

(
n

∑
k=1

aika jk
(|aik|p−2−|a jk|p−2))n

i, j=1

. (11)

If there exists a matrix X = Mn = (ai j)n
i, j=1 minimizes the function given in (9), then

the first order necessary condition given in Lemma 3 becomes GX� = XG� and hence
for all i and j , we have

n

∑
k=1

aika jk
(|aik|p−2−|a jk|p−2) = 0. (12)

In order to get the second order necessary and sufficient conditions given in Lemma 4
and Lemma 5, we first calculate D (DF (X)) [Z] as

D (DF (X)) [Z] = Tr
(
Z�DF (X)

)
=

n

∑
i, j=1

zi j

(
∂ (DF (X))i j

∂Xi j

)n

i, j=1

= p(p−1)
(
zi j|ai j|p−2)n

i, j=1 , (13)
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where Z = (zi j)n
i, j=1 . Hence, we find Tr

(
Z�D (DF (X)) [Z]

)
for all Z ∈ TXMn , as

Tr
(
Z�D (DF (X)) [Z]

)
=

n

∑
i, j=1

zi j (D (DF (X)) [Z])i j

= p(p−1)
n

∑
i, j=1

z2
i j|ai j|p−2, (14)

for all Z ∈ TXMn .
We define Ai, j ∈ so(n) , for i 
= j and i < j , as a skew-symmetric matrix with 1

on the i jth position and −1 on the jith position. Now, for any Zi, j ∈TXMn , i 
= j and
i < j , we have

Tr
(
(Zi, j)�D (DF (X)) [Zi, j]

)
= p(p−1)

n

∑
k,l=1

(zi, j
kl )

2|akl|p−2

= p(p−1)
n

∑
k=1

[a2
ki|ak j|p−2 +a2

k j|aki|p−2],

where Zi, j = (zi, j
kl )

n
k,l=1 . We also have

Tr
(

Λ(Zi, j)�Zi, j
)

= p

[
n

∑
k=1

(|aki|p + |ak j|p
)]

,

where Λ = G�X is the Lagrange multiplier. Finally, we obtain

ξ
i, j
Mn

: = Tr
(
(Zi, j)�D (DF (X)) [Zi, j]

)
−Tr

(
Λ(Zi, j)�Zi, j

)
= p

n

∑
k=1

[
(p−1)(a2

ki|ak j|p−2 +a2
k j|aki|p−2)− (|aki|p + |ak j|p)

]
. (15)

For p > 2, Mn is a local minimum for the optimization problem (9) only if ξ
i, j
Mn

> 0
for all 1 � i < j � n .

REMARK 4. 1. For 1 < p < 2, and if the entries of Mn are non-zero, then Mn is a
local maximum for the optimization problem (9) only if ξ

i, j
Mn

< 0 for all 1 � i < j � n .

2. For p = 2, we know that
n
∑

i, j=1
a2

i j = n, for any n . If we consider it as an

optimization problem, then from (12), using the orthogonality, one can easily get that
every orthogonal matrix Mn ∈ Rn×n is a stationary point. Note also that ξ

i, j
Mn

= 0, for
all 1 � i < j � n .

4. Some p -almost Hadamard matrices

In this section, first give some particular examples of p -almost Hadamard matrices
of various orders using Hadamard, conference and weighing matrices. Then, we check
the truth content of the Conjecture 4.4 in [8].
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PROPOSITION 2. If a real Hadamard matrix Hn exists, then 1√
nHn is a station-

ary point of the minimization problem (9) and is a local minimum and also a global
minimum.

Proof. Let n be 1,2 or ≡ 0(mod 4) and let us assume that a real Hadamard matrix
Hn exists. We define Pn := 1√

nHn . Since the entries of Hn are ±1, we have the
derivative matrix

Gn =
p

n
p−2
2

Pn, and An = GnP�
n −PnG�

n = 0n,

and the first order necessary condition is satisfied, so that Pn is a stationary point. Also,
one can easily get

ξ
i, j
Pn

=
2p(p−2)

n
p−2
2

> 0,

for each Zi, j ∈ TPnMn , 1 � i < j � n and p > 2. Hence Pn is a local minimum.
Let us now consider the sets:

A :=

{
X = (ai j)n

i, j=1 ∈ Rn×n :
n

∑
j=1

a2
i j = 1, for i = 1, . . . ,n

}
,

B :=

{
X = (ai j)n

i, j=1 ∈ Rn×n :
n

∑
j=1

a2
i j = 1, for i = 1, . . . ,n,

n

∑
k=1

aika jk = 0, for i 
= j

}
.

Clearly the set B � A . Now for each fixed 1 � i � n , we consider the problem:

min
X∈Rn×n

n

∑
j=1

|ai j|p subject to
n

∑
j=1

a2
i j = 1. (16)

That is, we are considering a minimization problem over the set A . Using Lagrangian
multipliers, one can easily obtain that one of the stationary points of the problem (16)
is Mn = (ai j)n

i, j=1 ∈ A with |ai j|2 = 1
n for all 1 � j � n . This is a local minimum,

since the Hessian matrix is given by:

H = p(p−2)diag(|ai1|p−2, . . . , |ain|p−2) =
p(p−2)

n
p−2
2

In,

and is positive definite for all p > 2. It is also a global minimum, since the cost func-
tional and constraint both are convex. Since B � A and Pn ∈B implies that there ex-
ists a global minimum for this problem in B also. Thus, for any Mn = (ai j)n

i, j=1 ∈ B ,
we have

F (Mn) :=
n

∑
i, j=1

|ai j|p �
n

∑
i=1

n

∑
j=1

1

np/2
=

1

np/2−2
= F (Pn).

Thus Pn is a global minimum and Hn is a p -almost Hadamard matrix. �
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REMARK 5. Since the matrix entries are nonzero, the above computation also
shows that Pn = 1√

nHn is a local minimum for 1 < p < 2 and hence Hn is a p -almost
Hadamard matrix, for 1 < p < 2. Also Hn almost Hadamard for all n .

PROPOSITION 3. If a conference matrix Cn of order n exists, then the matrix
Rn := 1√

n−1
Cn is a strict local minimum to the problem (9), for p ∈ ( 2n−3

n−2 ,∞),n > 2 .

Proof. Let n > 2 be even and assume that a conference matrix Cn of order n
exists and let Rn = 1√

n−1
Cn . Since the entries of Cn are 0,±1 and 0 occurs only along

the diagonal, we have

Gn =
p

(n−1)
p−2
2

Rn and An = GnR�
n −RnG�

n = 0n.

Thus it is immediate that (12) is satisfied and Rn is a stationary point. Now, we have

ξ
i, j
Rn

=
2p

(n−1)
p
2

[n(p−2)−2p+3]. (17)

Note that ξi j > 0 only if n > 2p−3
p−2 and we know that lim

p→∞
2p−3
p−2 = 2. Thus, 1√

n−1
Cn is

a strict local minimum to the problem (9), for all p ∈ ( 2n−3
n−2 ,∞) . �

REMARK 6. Since Rn is a local minimum to the problem (9), the matrix R̃n :=√
n√

n−1
Cn is p -almost Hadamard, for all p > 2n−3

n−2 and n > 2.

PROPOSITION 4. If a weighing matrix Wn,k = (wi j)n
i, j=1 exists for some 1 � k �

n, then the orthogonal matrix Sn,k := 1√
k
Wn,k is a stationary point to the minimization

problem (9). Also if

βi j =
n

∑
l=1

w2
liw

2
l j, β = min

i, j
βi j and β = max

i, j
βi j, for 1 � i < j � n,

then we have Sn,k is

(i) a strict local minimum if β > k
p−1 ,

(ii) a strict local maximum if β < k
p−1 ,

(iii) a saddle point if βi j � k
p−1 and βi j � k

p−1 for some i and j .

Proof. If a weighing matrix Wn,k = (wi j)n
i, j=1 exists for some 1 � k � n , then the

orthogonal matrix Sn,k = 1√
k
Wn,k is a stationary point to the minimization problem (9),

since the entries of weighing matrices are 0,±1 and

Gn,k =
p

k
p−2
2

Sn,k and An,k = Gn,kS
�
n,k −Sn,kG

�
n,k = 0n.
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Also, Sn,k is a strict local minimum if β > k
p−1 , a strict local maximum if β < k

p−1 ,

and a saddle point if βi j � k
p−1 and βi j � k

p−1 for some i and j , since

ξ
i, j
Sn,k

=
2p

k
p
2

((p−1)βi j − k),

for 1 � i < j � n . Hence the matrix Sn,k is a strict local minimum if β > k
p−1 . �

REMARK 7. The matrix S̃n,k :=
√

n√
k
Wn,k is a p -almost Hadamard matrix for all

p ∈
(

k
β ,∞

)
. Since some of the matrix entries are zero, at this moment, we cannot say

anything about the case for 1 < p < 2.

PROPOSITION 5. The matrix Tn1n2 := 1√
n1

Hn1 ⊗Mn2 is a strict local minimum
of the optimization problem (9) of order n1n2 if Mn2 is a strict local minimum of the
optimization problem (9) of order n2 .

Proof. For p ∈ (2,∞) , from Proposition 2, we know that 1√
n1

Hn1 is a global min-

imum of the optimization problem (9) of order n1 . If the matrix Mn2 = (ai j)
n2
i, j=1 is a

strict local minimum of the optimization problem (9) of order n2 , then we know that

n2

∑
k=1

aika jk
(|aik|p−2−|a jk|p−2) = 0

for all 1 � i, j � n2 , and

ξ
i, j
Mn2

= p
n2

∑
k=1

[
(p−1)(a2

ki|ak j|p−2 +a2
k j|aki|p−2)− (|aki|p + |ak j|p)

]
> 0,

for 1 � i < j � n2 . Now, we consider the matrix Tn1n2 := 1√
n1

Hn1 ⊗Mn2 = (ci j)
n1n2
i, j=1 .

Since the entries of Hn1 are ±1, one can easily get

n1n2

∑
k=1

cikc jk
(|cik|p−2−|c jk|p−2) =

1

np/2−1
1

n2

∑
k=1

aika jk
(|aik|p−2−|a jk|p−2) = 0,

for all 1 � i, j � n1n2 . Thus Tn1n2 is a stationary point of the optimization problem (9)
of order n1n2 . Also, we have ξ

i, j
Tn1n2

is either

ξ
i, j
Tn1n2

= p
1

np/2−1
1

n2

∑
k=1

[
(p−1)(a2

ki|ak j|p−2 +a2
k j|aki|p−2)− (|aki|p + |ak j|p)

]
> 0,

or

ξ
i, j
Tn1n2

=
p(p−2)

np/2−1
1

n2

∑
k=1

[|aki|p + |ak j|p
]
> 0,

for 1 � i < j � n1n2 . Thus Tn1n2 is a strict local minimum of the optimization problem
(9) of order n1n2 . �
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4.1. The matrix Kn

Let us now verify the truth content of the Conjecture 4.4 in [8]. We begin with the
following proposition:

PROPOSITION 6. For p > 2 , the orthogonal matrix

Qn =
1
n

⎛⎜⎜⎜⎝
−(n−2) 2 · · · 2

2 −(n−2) · · · 2
...

...
. . .

...
2 2 · · · −(n−2)

⎞⎟⎟⎟⎠ =
Kn√

n
, (18)

is always a stationary point of the minimization problem (9). For n ∈ N\{2} , Qn is a
strict local minimum for

(p−1)
[
(n−2)2p +(n−2)22p−2 +22(n−2)p−2] > (n−2)p +2p(n−1). (19)

That is, for n ∈ N\{2} , Kn is p-almost Hadamard for all p ∈ (2,∞) satisfying (19).

Proof. For the orthogonal matrix given in (18), the matrix

An = GnQ
�
n −QnG

�
n = 0n,

where Gn = p
np−1

⎛⎜⎜⎜⎝
−(n−2)p−1 2p−1 · · · 2p−1

2p−1 −(n−2)p−1 · · · 2p−1

...
...

. . .
...

2p−1 2p−1 · · · −(n−2)p−1

⎞⎟⎟⎟⎠ = G�
n and Q�

n = Qn

and GnQn = QnGn . Thus, Qn is always a stationary point of the minimization problem
(9).

It can also be calculated that

Tr
(
Λn(Zi, j)�Zi, j) =

2p
np [(n−2)p +2p(n−1)],

Tr
(
(Zi, j)�D (DF (Qn)) [Zi, j]

)
=

2p(p−1)
np−1

[
(n−2)22p−2+22(n−2)p−2+(n−2)2p] ,

and ξ
i, j
Qn

=
2p
np

{
(p−1)

[
(n−2)22p−2 +22(n−2)p−2]

+(n−2)2p− (n−2)p−2p(n−1)
}
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
for each Zi, j ∈ TXMn , 1 � i < j � n . Hence, ξ

i, j
Qn

> 0 for the condition given in (19)
and is a strict local minimum for the minimization problem (9), for n � 3. For n = 2,
ξ

i, j
Qn

< 0, for all p ∈ (2,∞), and Qn is a strict local maximum. Hence, for n � 3, Kn is
p -almost Hadamard for all p ∈ (2,∞) satisfying (19). �
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REMARK 8. 1. For p = 2, Qn is always a stationary point by Remark 4 (2) and
ξ

i, j
Qn

= 0 , for all 1 � i < j � n .
2. Let us define

f (p,n) := (p−1)
[
(n−2)2p +(n−2)22p−2 +22(n−2)p−2]− (n−2)p−2p(n−1).

For p = 2, we have f (n,2) = 0, for all n � 2. For p = 3, . . . ,8 and n � 0, the plots
are given below (n on the x -axis and f (p,n), for p = 3, . . . ,8 on the y-axis):

(a) f (3,n) = −n3 +10n2 −12n−16. (b) f (4,n) = −n4 +8n3 −32n .

(c) f (5,n) = −n5 +10n4 −24n3 +16n2

+80n−192.
(d) f (6,n) = −n6 +12n5 −40n4

+320n2 −512n .

(e) f (7,n) = −n7 +14n6 −60n5 +40n4

+400n3 −1056n2 +1344n−1280.
(f) f (8,n) = −n8 +16n7 −84n6 +112n5

+560n4 −2688n3 +5736n2 −4096n .

Figure 1: Plots of f (p,n) , n = 3, . . . ,8 .

From the Figure 1, it is clear that Kn is 3-almost Hadamard for all n = 3, . . . ,8,
and 4-, . . . ,8-almost Hadamard for all n = 3, . . . ,7.

REMARK 9. One can write f (·, ·) as

f (p,n) = 2p−2 [(n2−4)p− (n2 +4n−8)
]
+(n−2)p−2[4p− (n2−4n+8)

]
. (20)
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From this expression, it is also clear that f (p,n) > 0 for all

p > max

{
n2 +4n−8

n2−4
,
n2−4n+8

4

}
=

n2−4n+8
4

, (21)

for n > 4. Thus, for n > 4, Kn is p -almost Hadamard for all p satisfying (21).

REMARK 10. It can also be proved that Qn is a global minimum for n = 3 (see
[10, 3] for more details). The Rény and Tsallis entropy for orthogonal matrices defined
in [3] has an interesting connection with the p -almost Hadamard matrices. Both of
them have same stationary points and same local (global) minima.

PROPOSITION 7. For p∈ (1,2) , the orthogonal matrix Qn is always a stationary
point of the maximization problem

max
X∈Rn×n

n

∑
i, j=1

|ai j|p, such that
n

∑
k=1

akiak j =
{

1 if i = j,
0 if i 
= j,

ai j 
= 0 for all 1 � i, j � n.

(22)

For n ∈ N\{2} , Qn is a strict local maximum for

(p−1)
[
(n−2)2p +(n−2)22p−2 +22(n−2)p−2] < (n−2)p +2p(n−1). (23)

That is, Kn is p-almost Hadamard for all n ∈ N\{2} and p ∈ (1,2) satisfying (23).

Proof. A similar calculation in the Theorem 6 yields Qn is a stationary point of
the problem (22). Since the entries of Qn are nonzero, we have

ξ
i, j
Qn

=
2p
np

{
(p−1)

[
(n−2)22p−2 +22(n−2)p−2 +(n−2)2p]−(n−2)p−2p(n−1)

}
,

for each Zi, j ∈ TXMn , 1 � i < j � n . Hence for n ∈ N\{2} , Qn is a local maximum
and Kn is p -almost Hadamard for p ∈ (1,2) satisfying (23). �

REMARK 11. For 1 < p < 2, from the definition of f (·, ·) in (20), it is clear that

f (p,n) = 2p−2 [(n2−4)p− (n2 +4n−8)
]
+(n−2)p−2[4p− (n2−4n+8)

]
< 2p−2 [(n2−4)2− (n2 +4n−8)

]
+(n−2)p−2[8− (n2−4n+8)

]
=
(
n2−4n

)(
2p−2− (n−2)p−2) < 0

for all n > 4. Thus Kn is p−almost Hadamard for all 1 < p < 2 and n ∈ N\{2} (see
below for the cases n = 3 and 4), and hence the Conjecture 4.4 in [8] holds true for all
p ∈ (1,2) .

Indeed it is proved in Lemma 3.1, [6] that if Mn = (ai j)n
i, j=1 ∈ O(n,R) locally

maximizes the 1-norm, then ai j 
= 0 for any 1 � i, j � n . Thus, we also have
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COROLLARY 1. Kn is almost Hadamard for all n ∈ N\{2} .

Proof. Since the matrix entries are non-zero, by taking p = 1 in (23) and using the
fact that [1] is a Hadamard matrix, we find Kn is almost Hadamard for all n ∈ N . �

Let us now discuss the p -almost Hadamard property of Kn , for n = 3, . . . ,9 using
the results obtained in Propositions 6 and 7.

Case (i). For n = 3, we know that

f (p,3) = (5p−13)2p−2+(4p−5). (24)

Note that f (1,3) = −3, f (2,3) = 0 and f (3,3) = 11. We also have f ′(p,3) =
2p−2[(5p− 13) ln2+ 5]+ 4 > 0 for all p > 1 and so f (·,3) is an increasing function
for all p > 1. Hence K3 is p−almost Hadamard for all p ∈ (1,2)∪ (2,∞) .

Case (ii). For n = 4, K4 is nothing but a real Hadamard matrix of order 4. We
also have f (p,4) = (p−2)2p+1 > 0 for all p∈ (2,∞) and < 0 for all p∈ (1,2) . Hence
K4 is p−almost Hadamard for all p ∈ (1,2)∪ (2,∞) .

Case (iii). For n = 5, we obtain

f (p,5) = (21p−37)2p−2+(4p−13)3p−2.

It is clear from the above expression that f (p,5) > 0 for all p > 13/4 = 3.2500. But
graphically, one can show that f (p,5) > 0 for all p∈ (2,∞) and hence K5 is p -almost
Hadamard for all p ∈ (1,2)∪ (2,∞) (see Figure 2 below).

Case (iv). For n = 6, we have

f (p,6) = (8p−13)2p +(p−5)4p−1.

It is immediate from the above expression that f (p,6) > 0 for all p > 5. One can show
graphically that f (p,6) > 0 for all p∈ (2,∞) and hence K6 is p -almost Hadamard for
all p ∈ (1,2)∪ (2,∞) (see Figure 2 below).

Case (v). For n = 7, we obtain

f (p,7) = (45p−69)2p−2+(4p−29)5p−2.

It is clear from the above expression that f (p,7) > 0 for all p > 29/4 = 7.2500. From
the graph below (see Figure 3), it is clear that f (p,7) > 0 for all p ∈ (2,∞) and hence
K7 is p -almost Hadamard for all p ∈ (1,2)∪ (2,∞) .

Case (vi). For n = 8, we find

f (p,8) = (15p−22)2p+4(p−10)6p−2.

It should be noted from the above expression that f (p,8) > 0 for all p > 10. Now,
it can be easily seen that f (3,8) = 16 > 0 and f (4,8) = −256 < 0, and f (9,8) =
−1061888 < 0 and f (10,8) = 131072 > 0. Thus there are two zero of f (·,8) , one
lies between 3 and 4, and the other between 9 and 10. We find both zeros of f (·,8)
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(a) f (p,3) = (5p−13)2p−2 +(4p−5) . (b) f (p,4) = (p−2)2p+1 .

(c) f (p,5) = (21p−37)2p−2 +(4p−13)3p−2 . (d) f (p,6) = (8p−13)2p +(p−5)4p−1 .

Figure 2: Plots of f (p,n) , p = 3, . . . ,6 .

using the Newton-Raphson method. We define the iterative scheme for g(x) = (15x−
22)2x +4(x−10)6x−2 as

xn+1 = xn− g(xn)
g′(xn)

=
[(15x2

n−22xn) ln2+22]2xn +4[ln6(x2
n −10xn)+10]6xn−2

[(15xn−22) ln2+15]2xn +4[ln6(xn−10)+]6xn−2 .

With an initial approximation, x0 = 3.5, one can get the first zero ≈ 3.2595, and using
x0 = 9.5, the second zero ≈ 9.9801. Thus K8 is p -almost Hadamard for all p ∈
(1,2)∪ (2,3.2595)∪ (9.9801,∞) .

Case (vii). For n = 9, we get

f (p,9) = (77p−109)2p−2+(4p−53)7p−2.

It can be easily seen from the above expression that f (p,9) > 0 for all p > 53/4 =
13.2500. One can get that f (2.5,9) = 4.3195> 0 and f (3,9) =−43 < 0, and f (13,9)
< 0 and f (14,9) > 0. Thus there are two zero of f (·,9) , one lies between 2.5 and 3,
and the other between 13 and 14. Once again, we use the Newton-Raphson method
to find both zeros of f (·,9) . Let us define the iterative scheme for g(x) = (77x−
109)2x−2 +(4x−53)7x−2 as

xn+1 =
[(77x2

n−109xn) ln2+109]2xn−2 +[ln7(4x2
n−55xn)+53]7xn−2

[(77xn−109) ln2+77]2xn−2 +[ln7(4xn−53)+4]7xn−2 .
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With an initial approximation, x0 = 2.75, one can obtain the first zero ≈ 2.6294. Using
the initial approximation x0 = 13.5, we get the second zero ≈ 13.2498. Thus K9 is
p -almost Hadamard for all p ∈ (1,2)∪ (2,2.6294)∪ (13.2498,∞) .

In Figure 3 below, the sub figures (c) and (d) represent n = 8 case, and the values
of p ranging from 1 to 4 in Figure (c) and 4 to 10 in Figure (d). For large values of n
also, one can compute the validity of p -almost Hadamard property of Kn in this way.

(a) f (p,7) = (45p−69)2p−2 +(4p−29)5p−2 . (b) f (p,9) = (77p−109)2p−2

+(4p−53)7p−2 .

(c) f (p,8) = (15p−22)2p +4(p−10)6p−2 ,
p ∈ [1,4] .

(d) f (p,8) = (15p−22)2p +4(p−10)6p−2 ,
p ∈ [4,10] .

Figure 3: Plots of f (p,n) , p = 7,9,8 .

4.2. Optimization problems with unitary matrix constraints

For a complex matrix X = Mn = (ai j)n
i, j=1 , let us consider the optimization prob-

lem

min
X∈Cn×n

n

∑
i, j=1

∣∣ai j
∣∣p , such that XX∗ = In, (25)

for p ∈ (2,∞) . This is a minimization problem over unitary matrices. The global
minimizer of (25) is a complex Hadamard matrix

Mn =
(

1√
n

)
Fn, (26)
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where Fn is the matrix, Fn =

⎛⎜⎜⎜⎜⎜⎝
1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2n−2

...
...

...
. . .

...

1 ωn−1 ω2n−2 · · · ω(n−1)2

⎞⎟⎟⎟⎟⎟⎠ , a special case of the Van-

dermondematrix, and ω is the nth root of unity (ω 
= 1). Thus Fn is complex p -almost
Hadamard for all p∈ (2,∞) and hence there exists a complex p -almost Hadamard ma-
trix for all p ∈ (2,∞) .

4.3. Examples

We have seen some of the p -almost Hadamard matrices in the subsection 4.1 using
Propositions 6 and 7. Now we list some more p -almost Hadamard matrices of various
orders using Propositions 2, 3, 4 and 5.

Case (i). n = 1 and n = 2: The following matrices are p -almost Hadamard for all
p ∈ [1,2)∪ (2,∞) :

H1 = [1] and H2 =
(

1 1
1 −1

)
,

since they are Hadamard matrices. In fact, these are the only (equivalent) p -almost
Hadamard matrices for these cases.

Case (ii). n = 3: We have already seen that K3 is p -almost Hadamard for all p ∈
(1,2)∪ (2,∞) . The optimization problem considered in Proposition 3.2, [10] suggests
that the matrix

N3 =
1
2

⎛⎝ 1 −√
2 1√

2 0 −√
2

1
√

2 1

⎞⎠ .

is also a candidate for the local minimum of the optimization problem (9). It is in fact
true since the condition (12) is satisfied. For the second order necessary and sufficient
conditions, we have three different cases. For i = 1, j = 2 and i = 2, j = 3 in (15),
we obtain

f1(p) := ξ
1,2
N3

= ξ
2,3
N3

= p

(
1
2

)p/2[
(p−4)+

(2p−3)
2p/2−1

]
.

We next consider the function

g(x) = (x−4)+
2(2x−3)

2x/2
, so that g′(x) =

2x/2 +4− (2x−3) ln2

2x/2
> 0,

for all x > 0. Note that g(2) = −1 and g(3) = 1.1213, so that the only zero of g(·)
lies between 2 and 3. We use the Newton-Raphson method to find the zero of g(·) .
The iterative scheme is given by

xn+1 = xn− g(xn)
g′(xn)

=
4(xn +2xn/2)− (2xn−3)(2+ xn ln2)

2xn/2 +4− (2xn−3) ln2
.
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For x0 = 2.5, we get x1 = 2.4234, x2 = 2.4151, x3 = 2.4151, etc. Thus the approxi-
mate value of the zero is given by x≈ 2.4151. Thus f1(p) > 0 for all p∈ (2.4151,∞) .
Now, for i = 1, j = 3, we find

f2(p) := ξ
1,3
N3

= 2p(p−2)
(

1
2

)p/2 [
1+

1

2p/2−1

]
> 0,

for all p > 2. Thus, Ñ3 :=
√

3N3 is p -almost Hadamard for all p ∈ (2.4151,∞) .

Case (iii). n = 4: A Hadamard matrix H4 exists and is p -almost Hadamard for all
p ∈ (1,2)∪ (2,∞) . For example

H4 =

⎛⎜⎜⎝
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞⎟⎟⎠ = H2⊗H2 = 2K4,

is a p -almost Hadamard matrix. We now consider the matrix

R̃4 =
2√
3

⎛⎜⎜⎝
0 1 1 1
1 0 −1 1
1 1 0 −1
1 −1 1 0

⎞⎟⎟⎠ =
2√
3
C4.

From (17), it is clear that R̃4 is a p -almost Hadamard matrix for all p ∈ (2.5,∞) .

Case (iv). n = 5: In the previous subsection, we have shown that K5 is p -almost
Hadamard for all p ∈ (1,2)∪ (2,∞) .

Case (v). n = 6: We have already seen that K6 is p -almost Hadamard for all p ∈
(1,2)∪ (2,∞) . From Proposition 3, it is clear that the matrix

R̃6 =
√

6√
5

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 1 1 1 1
1 0 1 −1 −1 1
1 1 0 1 −1 −1
1 −1 1 0 1 −1
1 −1 −1 1 0 1
1 1 −1 −1 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ =
√

6√
5
C6,

is a p -almost Hadamard matrix for p ∈ (2.25,∞) . Now we consider the matrix

S̃6,4 =
√

6
2

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 1 1 0 0
1 1 −1 −1 0 0
1 −1 0 0 1 1
1 −1 0 0 −1 −1
0 0 1 −1 −1 1
0 0 1 −1 1 −1

⎞⎟⎟⎟⎟⎟⎟⎠ =
√

6
2

W6,4.

Note that for all 1 � i < j � 6, βi j is either 2 or 4 and hence β = 2. Thus S̃6,4 is
p -almost Hadamard for all p ∈ (3,∞), using Proposition 4.
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Let us now consider the matrix,

T6 =
1√
6

⎛⎜⎜⎜⎜⎜⎜⎝
−1 2 2 −1 2 2

2 −1 2 2 −1 2
2 2 −1 2 2 −1

−1 2 2 1 −2 −2
2 −1 2 −2 1 −2
2 2 −1 −2 −2 1

⎞⎟⎟⎟⎟⎟⎟⎠ =
1√
6
H2⊗K3.

Clearly the matrix T6 is a stationary point of the minimization problem (9). Now, we
need to verify the second order necessary and sufficient conditions given in (15). From,
the structure of the matrix T6 , we know that ξ

i, j
T6

can be either

f1(p) =
4p

6p/2

[
(5p−13)2p−2+(4p−5)

]
=

4p

6p/2
f (p,3)

or

f2(p) =
4p(p−2)

6p/2
(1+2p) > 0, for all p > 2.

Note that in order for f1(p) > 0, we need (5p−13)2p−2+(4p−5) > 0, which is same
as the case for n = 3 (see (24)). Combining both the cases, we have T̃6 :=

√
6T6 is a

p -almost Hadamard matrix for all p ∈ [1,2)∪ (2,∞) .
Similarly the matrix

N6 =
1
2

⎛⎜⎜⎜⎜⎜⎜⎝

1 −√
2 1 1 −√

2 1√
2 0 −√

2
√

2 0 −√
2

1
√

2 1 1
√

2 1
1 −√

2 1 −1
√

2 −1√
2 0 −√

2 −√
2 0

√
2

1
√

2 1 −1 −√
2 −1

⎞⎟⎟⎟⎟⎟⎟⎠ = H2⊗N3,

is a stationary point of the optimization problem (9) for n = 6. Now, the possible values
of ξ

i, j
N6

, for 1 � i < j � 6 are given by:

f1(p) = 2p

(
1
2

)p/2 [
(p−4)+

(2p−3)
2p/2−1

]
or

f2(p) = 4p(p−2)
(

1
2

)p/2[
1+

1

2p/2−1

]
or

f3(p) = 4p(p−2)
(

1
2

)p[
1+

1

2p/2

]
or

f4(p) = 8p(p−2)
(

1
2

)p

.
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Note that f2(p), f3(p), f4(p) > 0 for all p > 2, and f1(p) > 0, for all p ∈ (2.4151,∞) ,
by using case (ii). Thus Ñ6 :=

√
6N6 is p -almost Hadamard for all p ∈ (2.4151,∞) .

Case (vi). n = 7: We have already shown that the matrix K7 is p -almost Hadamard
for all p ∈ (1,2)∪ (2,∞) . Let us now consider the matrix

S̃7,4 =
√

7
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 0
1 −1 0 0 1 1 0
1 0 −1 0 −1 0 1
1 0 0 −1 0 −1 −1
0 1 −1 0 0 1 −1
0 1 0 −1 1 0 1
0 0 1 −1 −1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

√
7

2
W7,4.

For the above matrix, it can be easily seen that βi j = 2 for all 1 � i < j � n , so that
β = 2. Thus the matrix S̃7,4 is p -almost Hadamard for all p ∈ (1,2)∪ (3,∞) .

Case (vii). n = 8: Remember from the previous subsection that K8 is p -almost
Hadamard for all p∈ (1,2)∪(2,3.2595)∪(9.9801,∞) . We now consider the following
Hadamard matrix:

H8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= H4⊗H2.

Clearly H8 is a p -almost Hadamard matrix for all p ∈ (1,2)∪ (2,∞) . By Proposition
3, the matrix

R̃8 =
2
√

2√
7

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1 1 1
1 0 1 −1 −1 1 1 −1
1 −1 0 1 1 −1 1 −1
1 1 −1 0 1 1 −1 −1
1 1 −1 −1 0 −1 1 1
1 −1 1 −1 1 0 −1 1
1 −1 −1 1 −1 1 0 1
1 1 1 1 −1 −1 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

2
√

2√
7

C8.
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is p -almost Hadamard for all p ∈ (2.1667,∞) . For the matrix

S̃8,6 =
2√
3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1 1 −1 −1 1 1
0 0 −1 −1 1 −1 1 −1

−1 1 0 0 −1 −1 −1 −1
−1 −1 0 0 −1 1 1 −1
−1 −1 −1 −1 0 0 −1 1

1 −1 −1 1 0 0 −1 −1
1 1 −1 −1 −1 1 0 0
1 −1 1 −1 −1 −1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

2√
3
W8,6,

it is clear that β = 4 and by Proposition 4, S̃8,6 is p -almost Hadamard for all p ∈
(2.5,∞) . Now we consider the matrix:

S̃8,5 =
2
√

2√
5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 0 0 0
1 1 −1 −1 0 1 0 0
1 −1 −1 1 0 0 1 0
1 −1 1 −1 0 0 0 1
1 0 0 0 −1 −1 −1 −1
0 1 0 0 −1 −1 1 1
0 0 1 0 −1 1 1 −1
0 0 0 1 −1 1 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

2
√

2√
5

W8,5.

It is immediate that β = 2 and hence S̃8,5 is p -almost Hadamard for all p ∈ (3.5,∞) ,
by using Proposition 4.

REMARK 12. For n = 9, the matrices K3⊗K3 , 3(N3⊗N3) and K9 are p -almost

Hadamard for some p . For n = 10, the matrices K10 , H2 ⊗K5 , R̃10 =
√

10
3 C10 and

S̃10,8 =
√

5
2 W10,8 are p -almost Hadamard for some p .

REMARK 13. It is also clear that if a weighing matrix Wn,k exists, then it is p -
almost Hadamard for all k > [ n

2 ], where [ n
2 ] is the integral part of n

2 and p∈ ( k
2 +1,∞) ,

since the least possible value of β is 2 .
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A. Finding the nearest orthonormal matrix

In the Appendix, we give a motivation for considering the orthogonal matrix given
in (18). Let us start with an interesting optimization problem formulated in [14]. The
optimization problem is to find the nearest orthogonal matrix to a given matrix. The
problem can be stated as follows:

PROBLEM 1. Given a matrix M of order n , find the matrix Q of order n that min-
imizes the norm ‖M−Q‖2

F , subject to Q�Q = I , where the norm chosen is the Frobe-
nius norm, i.e., the sum of squares of elements of the matrix, or ‖X‖2

F = Tr(X�X) .

It has been derived in [14] that the nearest orthogonal matrix M is given by

Q = M(M�M)−1/2.

Since M�M is symmetric and positive semi-definite, it has non-negative real eigenval-
ues. If M�M is positive definite, we know that the inverse of the square root of M�M
can be computed using eigenvalue-eigenvector decomposition. The matrix (M�M)−1/2

has the same eigenvectors as of M�M, and eigenvalues are that of inverse of the square
roots of the eigenvalues of M�M. Hence, one can write

(M�M)−1/2 =
1√
λ1

e1e
�
1 + · · ·+ 1√

λn
ene�n ,

where λi for i = 1, . . . ,n , are the eigenvalues and ei for i = 1, . . . ,n , are the orthonormal
set of eigenvectors of M�M. The construction of (M�M)−1/2 fails if one of the n
eigenvalues is zero. But it is possible however to pretend that eigenvalue is equal to one
and then proceed (see [14] for more details).

Motivated from the above discussion, we now construct an orthogonal matrix near-

est to the matrix R3 = 1√
3

⎛⎝−1 1 1
1 −1 1
1 1 −1

⎞⎠ . It can be easily seen that

R�
3 R3 =

1
3

⎛⎝ 3 −1 −1
−1 3 −1
−1 −1 3

⎞⎠ .

The eigenvalues of R�
3 R3 are 1

3 , 4
3 and 4

3 and the corresponding eigenvectors are

v1 =
(
1 1 1

)�
, v2 =

(
1 −1 0

)�
and v3 =

(
1 0 −1

)�
.

Using the Gram-Schmidt orthonormalization process, we obtain the orthonormal basis:

e1 =
1√
3

(
1 1 1

)�
, e2 =

1√
2

(
1 −1 0

)�
and e3 =

1√
6
(1,1,−2).
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Thus, we have

(R�
3 R3)−1/2 =

1√
λ1

e1e�1 +
1√
λ2

e2e�2 +
1√
λ3

e3e�3

=
1√
3

⎛⎝1 1 1
1 1 1
1 1 1

⎞⎠+
1

2
√

3

⎛⎝ 2 −1 −1
−1 2 −1
−1 −1 2

⎞⎠ =
1

2
√

3

⎛⎝4 1 1
1 4 1
1 1 4

⎞⎠ .

The nearest orthogonal matrix to R3 is Q3 = R3(R�
3 R3)−1/2 = 1

3

⎛⎝−1 2 2
2 −1 2
2 2 −1

⎞⎠ .

Now, we consider the matrix R5 = 1√
5

⎛⎜⎜⎜⎜⎝
−1 1 1 1 1

1 −1 1 1 1
1 1 −1 1 1
1 1 1 −1 1
1 1 1 1 −1

⎞⎟⎟⎟⎟⎠ . It is immediate

that R�
5 R5 = 1

5

⎛⎜⎜⎜⎜⎝
5 1 1 1 1
1 5 1 1 1
1 1 5 1 1
1 1 1 5 1
1 1 1 1 5

⎞⎟⎟⎟⎟⎠ . The eigenvalues of R�
5 R5 are 9

5 , 4
5 , 4

5 , 4
5 and 4

5 , and

the corresponding eigenvectors are given by

v1 =

⎛⎜⎜⎜⎜⎝
1
1
1
1
1

⎞⎟⎟⎟⎟⎠ , v2 =

⎛⎜⎜⎜⎜⎝
1

−1
0
0
0

⎞⎟⎟⎟⎟⎠ , v3 =

⎛⎜⎜⎜⎜⎝
1
0

−1
0
0

⎞⎟⎟⎟⎟⎠ , v4 =

⎛⎜⎜⎜⎜⎝
1
0
0

−1
0

⎞⎟⎟⎟⎟⎠ and v5 =

⎛⎜⎜⎜⎜⎝
1
0
0
0

−1

⎞⎟⎟⎟⎟⎠ .

Once again using the Gram-Schmidt orthonormalization process, we obtain the or-
thonormal basis as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1√
5

⎛⎜⎜⎜⎜⎝
1
1
1
1
1

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

e1

,
1√
2

⎛⎜⎜⎜⎜⎝
1

−1
0
0
0

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

e2

,
1√
6

⎛⎜⎜⎜⎜⎝
1
1

−2
0
0

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

e3

,
1√
12

⎛⎜⎜⎜⎜⎝
1
1
1

−3
0

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

e4

,
1
20

⎛⎜⎜⎜⎜⎝
1
1
1
1

−4

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

e5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.
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Hence, we have

(R�
5 R5)−1/2 =

1√
λ1

e1e�1 +
1√
λ2

e2e�2 +
1√
λ3

e3e�3 +
1√
λ4

e4e�4 +
1√
λ5

e5e�5

=
1

3
√

5

⎛⎜⎜⎜⎜⎝
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎞⎟⎟⎟⎟⎠+
1

2
√

5

⎛⎜⎜⎜⎜⎝
4 −1 −1 −1 −1

−1 4 −1 −1 −1
−1 −1 4 −1 −1
−1 −1 −1 4 −1
−1 −1 −1 −1 4

⎞⎟⎟⎟⎟⎠

=
1

6
√

5

⎛⎜⎜⎜⎜⎝
14 −1 −1 −1 −1
−1 14 −1 −1 −1
−1 −1 14 −1 −1
−1 −1 −1 14 −1
−1 −1 −1 −1 14

⎞⎟⎟⎟⎟⎠ .

The nearest orthogonal matrix to R5 is Q5 = 1
5

⎛⎜⎜⎜⎜⎝
−3 2 2 2 2

2 −3 2 2 2
2 2 −3 2 2
2 2 2 −3 2
2 2 2 2 −3

⎞⎟⎟⎟⎟⎠ .

Now, we consider a general matrix Rn = 1√
n

⎛⎜⎜⎜⎝
−1 1 . . . 1

1 −1 . . . 1
...

...
. . .

...
1 1 . . . −1

⎞⎟⎟⎟⎠ . Then, we have

RnR�
n = 1

n

⎛⎜⎜⎜⎝
n n−4 . . . n−4

n−4 n . . . n−4
...

...
. . .

...
n−4 n−4 . . . n

⎞⎟⎟⎟⎠ . The eigenvalues are given by
(n−2)2

n
,

4
n
, . . . ,

4
n︸ ︷︷ ︸

n−1

.

The corresponding orthonormal eigenvectors are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
n

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
...
1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

e1

,
1√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
−1

0
...
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

e2

,
1√
6

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
1

−2
...
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

e3

, . . . ,
1√

n(n−1)

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
...
1

−(n−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

en

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.
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Thus the matrix (R�
n Rn)−1/2 is given by

(R�
n Rn)−1/2 =

1√
λ1

e1e
�
1 + · · ·+ 1√

λ5
e5e

�
5

=
1

(n−2)
√

n

⎛⎜⎜⎜⎝
1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

⎞⎟⎟⎟⎠+
1

2
√

n

⎛⎜⎜⎜⎝
(n−1) −1 . . . −1
−1 (n−1) . . . −1
...

...
. . .

...
−1 −1 . . . (n−1)

⎞⎟⎟⎟⎠

=
1

2(n−2)
√

n

⎛⎜⎜⎜⎝
(n2−3n+4) −(n−4) . . . −(n−4)
−(n−4) (n2−3n+4) . . . −(n−4)

...
...

. . .
...

−(n−4) −(n−4) . . . (n2−3n+4)

⎞⎟⎟⎟⎠ .

Let In is the n×n matrix with all entires 1. The nearest orthogonal matrix to Rn is

Qn = Rn(R�
n Rn)−1/2 =

1
n

⎛⎜⎜⎜⎝
−(n−2) 2 . . . 2

2 −(n−2) . . . 2
...

...
. . .

...
2 2 . . . −(n−2)

⎞⎟⎟⎟⎠ =
2
n

In − In.
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