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Abstract. Let N(F) be the Lie algebra consisting of all strictly upper triangular (n+ 1)× (n+
1) matrices over a field F . A map ϕ on N(F) is called to be anti-commuting if [ϕ(x),y] =
−[x,ϕ(y)] for any x,y ∈ N(F) . We show that for n � 4 , a nonlinear map ϕ : N(F) → N(F) is
anti-commuting if and only if there exist b,b1,b2 ∈ F and a nonlinear function f : N(F) → F

such that ϕ = ad (bE2n)+ μ(n,n+1)
b2

+ μ(12)
b1

+ ϕ f , where ad (bE2n) is an inner anti-commuting

map, μ(n,n+1)
b2

,μ(12)
b1

are extremal anti-commuting maps, ϕ f is a central anti-commuting map.

1. Introduction

Let A be an associative ring. A map ϕ : A → A is called commuting if

ϕ(x)x = xϕ(x) for all x ∈ A . (1.1)

Let us denote the commutator or the Lie product of the elements x,y ∈ A by [x,y] =
xy− yx . Accordingly (1.1) will be written as [ϕ(x),x] = 0. The identity mapping
and zero mapping are two classical examples of commuting maps. The principal task
when treating a commuting map is to describe its form. Linear commuting maps are
closely related to biderivations. Usually we consider commuting maps imposed with
some restrictions, such as additive commuting maps, commuting traces, commuting
automorphisms, commuting derivations, et al. See [1, 2, 5, 6, 7, 8, 13, 14, 16, 17, 18,
23, 28]. We encourage the reader to read the well-written survey paper [4], in which
the author presented the development of the theory of commuting mappings and their
applications in details. Similarly, commuting maps on Lie algebras are defined. Let g
be a Lie algebra with Lie product [−,−] over a field F . A map ϕ : g → g is said to be
commuting if [ϕ(x),x] = 0 for all x ∈ g . If the characteristic is not equal to 2, a linear
map ϕ : g → g is commuting if and only if [ϕ(x),y] = [x,ϕ(y)] for all x,y ∈ g . In
[25], the authors determined the biderivations of parabolic subalgebras of finite dimen-
sional simple Lie algebras. So their linear commuting maps are scalar multiplication
maps. In [10,23], the authors proved that any biderivation of an infinite dimensional
Schrödinger-Virasoro Lie algebra or a simple generalized Witt algebra is inner, and so
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their linear commuting maps are completely determined. In [12], the authors deter-
mined the commuting automorphisms and commuting derivations of certain nilpotent
Lie algebras over commutative rings. In particular, the commuting automorphisms and
commuting derivations of nilradicals of finite dimensional complex simple Lie algebras
are completely determined.

In recent years, more and more mathematicians are interested in discussing the
nonlinear maps that preserving some property concerning Lie product (for, e.g., [9, 11,
15, 19, 20, 21, 22, 26]). In this paper, we define a nonlinear map similar to a commuting
map on a Lie algebra g . A (may be nonlinear) map ϕ : g → g on a Lie algebra g over
a field F is said to be anti-commuting if [ϕ(x),y] = −[x,ϕ(y)] for all x,y ∈ g . In
fact, if ϕ is linear, ϕ is a special product zero derivation of g defined in [27]. If the
characteristic of F is equal to 2, an anti-commuting map is also a commuting map.
In [3], the author determined the linear commuting maps over the ring of strictly upper
triangular matrices. In this paper we will determine the nonlinear anti-commuting maps
on the Lie algebra consisting of all strictly upper triangular matrices. Let F be an
arbitrary field with the characteristic char (F) �= 2. Let N(F) be the linear space of the
(n+1)× (n+1) strictly upper triangular matrices. Denote by E the identity matrix in
N(F) and by Ei j the matrix with sole non-zero element 1 in the (i, j) position. Then
{Ei j|1 � i < j � n+1} is the canonical basis of N(F) .

Set
Nk = {X ∈ N(F)|X = ∑

j−i�k

xi jEi j},k = 1,2, · · · ,n.

Then Nk are Lie ideals of the F-algebra N(F) , 1 � k � n . Let

Z(N(F)) = {x ∈ N(F)|[x,y] = 0 for any y ∈ N(F)}

be the center of N(F) . Then Z(N(F)) = Nn = FE1,n+1 . It is easy to see that [Nk,Nl ] ⊆
Nk+l .

2. Certain standard nonlinear anti-commuting maps

We denote a nonlinear anti-commuting map by AC. It is easy to see that a sum
of ACs is still a AC. In this section, we construct certain ACs, which will be used to
describe nonlinear anti-commuting maps.

LEMMA 2.1. Let b ∈ F , X = ∑
1�i< j�n+1

xi jEi j ∈ N(F) .

(1) The inner derivation ad (bE2n) : N(F) → N(F) defined by

(ad (bE2n))(X) = [bE2n,X ]

for any X ∈ N(F) is a linear AC.

(2) The map μ (12)
b : N(F) → N(F) defined by μ (12)

b (X) = bx12E2,n+1 is a linear
AC.

(3) The map μ (n,n+1)
b : N(F) → N(F) defined by μ (n,n+1)

b (X) = bxn,n+1E1n is a
linear AC.
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Proof. (1) It is easy to see that ad (bE2n) is linear. For any X ,Y ∈ N(F) ,
[(ad (bE2n))(X),Y ]+[X ,(ad (bE2n))(Y )] = [[bE2n,X ],Y ]+[X , [bE2n,Y ] = [bE2n, [X ,Y ]] .
Since [X ,Y ] = XY −YX ∈ N2 , then we may assume that

XY −YX = ∑
j−i�2

ai jEi j,ai j ∈ F.

Then [bE2n, [X ,Y ]] = ∑
j−i�2

ai j[bE2n,Ei j] = 0. Thus [(ad (bE2n))(X),Y ]+

[X ,(ad (bE2n))(Y )] = 0. So ad (bE2n) is a AC.

(2) It is easy to see that μ (12)
b is linear. Let

X = ∑
1�i< j�n+1

xi jEi j,Y = ∑
1�i< j�n+1

yi jEi j.

Then [μ (12)
b (X),Y ] = [bx12E2,n+1,Y ] =−bx12y12E1,n+1, [X ,μ (12)

b (Y )] = [X ,by12E2,n+1]
= bx12y12E1,n+1 , so [μ (12)

b (X),Y ] = −[X ,μ (12)
b (Y )] .

(3) The proof is similar to that in (2). �

Next we name certain standard ACs.
(A) Inner AC.
For b ∈ F , the map ad (bE2n) : N(F) → N(F) defined in Lemma 2.1(1) is called

an inner AC.
(B) Extremal AC.
For b ∈ F , μ (12)

b , μ (n,n+1)
b defined in Lemma 2.1(2)(3) are called extremal ACs.

(C) Central AC.
Let f : N(F)→F be a nonlinear function. We define a nonlinear map ϕ f : N(F)→

N(F) by ϕ f (X) = f (X)E1,n+1 . Since Z(N(F)) = FE1,n+1 , it is easy to see that ϕ f is
anti-commuting. We call ϕ f a central AC. Note that ϕ f may be nonlinear.

3. Some lemmas about anti-commuting maps on N(F)

Let ϕ be a nonlinear anti-commuting map on N(F) .
Assume that

ϕ(Ei,i+1) ≡
n

∑
j=1

a jiE j, j+1 mod N2 for 1 � i � n.

Then ϕ determines a matrix

A(ϕ) =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

⎞
⎟⎟⎟⎠ .
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LEMMA 3.1. Let ϕ be a AC, n � 3 . If i, j,r ∈ {1,2, · · · ,n} , |i− j| > 1 and
|r− i| = 1 , then ar j = 0 .

Proof. Consider the following equality

[ϕ(Ei,i+1),Ej, j+1] = −[Ei,i+1,ϕ(Ej, j+1)]. (3.1)

The coefficient of Ei,i+2 on the left-hand side of the equality (3.1) is 0 . Since |r− i| =
1, then r = i + 1 or i− 1. If r = i + 1 (respectively, r = i− 1), the coefficient of
Ei−1,i+1 on the right-hand side of the equality (3.1) is −ar j (respectively, ar j ). Thus
ar j = 0. �

LEMMA 3.2. Let ϕ be a AC, n � 3 . If i,s ∈ {1,2, · · · ,n} , i �= s, then asi = 0 .

Proof. We prove it in the following cases.
Case 1 |i− s|= 1.
Since n � 3, we can choose t ∈ {1,2, · · · ,n} such that t �= i or s , and |t − i| = 1

or |t− s| = 1.
Case 1.1 |t− s| = 1.
Assume that s = 1. Then |t−s|= 1 implies that t = 2, and |i−s|= 1 also implies

that i = 2. So t = i , a contradiction. Thus s > 1, and so t = s−1, i = s+1 or t = s+1,
i = s−1.

Case 1.1.1 t = s−1, i = s+1.
Consider the following equality

[ϕ(Es+1,s+2),Es−1,s] = −[Es+1,s+2,ϕ(Es−1,s)]. (3.2)

The coefficient of Es−1,s+1 on the left side of the equality (3.2) is −as,s+1 , and the
coefficient of Es−1,s+1 on the hand side of the equality (3.2) is 0 . Thus as,s+1 = 0, i.e.,
asi = 0.

Case 1.1.2 t = s+1, i = s−1.
Consider the following equality

[ϕ(Es−1,s),Es+1,s+2] = −[Es−1,s,ϕ(Es+1,s+2)]. (3.3)

The coefficient of Es,s+2 on the left side of the equality (3.3) is as,s−1 , and the co-
efficient of Es,s+2 on the hand side of the equality (3.3) is 0 . Thus as,s−1 = 0, i.e.,
asi = 0.

Case 2 |i− s|> 1.
Case 2.1 |i− s| > 2.
If s > 1, then |(s−1)− i|> 1 and |s−(s−1)|= 1, then asi = 0 by Lemma 3.1. If

s = 1, then i > 3. Comparing the coefficients of E13 on the both sides of the following
equality

[ϕ(E23),Ei,i+1] = −[E23,ϕ(Ei,i+1)],

we have a1i = 0, i.e., asi = 0.
Case 2.2 |i− s| = 2.
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In this case, s = i+2 or i−2. Assume that s = i+2. Comparing the coefficients
of Ei+1,i+3 on the both sides of the following equality

[ϕ(Ei,i+1),Ei+1,i+2] = −[Ei,i+1,ϕ(Ei+1,i+2)],

we have ai+2,i = 0, i.e., asi = 0. Similarly, for s = i−2, comparing the coefficients of
Ei−2,i on the both sides of the following equality

[ϕ(Ei−1,i),Ei,i+1] = −[Ei−1,i,ϕ(Ei,i+1)],

we have ai−2,i = 0, i.e., asi = 0. �
In the following, we always assume that n � 4.

LEMMA 3.3. Let ϕ be a AC. Then A(ϕ) = 0 .

Proof. For any i = 1,2, · · · ,n− 1, comparing the coefficients of Ei,i+2 on the
both sides of the equality [ϕ(Ei,i+1),Ei+1,i+2] = −[Ei,i+1,ϕ(Ei+1,i+2)] , we have aii =
−ai+1,i+1 . So a11 = −a22 = a33 = · · · = (−1)n−1ann . In particular,

a11 = −a44.

Comparing the coefficients of E14 on the both sides of the equality [ϕ(E12),E24] =
−[E12,ϕ(E24)] , we can see that the coefficient of E24 in ϕ(E24) is −a11 . On the other
hand, comparing the coefficients of E25 on the both sides of the equality [ϕ(E24),E45] =
−[E24,ϕ(E45)] , we can see that the coefficient of E24 in ϕ(E24) is −a44 . Thus

a11 = a44,

and so a11 = 0 by char (F) �= 2. Thus aii = 0 for any i ∈ {1,2, · · · ,n} . By Lemma 3.2,
for any i �= s , asi = 0. Therefore, A(ϕ) = 0. �

LEMMA 3.4. If ϕ is a AC, ϕ(Ei,i+1) ∈ N2 , 1 � i � n, then ϕ(Ei,i+1) ∈ Nn−1 for
any i ∈ {1,2, · · · ,n} .

Proof. We will prove that ϕ(Ei,i+1) ∈ Nk for 1 � i � n , 2 � k � n−1. We prove
it by induction on k . By conditions, it holds for k = 2. Assume that ϕ(Ei,i+1) ∈ Nk for
1 � i � n , 2 � k � n−2. Set

ϕ(Ei,i+1) ≡
n−k+1

∑
j=1

a(k)
ji E j, j+k mod Nk+1,1 � i � n.

We will prove that a(k)
ji = 0 for any j ∈ {1,2, · · · ,n− k+1} in the following cases.

Case 1 j + k � n .
Case 1.1 j �= i or i− k .
Consider the equality

[ϕ(Ei,i+1),Ej+k, j+k+1] = −[Ei,i+1,ϕ(Ej+k, j+k+1)]. (3.4)
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Then the coefficient of Ej, j+k+1 on the left-hand side of the equality (3.4) is a(k)
ji . Since

j �= i or i− k , then the coefficient of Ej, j+k+1 on the right-hand side of the equality

(3.4) is 0 . So a(k)
ji = 0.

Case 1.2 j = i = 1.
Consider the equality

[ϕ(E12),Ek+1,k+2] = −[E12,ϕ(Ek+1,k+2)]. (3.5)

By computations, the coefficient of E1,k+2 on the left-hand (respectively, right-hand)

side of the equality (3.5) is a(k)
11 (respectively, −a(k)

2,k+1 ). So a(k)
11 = −a(k)

2,k+1 . By the

conditions 2 �= 1+ k or (k + 1)− k and 2+ k � n , then a(k)
2,k+1 = 0 by Case 1.1. So

a(k)
11 = 0, i.e., a(k)

ji = 0.
Case 1.3 j = i � 2.
Consider the equality

[ϕ(Ei,i+1),Ei−1,i] = −[Ei,i+1,ϕ(Ei−1,i)]. (3.6)

By computations, the coefficient of Ei−1,i+k on the left-hand (respectively, right-hand)

side of the equality (3.6) is −a(k)
ii (respectively, 0). Then a(k)

ii = 0, i.e., a(k)
ji = 0.

Case 1.4 j = i− k = 1.
In this case, i = k+1∈ {3,4, · · · ,n−1} . Consider the following equality

[ϕ(Ei,i+1),Ei,i+2] = −[Ei,i+1,ϕ(Ei,i+2)]. (3.7)

Comparing the coefficient of E1,i+2 on the both sides of the equality (3.7), we know

that a(k)
1i = 0, i.e., a(k)

ji = 0.
Case 1.5 j = i− k � 2.
Consider the equality

[ϕ(Ei−k−1,i−k),Ei,i+1] = −[Ei−k−1,i−k,ϕ(Ei,i+1)]. (3.8)

By computations, the coefficient of Ei−k−1,i on the left-hand (respectively, right-hand)

side of the equality (3.8) is 0 (respectively, −a(k)
i−k,i ). Then a(k)

i−k,i = 0, i.e., a(k)
ji = 0.

Case 2 j + k = n+1.
In this case, j = n− k+1 � 3. We will prove that a(k)

ji = a(k)
n−k+1,i = 0.

Case 2.1 i �= n− k or n .
By the equality

[ϕ(Ei,i+1),En−k,n−k+1] = −[Ei,i+1,ϕ(En−k,n−k+1)], (3.9)

we have the coefficient of En−k,n+1 on the left-hand (respectively, right-hand) side of

the equality (3.9) is a(k)
n−k+1,i (respectively, 0), then a(k)

n−k+1,i = 0.
Case 2.2 i = n− k .
In this case, i � 2. Consider the equality

[ϕ(Ei,i+1),Ei−1,i+1] = −[Ei,i+1,ϕ(Ei−1,i+1)]. (3.10)
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Comparing the coefficient of Ei−1,n+1 on the both sides of the equality (3.10), we know

that a(k)
i+1,i = 0, i.e., a(k)

n−k+1,i = 0.
Case 2.3 i = n .
By the equality

[ϕ(En,n+1),En−k,n−k+1] = −[En,n+1,ϕ(En−k,n−k+1)], (3.11)

we have the coefficient of En−k,n+1 on the left-hand (respectively, right-hand) side of

the equality (3.11) is −a(k)
n−k+1,n (respectively, a(k)

n−k,n−k ), then a(k)
n−k+1,n = −a(k)

n−k,n−k .

By Case 1.3, a(k)
n−k,n−k = 0, where n− k � 2. So a(k)

n−k+1,n = 0, i.e., a(k)
n−k+1,i = 0. �

LEMMA 3.5. Let ϕ be a AC. If ϕ(Ei,i+1) ∈ Nn , 1 � i � n, then ϕ(Ei,i+k) ∈ Nn

for any 2 � k � n−1 , 1 � i � n+1− k .

Proof. Fix a k ∈ {2,3, · · · ,n−1} and i ∈ {1,2, · · · ,n+1− k} . Set

ϕ(Ei,i+k) = ∑
1�p<q�n+1

bpqEpq,

where bpq ∈ F for any 1 � p < q � n + 1. At first we will prove that if (p,q) �=
(1,n+1) , bpq = 0. We prove it in the following cases.

Case 1 q � n .
By conditions,

[ϕ(Ei,i+k),Eq,q+1] = −[Ei,i+k,ϕ(Eq,q+1)] = 0. (3.12)

The coefficient of Ep,q+1 of the left-hand side of the equality (3.12) is bpq , then bpq =
0.

Case 2 q = n+1.
In this case, p �= 1 or n+1. By conditions,

[ϕ(Ei,i+k),Ep−1,p] = −[Ei,i+k,ϕ(Ep−1,p)] = 0. (3.13)

The coefficient of Ep−1,n+1 of the left-hand side of the equality (3.13) is −bp,n+1 , then
bp,n+1 = 0, i.e., bpq = 0.

Thus ϕ(Ei,i+k) ≡ 0 mod Nn , i.e., ϕ(Ei,i+k) ∈ Nn for any 2 � k � n− 1 and 1 �
i � n+1− k . �

LEMMA 3.6. Let ϕ be a AC. If ϕ(Ei,i+1) ∈ Nn−1 , 1 � i � n, then there exist
b,b1,b2 ∈ F and a nonlinear map f : N(F) → F with such that

ϕ = ad (bE2n)+ μ (n,n+1)
b2

+ μ (12)
b1

+ ϕ f .

Proof. Set

ϕ(Ei,i+1) = a(n−1)
1i E1n +a(n−1)

2i E2,n+1 +a(n)
1i E1,n+1,1 � i � n.
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Assume that 2 � i � n−1. By the equality

[ϕ(Ei,i+1),En,n+1] = −[Ei,i+1,ϕ(En,n+1)]. (2.20)

we have the coefficient of E1,n+1 on the left-hand (respectively, right-hand) side of the

equality (2.20) is a(n−1)
1i (respectively, 0), then a(n−1)

1i = 0. By the equality

[ϕ(Ei,i+1),E12] = −[Ei,i+1,ϕ(E12)], (2.21)

we have the coefficient of E1,n+1 on the left-hand (respectively, right-hand) side of the

equality (2.21) is −a(n−1)
2i (respectively, 0), then a(n−1)

2i = 0.
Assume that i = 1. By the equality

[ϕ(E12),En,n+1] = −[E12,ϕ(En,n+1)],

we have the coefficient of E1,n+1 on the left-hand (respectively, right-hand) side of the

above equality is a(n−1)
11 (respectively, −a(n−1)

2n ), then a(n−1)
11 = −a(n−1)

2n . So

ϕ(E12) = a(n−1)
11 E1n +a(n−1)

21 E2,n+1 +a(n)
11 E1,n+1,

ϕ(Ei,i+1) = a(n)
1i E1,n+1,2 � i � n−1,

ϕ(En,n+1) = a(n−1)
1n E1n−a(n−1)

11 E2,n+1 +a(n)
1n E1,n+1.

Set
b = −a(n−1)

11 .

By computations, (ad (−bE2n)+ϕ)(E12))= a(n−1)
21 E2,n+1+a(n)

11 E1,n+1 , and (ad (−bE2n)
+ϕ)(En,n+1)) = a(n−1)

1n E1n +a(n)
1n E1,n+1 , (ad (−bE2n)+ϕ)(Ei,i+1)) = a(n)

1i E1,n+1 , 2 �
i � n−1. Set

b1 = a(n−1)
21 ,b2 = a(n−1)

1n .

Then (μ (12)
−b1

+ μ (n,n+1)
−b2

+ad (−bE2n)+ϕ)(Ei,i+1) = a(n)
1i E1,n+1 , 1 � i � n . By Lemma

3.5, for any 1 � i < j � n+1, we have (μ (12)
−b1

+μ (n,n+1)
−b2

+ad (−bE2n)+ϕ)(Ei j)∈ Nn ,

and so for any X ∈N(F) , [(μ (12)
−b1

+μ (n,n+1)
−b2

+ad (−bE2n)+ϕ)(X),Ei j] =−[X ,(μ (12)
−b1

+

μ (n,n+1)
−b2

+ad (−bE2n)+ ϕ)(Ei j)] = 0. Thus

(μ (12)
−b1

+ μ (n,n+1)
−b2

+ad (−bE2n)+ ϕ)(X) ∈ Z(N(F)),

and so there exists an element cX ∈ F such that (μ (12)
−b1

+ μ (n,n+1)
−b2

+ ad (−bE2n) +
ϕ)(X) = cXE1,n+1 . So we can define a nonlinear map f : N(F) → F by f (X) = cX for

any X ∈ N(F) . Therefore μ (12)
−b1

+ μ (n,n+1)
−b2

+ad (−bE2n)+ ϕ = ϕ f by definitions, and

so ϕ = −μ (12)
−b1

− μ (n,n+1)
−b2

+ad bE2n + ϕ f = μ (12)
b1

+ μ (n,n+1)
b2

+ad bE2n + ϕ f . �
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4. The main theorem about anti-commuting maps

THEOREM 4.1. Let ϕ be a nonlinear map on N(F) , which is the Lie algebra
consisting of all strictly upper (n + 1)× (n + 1) matrices, n � 4 . Then ϕ is anti-
commuting if and only if there exist b,b1,b2 ∈F and a nonlinear function f : N(F)→F

such that ϕ = μ (12)
b1

+ μ (n,n+1)
b2

+ad (bE2n)+ ϕ f .

Proof. The sufficiency of the theorem is obvious.

Assume that ϕ(Ei,i+1) ≡
n
∑
j=1

a jiE j, j+1 mod N2, 1 � i � n, and A(ϕ) = (ai j)n×n .

Then by Lemma 3.3, A(ϕ) = 0, and so ϕ(Ei,i+1) ∈ N2 , 1 � i � n . By Lemma 3.4,
ϕ(Ei,i+1) ∈ Nn−1 , 1 � i � n . By Lemma 3.6, the necessity of the theorem holds. �

COROLLARY 4.2. Let ϕ be a linear map on N(F) , n � 4 . Then ϕ is anti-
commuting if and only if there exist b,b1,b2 ∈ F and a linear function f : N(F) → F

such that ϕ = μ (12)
b1

+ μ (n,n+1)
b2

+ad (bE2n)+ ϕ f .

Proof. By Lemma 2.1, μ (12)
b1

,μ (n,n+1)
b2

,ad (bE2n) are linear. It is easy to see that
f is linear if and only if ϕ f is linear. Then the corollary follows from the above main
theorem. �
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[6] M. BREŠAR, Commuting traces of biadditive maps, commutativity-preserving mappings and Lie map-

pings, Trans. Amer. Math. Soc. 335 (1993): 525–546.
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