NONLINEAR ANTI-COMMUTING MAPS OF STRICTLY TRIANGULAR MATRIX LIE ALGEBRAS

ZHENGXIN CHEN

(Communicated by C.-K. Li)

Abstract. Let $N(\mathbb{F})$ be the Lie algebra consisting of all strictly upper triangular $(n+1) \times (n+1)$ matrices over a field \mathbb{F} . A map φ on $N(\mathbb{F})$ is called to be anti-commuting if $[\varphi(x),y] = -[x,\varphi(y)]$ for any $x, y \in N(\mathbb{F})$. We show that for $n \ge 4$, a nonlinear map $\varphi : N(\mathbb{F}) \to N(\mathbb{F})$ is anti-commuting if and only if there exist $b, b_1, b_2 \in \mathbb{F}$ and a nonlinear function $f : N(\mathbb{F}) \to \mathbb{F}$ such that $\varphi = ad(bE_{2n}) + \mu_{b_2}^{(n,n+1)} + \mu_{b_1}^{(12)} + \varphi_f$, where $ad(bE_{2n})$ is an inner anti-commuting map, $\mu_{b_2}^{(n,n+1)}, \mu_{b_1}^{(12)}$ are extremal anti-commuting maps, φ_f is a central anti-commuting map.

1. Introduction

Let \mathscr{A} be an associative ring. A map $\varphi : \mathscr{A} \to \mathscr{A}$ is called *commuting* if

$$\varphi(x)x = x\varphi(x)$$
 for all $x \in \mathscr{A}$. (1.1)

Let us denote the commutator or the Lie product of the elements $x, y \in \mathscr{A}$ by [x, y] =xy - yx. Accordingly (1.1) will be written as $[\varphi(x), x] = 0$. The identity mapping and zero mapping are two classical examples of commuting maps. The principal task when treating a commuting map is to describe its form. Linear commuting maps are closely related to biderivations. Usually we consider commuting maps imposed with some restrictions, such as additive commuting maps, commuting traces, commuting automorphisms, commuting derivations, et al. See [1, 2, 5, 6, 7, 8, 13, 14, 16, 17, 18, 23, 28]. We encourage the reader to read the well-written survey paper [4], in which the author presented the development of the theory of commuting mappings and their applications in details. Similarly, commuting maps on Lie algebras are defined. Let g be a Lie algebra with Lie product [-, -] over a field \mathbb{F} . A map $\varphi : \mathfrak{g} \to \mathfrak{g}$ is said to be commuting if $[\varphi(x), x] = 0$ for all $x \in \mathfrak{g}$. If the characteristic is not equal to 2, a linear map $\varphi: \mathfrak{g} \to \mathfrak{g}$ is commuting if and only if $[\varphi(x), y] = [x, \varphi(y)]$ for all $x, y \in \mathfrak{g}$. In [25], the authors determined the biderivations of parabolic subalgebras of finite dimensional simple Lie algebras. So their linear commuting maps are scalar multiplication maps. In [10,23], the authors proved that any biderivation of an infinite dimensional Schrödinger-Virasoro Lie algebra or a simple generalized Witt algebra is inner, and so

Keywords and phrases: Strictly upper triangular matrices, anti-commuting maps.

Mathematics subject classification (2010): 15A04, 15A27, 15A86.

their linear commuting maps are completely determined. In [12], the authors determined the commuting automorphisms and commuting derivations of certain nilpotent Lie algebras over commutative rings. In particular, the commuting automorphisms and commuting derivations of nilradicals of finite dimensional complex simple Lie algebras are completely determined.

In recent years, more and more mathematicians are interested in discussing the nonlinear maps that preserving some property concerning Lie product (for, e.g., [9, 11, 15, 19, 20, 21, 22, 26]). In this paper, we define a nonlinear map similar to a commuting map on a Lie algebra \mathfrak{g} . A (may be nonlinear) map $\varphi : \mathfrak{g} \to \mathfrak{g}$ on a Lie algebra \mathfrak{g} over a field \mathbb{F} is said to be *anti-commuting* if $[\varphi(x), y] = -[x, \varphi(y)]$ for all $x, y \in \mathfrak{g}$. In fact, if φ is linear, φ is a special product zero derivation of \mathfrak{g} defined in [27]. If the characteristic of \mathbb{F} is equal to 2, an anti-commuting map is also a commuting map. In [3], the author determined the linear commuting maps over the ring of strictly upper triangular matrices. In this paper we will determine the nonlinear anti-commuting maps on the Lie algebra consisting of all strictly upper triangular matrices. Let \mathbb{F} be an arbitrary field with the characteristic char $(\mathbb{F}) \neq 2$. Let $N(\mathbb{F})$ be the linear space of the $(n+1) \times (n+1)$ strictly upper triangular matrices. Denote by E the identity matrix in $N(\mathbb{F})$ and by E_{ij} the matrix with sole non-zero element 1 in the (i, j) position. Then $\{E_{ij}|1 \leq i < j \leq n+1\}$ is the canonical basis of $N(\mathbb{F})$.

Set

$$N_k = \{X \in N(\mathbb{F}) | X = \sum_{j-i \ge k} x_{ij} E_{ij}\}, k = 1, 2, \cdots, n.$$

Then N_k are Lie ideals of the \mathbb{F} -algebra $N(\mathbb{F})$, $1 \leq k \leq n$. Let

$$Z(N(\mathbb{F})) = \{x \in N(\mathbb{F}) | [x, y] = 0 \text{ for any } y \in N(\mathbb{F})\}$$

be the center of $N(\mathbb{F})$. Then $Z(N(\mathbb{F})) = N_n = \mathbb{F}E_{1,n+1}$. It is easy to see that $[N_k, N_l] \subseteq N_{k+l}$.

2. Certain standard nonlinear anti-commuting maps

We denote a nonlinear anti-commuting map by AC. It is easy to see that a sum of ACs is still a AC. In this section, we construct certain ACs, which will be used to describe nonlinear anti-commuting maps.

LEMMA 2.1. Let
$$b \in \mathbb{F}$$
, $X = \sum_{1 \leq i < j \leq n+1} x_{ij} E_{ij} \in N(\mathbb{F})$.
(1) The inner derivation ad $(bE_{2n}) : N(\mathbb{F}) \to N(\mathbb{F})$ defined by

$$(ad (bE_{2n}))(X) = [bE_{2n}, X]$$

for any $X \in N(\mathbb{F})$ is a linear AC.

(2) The map $\mu_b^{(12)}: N(\mathbb{F}) \to N(\mathbb{F})$ defined by $\mu_b^{(12)}(X) = bx_{12}E_{2,n+1}$ is a linear AC.

(3) The map $\mu_b^{(n,n+1)}: N(\mathbb{F}) \to N(\mathbb{F})$ defined by $\mu_b^{(n,n+1)}(X) = bx_{n,n+1}E_{1n}$ is a linear AC.

Proof. (1) It is easy to see that $ad(bE_{2n})$ is linear. For any $X, Y \in N(\mathbb{F})$, $[(ad(bE_{2n}))(X), Y] + [X, (ad(bE_{2n}))(Y)] = [[bE_{2n}, X], Y] + [X, [bE_{2n}, Y] = [bE_{2n}, [X, Y]]$. Since $[X, Y] = XY - YX \in N_2$, then we may assume that

$$XY - YX = \sum_{j-i \ge 2} a_{ij} E_{ij}, a_{ij} \in \mathbb{F}.$$

Then $[bE_{2n}, [X, Y]] = \sum_{j = i \ge 2} a_{ij} [bE_{2n}, E_{ij}] = 0$. Thus $[(ad \ (bE_{2n}))(X), Y] + [X, (ad \ (bE_{2n}))(Y)] = 0$. So $ad \ (bE_{2n})$ is a AC.

(2) It is easy to see that $\mu_b^{(12)}$ is linear. Let

$$X = \sum_{1 \leq i < j \leq n+1} x_{ij} E_{ij}, Y = \sum_{1 \leq i < j \leq n+1} y_{ij} E_{ij}.$$

Then $[\mu_b^{(12)}(X), Y] = [bx_{12}E_{2,n+1}, Y] = -bx_{12}y_{12}E_{1,n+1}, [X, \mu_b^{(12)}(Y)] = [X, by_{12}E_{2,n+1}]$ = $bx_{12}y_{12}E_{1,n+1}$, so $[\mu_b^{(12)}(X), Y] = -[X, \mu_b^{(12)}(Y)]$. (3) The proof is similar to that in (2). \Box

Next we name certain standard ACs.

(A) Inner AC.

For $b \in \mathbb{F}$, the map $ad(bE_{2n}): N(\mathbb{F}) \to N(\mathbb{F})$ defined in Lemma 2.1(1) is called an inner *AC*.

(B) Extremal AC.

For $b \in \mathbb{F}$, $\mu_b^{(12)}$, $\mu_b^{(n,n+1)}$ defined in Lemma 2.1(2)(3) are called extremal ACs. (C) Central AC.

Let $f: N(\mathbb{F}) \to \mathbb{F}$ be a nonlinear function. We define a nonlinear map $\varphi_f: N(\mathbb{F}) \to N(\mathbb{F})$ by $\varphi_f(X) = f(X)E_{1,n+1}$. Since $Z(N(\mathbb{F})) = \mathbb{F}E_{1,n+1}$, it is easy to see that φ_f is anti-commuting. We call φ_f a central *AC*. Note that φ_f may be nonlinear.

3. Some lemmas about anti-commuting maps on $N(\mathbb{F})$

Let φ be a nonlinear anti-commuting map on $N(\mathbb{F})$. Assume that

$$\varphi(E_{i,i+1}) \equiv \sum_{j=1}^n a_{ji} E_{j,j+1} \mod N_2 \text{ for } 1 \leqslant i \leqslant n.$$

Then φ determines a matrix

$$A(\varphi) = \begin{pmatrix} a_{11} & a_{12} \cdots & a_{1n} \\ a_{21} & a_{22} \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} \cdots & a_{nn} \end{pmatrix}.$$

LEMMA 3.1. Let φ be a AC, $n \ge 3$. If $i, j, r \in \{1, 2, \dots, n\}$, |i - j| > 1 and |r - i| = 1, then $a_{rj} = 0$.

Proof. Consider the following equality

$$[\varphi(E_{i,i+1}), E_{j,j+1}] = -[E_{i,i+1}, \varphi(E_{j,j+1})].$$
(3.1)

The coefficient of $E_{i,i+2}$ on the left-hand side of the equality (3.1) is 0. Since |r-i| = 1, then r = i+1 or i-1. If r = i+1 (respectively, r = i-1), the coefficient of $E_{i-1,i+1}$ on the right-hand side of the equality (3.1) is $-a_{rj}$ (respectively, a_{rj}). Thus $a_{rj} = 0$. \Box

LEMMA 3.2. Let φ be a AC, $n \ge 3$. If $i, s \in \{1, 2, \dots, n\}$, $i \ne s$, then $a_{si} = 0$.

Proof. We prove it in the following cases.

Case 1 |i-s| = 1.

Since $n \ge 3$, we can choose $t \in \{1, 2, \dots, n\}$ such that $t \ne i$ or s, and |t - i| = 1 or |t - s| = 1.

Case 1.1 |t-s| = 1.

Assume that s = 1. Then |t - s| = 1 implies that t = 2, and |i - s| = 1 also implies that i = 2. So t = i, a contradiction. Thus s > 1, and so t = s - 1, i = s + 1 or t = s + 1, i = s - 1.

Case 1.1.1 t = s - 1, i = s + 1.

Consider the following equality

$$[\varphi(E_{s+1,s+2}), E_{s-1,s}] = -[E_{s+1,s+2}, \varphi(E_{s-1,s})].$$
(3.2)

The coefficient of $E_{s-1,s+1}$ on the left side of the equality (3.2) is $-a_{s,s+1}$, and the coefficient of $E_{s-1,s+1}$ on the hand side of the equality (3.2) is 0. Thus $a_{s,s+1} = 0$, i.e., $a_{si} = 0$.

Case 1.1.2 t = s + 1, i = s - 1.

Consider the following equality

$$[\varphi(E_{s-1,s}), E_{s+1,s+2}] = -[E_{s-1,s}, \varphi(E_{s+1,s+2})].$$
(3.3)

The coefficient of $E_{s,s+2}$ on the left side of the equality (3.3) is $a_{s,s-1}$, and the coefficient of $E_{s,s+2}$ on the hand side of the equality (3.3) is 0. Thus $a_{s,s-1} = 0$, i.e., $a_{si} = 0$.

Case 2 |i-s| > 1.

Case 2.1 |i-s| > 2.

If s > 1, then |(s-1)-i| > 1 and |s-(s-1)| = 1, then $a_{si} = 0$ by Lemma 3.1. If s = 1, then i > 3. Comparing the coefficients of E_{13} on the both sides of the following equality

$$[\varphi(E_{23}), E_{i,i+1}] = -[E_{23}, \varphi(E_{i,i+1})],$$

we have $a_{1i} = 0$, i.e., $a_{si} = 0$. *Case* 2.2 |i - s| = 2. In this case, s = i+2 or i-2. Assume that s = i+2. Comparing the coefficients of $E_{i+1,i+3}$ on the both sides of the following equality

$$[\varphi(E_{i,i+1}), E_{i+1,i+2}] = -[E_{i,i+1}, \varphi(E_{i+1,i+2})],$$

we have $a_{i+2,i} = 0$, i.e., $a_{si} = 0$. Similarly, for s = i - 2, comparing the coefficients of $E_{i-2,i}$ on the both sides of the following equality

$$[\varphi(E_{i-1,i}), E_{i,i+1}] = -[E_{i-1,i}, \varphi(E_{i,i+1})],$$

we have $a_{i-2,i} = 0$, i.e., $a_{si} = 0$. \Box

In the following, we always assume that $n \ge 4$.

LEMMA 3.3. Let φ be a AC. Then $A(\varphi) = 0$.

Proof. For any $i = 1, 2, \dots, n-1$, comparing the coefficients of $E_{i,i+2}$ on the both sides of the equality $[\varphi(E_{i,i+1}), E_{i+1,i+2}] = -[E_{i,i+1}, \varphi(E_{i+1,i+2})]$, we have $a_{ii} = -a_{i+1,i+1}$. So $a_{11} = -a_{22} = a_{33} = \cdots = (-1)^{n-1}a_{nn}$. In particular,

 $a_{11} = -a_{44}.$

Comparing the coefficients of E_{14} on the both sides of the equality $[\varphi(E_{12}), E_{24}] = -[E_{12}, \varphi(E_{24})]$, we can see that the coefficient of E_{24} in $\varphi(E_{24})$ is $-a_{11}$. On the other hand, comparing the coefficients of E_{25} on the both sides of the equality $[\varphi(E_{24}), E_{45}] = -[E_{24}, \varphi(E_{45})]$, we can see that the coefficient of E_{24} in $\varphi(E_{24})$ is $-a_{44}$. Thus

$$a_{11} = a_{44},$$

and so $a_{11} = 0$ by char $(\mathbb{F}) \neq 2$. Thus $a_{ii} = 0$ for any $i \in \{1, 2, \dots, n\}$. By Lemma 3.2, for any $i \neq s$, $a_{si} = 0$. Therefore, $A(\varphi) = 0$. \Box

LEMMA 3.4. If φ is a AC, $\varphi(E_{i,i+1}) \in N_2$, $1 \leq i \leq n$, then $\varphi(E_{i,i+1}) \in N_{n-1}$ for any $i \in \{1, 2, \dots, n\}$.

Proof. We will prove that $\varphi(E_{i,i+1}) \in N_k$ for $1 \le i \le n$, $2 \le k \le n-1$. We prove it by induction on k. By conditions, it holds for k = 2. Assume that $\varphi(E_{i,i+1}) \in N_k$ for $1 \le i \le n$, $2 \le k \le n-2$. Set

$$\varphi(E_{i,i+1}) \equiv \sum_{j=1}^{n-k+1} a_{ji}^{(k)} E_{j,j+k} \mod N_{k+1}, 1 \le i \le n.$$

We will prove that $a_{ji}^{(k)} = 0$ for any $j \in \{1, 2, \dots, n-k+1\}$ in the following cases. *Case* 1 $j+k \leq n$.

Cuse 1 $j + k \leq n$.

Case 1.1 $j \neq i$ or i-k.

Consider the equality

$$[\varphi(E_{i,i+1}), E_{j+k,j+k+1}] = -[E_{i,i+1}, \varphi(E_{j+k,j+k+1})].$$
(3.4)

Then the coefficient of $E_{j,j+k+1}$ on the left-hand side of the equality (3.4) is $a_{ii}^{(k)}$. Since $j \neq i$ or i - k, then the coefficient of $E_{i,i+k+1}$ on the right-hand side of the equality (3.4) is 0. So $a_{ii}^{(k)} = 0$.

Case 1.2 j' = i = 1.

Consider the equality

$$[\varphi(E_{12}), E_{k+1,k+2}] = -[E_{12}, \varphi(E_{k+1,k+2})].$$
(3.5)

By computations, the coefficient of $E_{1,k+2}$ on the left-hand (respectively, right-hand) side of the equality (3.5) is $a_{11}^{(k)}$ (respectively, $-a_{2,k+1}^{(k)}$). So $a_{11}^{(k)} = -a_{2,k+1}^{(k)}$. By the conditions $2 \neq 1 + k$ or (k+1) - k and $2 + k \leq n$, then $a_{2,k+1}^{(k)} = 0$ by Case 1.1. So $a_{11}^{(k)} = 0$, i.e., $a_{ii}^{(k)} = 0$.

Case 1.3 $i = i \ge 2$.

Consider the equality

$$[\varphi(E_{i,i+1}), E_{i-1,i}] = -[E_{i,i+1}, \varphi(E_{i-1,i})].$$
(3.6)

By computations, the coefficient of $E_{i-1,i+k}$ on the left-hand (respectively, right-hand) side of the equality (3.6) is $-a_{ii}^{(k)}$ (respectively, 0). Then $a_{ii}^{(k)} = 0$, i.e., $a_{ji}^{(k)} = 0$.

Case 1.4
$$j = i - k = 1$$
.

In this case, $i = k + 1 \in \{3, 4, \dots, n-1\}$. Consider the following equality

$$[\varphi(E_{i,i+1}), E_{i,i+2}] = -[E_{i,i+1}, \varphi(E_{i,i+2})].$$
(3.7)

Comparing the coefficient of $E_{1,i+2}$ on the both sides of the equality (3.7), we know that $a_{1i}^{(k)} = 0$, i.e., $a_{ji}^{(k)} = 0$. Case 1.5 $j = i - k \ge 2$.

Consider the equality

$$[\varphi(E_{i-k-1,i-k}), E_{i,i+1}] = -[E_{i-k-1,i-k}, \varphi(E_{i,i+1})].$$
(3.8)

By computations, the coefficient of $E_{i-k-1,i}$ on the left-hand (respectively, right-hand) side of the equality (3.8) is 0 (respectively, $-a_{i-k}^{(k)}$). Then $a_{i-k}^{(k)} = 0$, i.e., $a_{ii}^{(k)} = 0$.

Case 2 j + k = n + 1.

In this case, $j = n - k + 1 \ge 3$. We will prove that $a_{ji}^{(k)} = a_{n-k+1,j}^{(k)} = 0$. Case 2.1 $i \neq n-k$ or n. By the equality

$$[\varphi(E_{i,i+1}), E_{n-k,n-k+1}] = -[E_{i,i+1}, \varphi(E_{n-k,n-k+1})],$$
(3.9)

we have the coefficient of $E_{n-k,n+1}$ on the left-hand (respectively, right-hand) side of the equality (3.9) is $a_{n-k+1,i}^{(k)}$ (respectively, 0), then $a_{n-k+1,i}^{(k)} = 0$.

Case 2.2 i = n - k.

In this case, $i \ge 2$. Consider the equality

$$[\varphi(E_{i,i+1}), E_{i-1,i+1}] = -[E_{i,i+1}, \varphi(E_{i-1,i+1})].$$
(3.10)

Comparing the coefficient of $E_{i-1,n+1}$ on the both sides of the equality (3.10), we know that $a_{i+1,i}^{(k)} = 0$, i.e., $a_{n-k+1,i}^{(k)} = 0$. *Case* 2.3 i = n.

By the equality

$$[\varphi(E_{n,n+1}), E_{n-k,n-k+1}] = -[E_{n,n+1}, \varphi(E_{n-k,n-k+1})], \qquad (3.11)$$

we have the coefficient of $E_{n-k,n+1}$ on the left-hand (respectively, right-hand) side of the equality (3.11) is $-a_{n-k+1,n}^{(k)}$ (respectively, $a_{n-k,n-k}^{(k)}$), then $a_{n-k+1,n}^{(k)} = -a_{n-k,n-k}^{(k)}$. By Case 1.3, $a_{n-k,n-k}^{(k)} = 0$, where $n-k \ge 2$. So $a_{n-k+1,n}^{(k)} = 0$, i.e., $a_{n-k+1,i}^{(k)} = 0$. \Box

LEMMA 3.5. Let φ be a AC. If $\varphi(E_{i,i+1}) \in N_n$, $1 \leq i \leq n$, then $\varphi(E_{i,i+k}) \in N_n$ for any $2 \leq k \leq n-1$, $1 \leq i \leq n+1-k$.

Proof. Fix a $k \in \{2, 3, \dots, n-1\}$ and $i \in \{1, 2, \dots, n+1-k\}$. Set

$$\varphi(E_{i,i+k}) = \sum_{1 \leqslant p < q \leqslant n+1} b_{pq} E_{pq}$$

where $b_{pq} \in \mathbb{F}$ for any $1 \leq p < q \leq n+1$. At first we will prove that if $(p,q) \neq (1,n+1)$, $b_{pq} = 0$. We prove it in the following cases.

Case 1 $q \leq n$.

By conditions,

$$[\varphi(E_{i,i+k}), E_{q,q+1}] = -[E_{i,i+k}, \varphi(E_{q,q+1})] = 0.$$
(3.12)

The coefficient of $E_{p,q+1}$ of the left-hand side of the equality (3.12) is b_{pq} , then $b_{pq} = 0$.

Case 2 q = n+1.

In this case, $p \neq 1$ or n + 1. By conditions,

$$[\varphi(E_{i,i+k}), E_{p-1,p}] = -[E_{i,i+k}, \varphi(E_{p-1,p})] = 0.$$
(3.13)

The coefficient of $E_{p-1,n+1}$ of the left-hand side of the equality (3.13) is $-b_{p,n+1}$, then $b_{p,n+1} = 0$, i.e., $b_{pq} = 0$.

Thus $\varphi(E_{i,i+k}) \equiv 0 \mod N_n$, i.e., $\varphi(E_{i,i+k}) \in N_n$ for any $2 \leq k \leq n-1$ and $1 \leq i \leq n+1-k$. \Box

LEMMA 3.6. Let φ be a AC. If $\varphi(E_{i,i+1}) \in N_{n-1}$, $1 \leq i \leq n$, then there exist $b, b_1, b_2 \in \mathbb{F}$ and a nonlinear map $f : N(\mathbb{F}) \to \mathbb{F}$ with such that

$$\varphi = ad (bE_{2n}) + \mu_{b_2}^{(n,n+1)} + \mu_{b_1}^{(12)} + \varphi_f.$$

Proof. Set

$$\varphi(E_{i,i+1}) = a_{1i}^{(n-1)} E_{1n} + a_{2i}^{(n-1)} E_{2,n+1} + a_{1i}^{(n)} E_{1,n+1}, 1 \le i \le n.$$

Assume that $2 \le i \le n-1$. By the equality

$$[\varphi(E_{i,i+1}), E_{n,n+1}] = -[E_{i,i+1}, \varphi(E_{n,n+1})].$$
(2.20)

we have the coefficient of $E_{1,n+1}$ on the left-hand (respectively, right-hand) side of the equality (2.20) is $a_{1i}^{(n-1)}$ (respectively, 0), then $a_{1i}^{(n-1)} = 0$. By the equality

$$[\varphi(E_{i,i+1}), E_{12}] = -[E_{i,i+1}, \varphi(E_{12})], \qquad (2.21)$$

we have the coefficient of $E_{1,n+1}$ on the left-hand (respectively, right-hand) side of the equality (2.21) is $-a_{2i}^{(n-1)}$ (respectively, 0), then $a_{2i}^{(n-1)} = 0$.

Assume that i = 1. By the equality

$$[\varphi(E_{12}), E_{n,n+1}] = -[E_{12}, \varphi(E_{n,n+1})],$$

we have the coefficient of $E_{1,n+1}$ on the left-hand (respectively, right-hand) side of the above equality is $a_{11}^{(n-1)}$ (respectively, $-a_{2n}^{(n-1)}$), then $a_{11}^{(n-1)} = -a_{2n}^{(n-1)}$. So

$$\varphi(E_{12}) = a_{11}^{(n-1)} E_{1n} + a_{21}^{(n-1)} E_{2,n+1} + a_{11}^{(n)} E_{1,n+1},$$

$$\varphi(E_{i,i+1}) = a_{1i}^{(n)} E_{1,n+1}, 2 \leq i \leq n-1,$$

$$\varphi(E_{n,n+1}) = a_{1n}^{(n-1)} E_{1n} - a_{11}^{(n-1)} E_{2,n+1} + a_{1n}^{(n)} E_{1,n+1}.$$

Set

$$b = -a_{11}^{(n-1)}$$

By computations, $(ad (-bE_{2n}) + \varphi)(E_{12}) = a_{21}^{(n-1)}E_{2,n+1} + a_{11}^{(n)}E_{1,n+1}$, and $(ad (-bE_{2n}) + \varphi)(E_{n,n+1}) = a_{1n}^{(n-1)}E_{1n} + a_{1n}^{(n)}E_{1,n+1}$, $(ad (-bE_{2n}) + \varphi)(E_{i,i+1}) = a_{1i}^{(n)}E_{1,n+1}$, $2 \le i \le n-1$. Set

$$b_1 = a_{21}^{(n-1)}, b_2 = a_{1n}^{(n-1)},$$

Then $(\mu_{-b_1}^{(12)} + \mu_{-b_2}^{(n,n+1)} + ad (-bE_{2n}) + \varphi)(E_{i,i+1}) = a_{1i}^{(n)}E_{1,n+1}, 1 \le i \le n$. By Lemma 3.5, for any $1 \le i < j \le n+1$, we have $(\mu_{-b_1}^{(12)} + \mu_{-b_2}^{(n,n+1)} + ad (-bE_{2n}) + \varphi)(E_{ij}) \in N_n$, and so for any $X \in N(\mathbb{F}), [(\mu_{-b_1}^{(12)} + \mu_{-b_2}^{(n,n+1)} + ad (-bE_{2n}) + \varphi)(X), E_{ij}] = -[X, (\mu_{-b_1}^{(12)} + \mu_{-b_2}^{(n,n+1)} + ad (-bE_{2n}) + \varphi)(E_{ij})] = 0$. Thus

$$(\mu_{-b_1}^{(12)} + \mu_{-b_2}^{(n,n+1)} + ad \ (-bE_{2n}) + \varphi)(X) \in Z(N(\mathbb{F}))$$

and so there exists an element $c_X \in \mathbb{F}$ such that $(\mu_{-b_1}^{(12)} + \mu_{-b_2}^{(n,n+1)} + ad (-bE_{2n}) + \varphi)(X) = c_X E_{1,n+1}$. So we can define a nonlinear map $f: N(\mathbb{F}) \to \mathbb{F}$ by $f(X) = c_X$ for any $X \in N(\mathbb{F})$. Therefore $\mu_{-b_1}^{(12)} + \mu_{-b_2}^{(n,n+1)} + ad (-bE_{2n}) + \varphi = \varphi_f$ by definitions, and so $\varphi = -\mu_{-b_1}^{(12)} - \mu_{-b_2}^{(n,n+1)} + ad bE_{2n} + \varphi_f = \mu_{b_1}^{(12)} + \mu_{b_2}^{(n,n+1)} + ad bE_{2n} + \varphi_f$. \Box

4. The main theorem about anti-commuting maps

THEOREM 4.1. Let φ be a nonlinear map on $N(\mathbb{F})$, which is the Lie algebra consisting of all strictly upper $(n+1) \times (n+1)$ matrices, $n \ge 4$. Then φ is anticommuting if and only if there exist $b, b_1, b_2 \in \mathbb{F}$ and a nonlinear function $f : N(\mathbb{F}) \to \mathbb{F}$ such that $\varphi = \mu_{b_1}^{(12)} + \mu_{b_2}^{(n,n+1)} + ad(bE_{2n}) + \varphi_f$.

Proof. The sufficiency of the theorem is obvious.

Assume that $\varphi(E_{i,i+1}) \equiv \sum_{j=1}^{n} a_{ji}E_{j,j+1} \mod N_2$, $1 \leq i \leq n$, and $A(\varphi) = (a_{ij})_{n \times n}$. Then by Lemma 3.3, $A(\varphi) = 0$, and so $\varphi(E_{i,i+1}) \in N_2$, $1 \leq i \leq n$. By Lemma 3.4, $\varphi(E_{i,i+1}) \in N_{n-1}$, $1 \leq i \leq n$. By Lemma 3.6, the necessity of the theorem holds. \Box

COROLLARY 4.2. Let φ be a linear map on $N(\mathbb{F})$, $n \ge 4$. Then φ is anticommuting if and only if there exist $b, b_1, b_2 \in \mathbb{F}$ and a linear function $f : N(\mathbb{F}) \to \mathbb{F}$ such that $\varphi = \mu_{b_1}^{(12)} + \mu_{b_2}^{(n,n+1)} + ad(bE_{2n}) + \varphi_f$.

Proof. By Lemma 2.1, $\mu_{b_1}^{(12)}, \mu_{b_2}^{(n,n+1)}, ad(bE_{2n})$ are linear. It is easy to see that f is linear if and only if φ_f is linear. Then the corollary follows from the above main theorem. \Box

Acknowledgement. This work is supported by the National Natural Science Foundation of China (Grant No. 11871014, 11571360) and the Natural Science Foundation of Fujian Province (Grant No. 2016J01006) and JZ160427.

REFERENCES

- [1] D. BENKOVIČ, Biderivations of triangular algebras, Lin. Alge. Appl. 431 (2009): 1587–1602.
- [2] D. BENKOVIČ AND D. EREMITA, Commuting traces and commutativity preserving maps on triangular algebras, J. Algebra 280 (2004): 797–824.
- [3] J. BOUNDS, Commuting maps over the ring of strictly upper triangular matrices, Lin. Alge. Appl. 507 (2016): 132–136.
- [4] M. BREŠAR, Commuting maps: a survey, Taiwanese J. Math. 8 (2004): 361-397.
- [5] M. BREŠAR, On generalized biderivations and related maps, J. Algebra 172 (1995): 764–786.
- [6] M. BREŠAR, Commuting traces of biadditive maps, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993): 525–546.
- [7] M. BREŠAR AND C. R. MIERS, Commuting maps on Lie ideals, Comm. Algebra 23 (1995): 5539– 5553.
- [8] M. BREŠAR AND P. ŠEMRL, Commuting traces of biadditive maps revisited, Comm. Algebra 31 (2003): 381–388.
- [9] L. CHEN AND J. ZHANG, Nonlinear Lie derivations on upper triangular matrices, Linear Multilinear Alge. 56 (2008): 725–730.
- [10] Z. CHEN, Biderivations and linear commuting maps on simple generalized Witt algebras over a field, Electronic J. Linear Algebra 31 (2016): 1–12.
- [11] Z. CHEN AND D. WANG, Nonlinear maps satisfying derivability on standard parabolic subalgebras of finite-dimensional simple Lie algebras, Linear Multilinear Alge. 59 (2011): 261–270.
- [12] Z. CHEN AND B. WANG, Commuting automorphisms and derivations of certain nilpotent Lie algebras over commutative rings, Comm. Algebra 43 (2015): 2044–2061.
- [13] W. CHEUNG, Commuting maps of triangular algebras, J. London Math. Soc. 63 (2001): 117–127.

- [14] N. DIVINSKY, On commuting automorphisms of rings, Trans. Roy. Soc. Canada. Sect. III. 49 (1995): 19–22.
- [15] G. DOLINAR, Maps on upper triangular matrices preserving Lie products, Linear Multilinear Alge. 55 (2007): 191–198.
- [16] P. LEE, T. WONG, J. LIN AND R. WANG, Commuting traces of multiadditive mappings, J. Algebra 193 (1997): 709–723.
- [17] T. LEE AND T. LEE, Commuting additive mappings in semiprime rings, Bull. Inst. Math. Acad. Sinca 24 (1996): 259–268.
- [18] J. LUH, A note on commuting automorphisms of rings, Amer. Math. Monthly 77 (1970): 61-62.
- [19] L. MOLNÁR AND P. ŠEMRL, Non-linear commutativity preserving maps on self-adjont operators, Q. J. Math. 56 (2005): 589–595.
- [20] P. ŠEMRL, Nonlinear commutativity preserving maps, Acta. Sci. Math. (Szeged) 71 (2005): 781–819.
- [21] X. QI AND J. HOU, Nonlinear strong commutativity preserving maps on prime rings, Comm. Algebra 38 (2010): 2790–2796.
- [22] X. QI AND J. HOU, Nonlinear strong commutativity preserving maps on triangular algebras, Operators Matrices 1 (2012): 147–158.
- [23] J. VUKMAN, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc. 109 (1990): 47–52.
- [24] D. WANG AND X. YU, Biderivations and linear commuting maps on the Schrödinger-Virasoro Lie algebra, Comm. Algebra 41 (2013): 2166–2173.
- [25] D. WANG, X. YU AND Z. CHEN, Biderivations of the parabolic subalgebras of simple Lie algebras, Comm. Algebra 39 (2011): 4097–4104.
- [26] D. WANG, Y. ZHAO AND Z. CHEN, Non-linear maps on simple Lie algebras preserving Lie products, Comm. Algebra 39 (2011): 424–434.
- [27] D. WANG, W. ZHANG AND Z. CHEN, Product zero derivations of the parabolic subalgebras of simple Lie algebras, J. Lie Theory 20 (2010): 167–174.
- [28] J. ZHANG, S. FENG, H. LI AND R. WU, Generalized biderivation of nest algebras, Lin. Alge. Appl. 418 (2006): 225–233.

(Received March 27, 2018)

Zhengxin Chen College of Mathematics and informatics & FJKLMAA Fujian Normal University Fuzhou, 350117, P. R. China e-mail: czxing@163.com