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Abstract. The matrices whose powers eventually have some special properties is an interesting
object of study, such as eventually positive matrices. This paper investigates the matrices whose
powers eventually have certain structural properties. We completely characterize those complex
square matrices whose powers become and remain diagonal, Toeplitz, normal, respectively.

1. Introduction

A complex square matrix A is called nilpotent if there exists a positive integer k
such that Ak is a zero matrix. Thus nilpotent matrices are the matrices whose powers
become and remain zero.

Two matrices X and Y are said to be permutation similar if there exists a per-
mutation matrix P such that PT XP = Y. A square matrix A is called reducible if A is
permutation similar to a matrix of the form[

B 0
C D

]
,

where B and D are square matrices of order at least 1, and 0 is a zero matrix. A square
matrix that is not reducible is called irreducible.

Recall that every square matrix has its Frobenius normal form [1, p. 57]. That is,
for a square matrix A of order n, there exists a permutation matrix P of order n and
an integer t � 1 such that

PAPT =

⎡
⎢⎢⎢⎣

A11 A12 · · · A1t

0 A22 · · · A2t
...

...
. . .

...
0 0 · · · Att

⎤
⎥⎥⎥⎦ , (1)

where A11,A22, . . . ,Att are irreducible matrices.
A matrix is positive (nonnegative) if all of its entries are positive (nonnegative)

real numbers. Let A be an irreducible nonnegative square matrix. Denote by ρ(A) the
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spectral radius of A. Suppose A has exactly t eigenvalues of modulus ρ(A). If t = 1,
then A is said to be primitive; otherwise A is imprimitive. A theorem of Frobenius
[10, p. 134] states that a nonnegative square matrix A of order at least 2 is primitive
if and only if there exists a positive integer k such that Ak is a positive matrix. Thus
the primitive matrices of order at least 2 are the nonnegative matrices whose powers
become and remain positive.

Inspired by the above examples, it is natural and interesting to consider the fol-
lowing general problem.

PROBLEM. Characterize the (nonnegative) square matrices A for which there ex-
ists a positive integer k such that Ai has a certain property for all integers i � k.

The complex square matrices, whose powers become and remain positive, nonneg-
ative, reducible and irreducible respectively, have been studied extensively. See [3, 4,
6–9] and the references therein. In this paper, we focus on another three basic kinds of
matrices: diagonal matrices, Toeplitz matrices and normal matrices. Our aim is to de-
scribe those matrices whose powers become and remain diagonal, Toeplitz and normal
respectively. We give a complete characterization of them in Sections 2-4.

2. Matrices whose powers become and remain diagonal

If A is a matrix, A(i, j) denotes its entry in the i-th row and j -th column. The
following fact is clear.

LEMMA 2.1. Let A be a complex matrix of order n. If there exists a positive
integer k such that Ai is diagonal for all integers i � k, then given an integer j with
1 � j � n, either Ai( j, j) = 0 for all integers i � k, or Ai( j, j) �= 0 for all integers
i � k.

The following theorem characterizes the matrices whose powers become and re-
main diagonal.

THEOREM 2.2. Let A be an n× n complex matrix with exactly m eigenvalues
equal to 0. Then the following statements are equivalent:

(i) There exists a positive integer k such that Ai is diagonal for all integers i � k.

(ii) There exists a permutation matrix P such that A = P

[
N 0
0 Λ

]
PT , where N is

a nilpotent matrix of order m and Λ is an invertible diagonal matrix of order n−m.

Proof. (i)⇒(ii). By Lemma 2.1, there exists a permutation matrix P such that

PT AiP =
[

0 0
0 Λi

]
for all integers i � k, where Λi is an invertible diagonal matrix.

Since A has exactly m eigenvalues equal to 0, so does Ai. Thus Λi is a matrix of order
n−m for all integers i � k.

Partition PT AP =
[

A1 A2

A3 A4

]
, where A1 is of order m and A4 is of order n−m.

Since AAi = AiA,

[
A1 A2

A3 A4

][
0 0
0 Λi

]
=

[
0 0
0 Λi

][
A1 A2

A3 A4

]
for all integers i � k. Then
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A2Λi = 0,ΛiA3 = 0. By the invertibility of Λi, A2 = A3 = 0. Thus PT AP =
[

A1 0
0 A4

]
.

Since

[
Ai

1 0
0 Ai

4

]
= (PT AP)i = PT AiP =

[
0 0
0 Λi

]
, A1 is a nilpotent matrix and Ai

4 is an

invertible diagonal matrix for all integers i � k. Thus A4 = (Ak
4)

−1Ak+1
4 is an invertible

diagonal matrix. Let N = A1,Λ = A4. Then A = P

[
N 0
0 Λ

]
PT .

(ii)⇒(i). This is clear by direct verification and it suffice to choose k equal to
m. �

LEMMA 2.3. Let A be a nilpotent nonnegative matrix. Then A is permutation
similar to a strictly upper triangular matrix.

Proof. Consider the Frobenius normal form (1) of A. Since A is nilpotent, each
Aii is nilpotent, i = 1,2, . . . ,t. By the Perron-Frobenius theorem [10, p. 123], each
Aii = 0 is of order 1, i = 1,2, . . . ,t. Thus A is permutation similar to a strictly upper
triangular matrix. �

The following theorem characterizes the nonnegative matrices whose powers be-
come and remain diagonal.

THEOREM 2.4. Let A be an n×n nonnegative matrix with exactly m eigenvalues
equal to 0. Then the following statements are equivalent:

(i) There exists a positive integer k such that Ai is diagonal for all integers i � k.

(ii) There exists a permutation matrix P such that A = P

[
N 0
0 Λ

]
PT , where N is

a strictly upper triangular matrix of order m and Λ is a positive diagonal matrix of
order n−m.

Proof. (i)⇒(ii). By Theorem 2.2, there exists a permutation matrix P1 such that

A = P1

[
N1 0
0 Λ

]
PT

1 , where N1 is a nilpotent nonnegative matrix of order m and Λ is

a positive diagonal matrix of order n−m. By Lemma 2.3, there exists a permutation
matrix P2 of order m such that PT

2 N1P2 is a strictly upper triangular matrix. Denote

by In the identity matrix of order n. Let P = P1

[
P2 0
0 In−m

]
, N = PT

2 N1P2. Then P is

a permutation matrix and A = P

[
N 0
0 Λ

]
PT .

(ii)⇒(i). This is clear by direct verification and it suffice to choose k equal to
m. �

It is predictable that a nonnegative matrix whose powers become and remain di-
agonal cannot have too many positive entries. By Theorem 2.4, we can determine the
maximum number of positive entries in a nonnegative matrix whose powers become
and remain diagonal as well as characterize those matrices that attain the maximum
number.
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COROLLARY 2.5. Let A be a nonnegative matrix of order n � 2. If there exists
a positive integer k such that Ai is diagonal for all integers i � k, then we have the
following conclusions:

(i) If n = 2, then A has at most 2 positive entries, and A has exactly 2 positive
entries if and only if A is a positive diagonal matrix.

(ii) If n = 3, then A has at most 3 positive entries, and A has exactly 3 positive
entries if and only if A is either a positive diagonal matrix or permutation similar to
a strictly upper triangular matrix with all the entries above the main diagonal being
positive.

(iii) If n � 4, then A has at most n(n− 1)/2 positive entries, and A has exactly
n(n− 1)/2 positive entries if and only if A is permutation similar to a strictly upper
triangular matrix with all the entries above the main diagonal being positive.

3. Matrices whose powers become and remain Toeplitz

A matrix of the form ⎡
⎢⎢⎢⎢⎢⎣

a0 a1 a2 · · · an−1

a−1 a0 a1 · · · an−2

a−2 a−1 a0 · · · an−3
...

...
...

. . .
...

a−n+1 a−n+2 a−n+3 · · · a0

⎤
⎥⎥⎥⎥⎥⎦

is called a Toeplitz matrix. A matrix of the form
⎡
⎢⎢⎢⎢⎢⎣

a0 a1 a2 · · · an−1

ran−1 a0 a1 · · · an−2

ran−2 ran−1 a0 · · · an−3
...

...
...

. . .
...

ra1 ra2 ra3 · · · a0

⎤
⎥⎥⎥⎥⎥⎦

is called an r-circulant matrix. In particular, a 1-circulant matrix is a circulant ma-
trix, and a 0-circulant matrix is an upper triangular Toeplitz matrix. Lower triangular
Toeplitz matrices together with r -circulant matrices are called generalized circulant
matrices. Clearly, generalized circulant matrices are special Toeplitz matrices.

LEMMA 3.1. Let A be a Toeplitz matrix. If A2 is still a Toeplitz matrix, then A is
a generalized circulant matrix.

Proof. Suppose A has order n. Since A is a Toeplitz matrix, we can denote

A(i, j) = a j−i. Then A2(i, j) =
n
∑

k=1
A(i,k)A(k, j) =

n
∑

k=1
ak−ia j−k. Since A2 is a Toeplitz

matrix, A2(i, j) = A2(i + 1, j + 1) for all i, j = 1,2, . . . ,n − 1; i.e.,
n
∑

k=1
ak−ia j−k =

n
∑

k=1
ak−i−1a j+1−k. Thus an−ia j−n = a−ia j for all i, j = 1,2, . . . ,n− 1. It follows that
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the (n−1)×2 matrix

B =

⎡
⎢⎢⎢⎣

a−1 an−1

a−2 an−2
...

...
a1−n a1

⎤
⎥⎥⎥⎦

has all its minors of order 2 equal to 0; i.e., rankB = 0 or 1. This implies that A is a
generalized circulant matrix. �

The Fourier transform matrix of order n is defined to be

F =
1√
n

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

... · · · ...
1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)

⎤
⎥⎥⎥⎥⎥⎦

,

where ω = e
2πi
n (i =

√−1). Note that detF �= 0.

LEMMA 3.2. ([2]) Let r �= 0. Then A is an r -circulant matrix of order n if and
only if there exist λ1,λ2, . . . ,λn such that F−1D−1ADF = diag(λ1,λ2, . . . ,λn), where

D = diag(1,r
1
n ,r

2
n , . . . ,r

n−1
n ) and F is the Fourier transform matrix of order n.

LEMMA 3.3. Any power of a generalized circulant matrix is still a generalized
circulant matrix.

Proof. Let A be a generalized circulant matrix. We distinguish two cases.
(i) Suppose A is a lower triangular Toeplitz matrix. Direct verification shows

that any power of a lower triangular Toeplitz matrix is still a lower triangular Toeplitz
matrix.

(ii) Suppose A is an r -circulant matrix. If r �= 0, by Lemma 3.2, any power of A
is still an r -circulant matrix. If r = 0, then A is an upper triangular Toeplitz matrix.
Direct verification shows that any power of an upper triangular Toeplitz matrix is still
an upper triangular Toeplitz matrix. �

LEMMA 3.4. The inverse of an invertible generalized circulant matrix is still a
generalized circulant matrix.

Proof. Let A be an invertible generalized circulant matrix of order n. We distin-
guish two cases.

(i) Suppose A is a lower triangular Toeplitz matrix. Assume that the characteristic
polynomial of A is λ n + c1λ n−1 + · · ·+ cn−1λ + cn. Since A is invertible, cn �= 0.
By the Cayley-Hamilton Theorem, An + c1An−1 + · · ·+ cn−1A+ cnIn = 0. Thus A−1 =
− 1

cn
(An−1 + c1An−2 + · · ·+ cn−1In−1) is a lower triangular Toeplitz matrix.

(ii) Suppose A is an r -circulant matrix. If r �= 0, by Lemma 3.2, A−1 is still an
r -circulant matrix. If r = 0, then A is an upper triangular Toeplitz matrix. A similar
argument as in (i) shows that the inverse of an invertible upper triangular Toeplitz matrix
is still an upper triangular Toeplitz matrix. �
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THEOREM 3.5. Let A be a Toeplitz matrix. Then the following statements are
equivalent:

(i) Any power of A is a Toeplitz matrix.
(ii) A2 is a Toeplitz matrix.
(iii) A is a generalized circulant matrix.
(iv) Any power of A is a generalized circulant matrix.

Proof. (i)⇒(ii). Obvious.
(ii)⇒(iii). Lemma 3.1.
(iii)⇒(iv). Lemma 3.3.
(iv)⇒(i). Obvious. �

LEMMA 3.6. Let A be an r -circulant matrix of order n and let B be a lower
triangular Toeplitz matrix of order n. If AB = BA, then either A or B is a scalar
matrix.

Proof. Suppose A and B have the forms

A =

⎡
⎢⎢⎢⎣

a0 a1 · · · an−1

ran−1 a0 · · · an−2
...

...
. . .

...
ra1 ra2 · · · a0

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

b0

b1 b0
...

. . .
. . .

bn−1 · · · b1 b0

⎤
⎥⎥⎥⎦ .

If AB = BA, it suffices to prove A = a0In or B = b0In.
Assume that bi �= 0 for some i with 1 � i � n−1. First consider the (i,n− i) entry

of AB = BA, we have an−i = 0. Then successively consider the (i−1,n− i),(i−2,n−
i), . . . ,(1,n− i) entries of AB = BA, we have an−i+1 = 0,an−i+2 = 0, . . . ,an−1 = 0.
Finally successively consider the (i,n− i− 1),(i,n− i− 2), . . . ,(i,1) entries of AB =
BA, we have an−i−1 = 0,an−i−2 = 0, . . . ,a1 = 0. Thus a1 = a2 = · · · = an−1 = 0; i.e.,
A = a0In. This completes the proof. �

LEMMA 3.7. Let A be a complex square matrix. If there exists a positive integer
k such that Ai is a generalized circulant matrix for all integers i � k, then either Ai is
an r -circulant matrix for all integers i � k, or Ai is a lower triangular Toeplitz matrix
for all integers i � k.

Proof. First note that a matrix is an r -circulant matrix as well as a lower triangular
Toeplitz matrix if and only if it is a scalar matrix. Assume that there exists an integer
j � k such that Aj is a lower triangular Toeplitz matrix but not a scalar matrix. By
Lemma 3.6 and AiA j = AjAi, it follows that Ai is a lower triangular Toeplitz matrix
for all integers i � k. Otherwise there exist rk,rk+1, . . . such that Ai is an ri -circulant
matrix for all integers i � k. In this case, on the one hand (Ak)i is still an rk -circulant
matrix, on the other hand (Ai)k is still an ri -circulant matrix. Since (Ak)i = (Ai)k,
ri = rk � r. Thus Ai is an r -circulant matrix for all integers i � k. �

The following theorem characterizes the matrices whose powers become and re-
main Toeplitz.
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THEOREM 3.8. Let A be an n× n complex matrix with exactly m eigenvalues
equal to 0. Then the following statements are equivalent:

(i) There exists a positive integer k such that Ai is a Toeplitz matrix for all integers
i � k.

(ii) There exists a positive integer k such that Ai is a generalized circulant matrix
for all integers i � k.

(iii) Either A is a triangular Toeplitz matrix, or there exists r �=0 and a permutation

matrix P such that A = DFP

[
N 0
0 Λ

]
P−1F−1D−1, where D=diag(1,r

1
n ,r

2
n , . . .,r

n−1
n ),

F is the Fourier transform matrix of order n, N is a nilpotent matrix of order m and
Λ is an invertible diagonal matrix of order n−m.

Proof. (i)⇒(ii). Since Ak,Ak+1,Ak+2, . . . are all Toeplitz matrices, so is (Ai)2 for
all integers i � k. By Lemma 3.1, Ai is a generalized circulant matrix for all integers
i � k.

(ii)⇒(iii). Since Ai is a generalized circulant matrix for all integers i � k, by
Lemma 3.7, either Ai is an r -circulant matrix for all integers i � k, or Ai is a lower
triangular Toeplitz matrix for all integers i � k.

Suppose Ai is an r -circulant matrix for all integers i � k. We distinguish two
cases.

Case 1. r �= 0. By Lemma 3.2, F−1D−1AiDF = Λi, where Λi is a diagonal matrix
for all integers i � k, D = diag(1,r

1
n ,r

2
n , . . . ,r

n−1
n ) and F is the Fourier transform ma-

trix of order n. Let B = F−1D−1ADF. Then Bi = Λi, i = k,k+1,k+2, . . . . Since A has
exactly m eigenvalues equal to 0, so does B. By Theorem 2.2, there exists a permuta-

tion matrix P such that B = P

[
N 0
0 Λ

]
P

T
, where N is a nilpotent matrix of order m and

Λ is an invertible diagonal matrix of order n−m. Thus A = DFP

[
N 0
0 Λ

]
P−1F−1D−1.

Case 2. r = 0. Then Ak,Ak+1,Ak+2, . . . are all upper triangular Toeplitz matrices.
If A is invertible, then (Ak)−1 exists. By Lemma 3.4, (Ak)−1 is an upper triangular

Toeplitz matrix. It is not difficult to verify that the product of upper triangular Toeplitz
matrices is still an upper triangular Toeplitz matrix. Thus A = (Ak)−1Ak+1 is an upper
triangular Toeplitz matrix.

If A is not invertible, then each diagonal entry of Ak is 0. Thus (Ak)n = 0; i.e.,
A is nilpotent. It follows that m = n. Let D = P = In. Then A = DFPNP−1F−1D−1,
where N = F−1AF is nilpotent.

Suppose Ai is a lower triangular Toeplitz matrix for all integers i � k. This is
similar to Case 2 above.

(iii)⇒(i). This is clear by direct verification and it suffice to choose k equal to
m. �

COROLLARY 3.9. Let A be an n×n complex matrix with exactly m eigenvalues
equal to 0. Then the following statements are equivalent:

(i) There exists a positive integer k such that Ai is a circulant matrix for all inte-
gers i � k.
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(ii) There exists a permutation matrix P such that A = FP

[
N 0
0 Λ

]
P−1F−1, where

F is the Fourier transform matrix of order n, N is a nilpotent matrix of order m and
Λ is an invertible diagonal matrix of order n−m.

4. Matrices whose powers become and remain normal

A family of matrices is a nonempty finite or infinite set of matrices, and a com-
muting family is a family of matrices in which every pair of matrices commutes under
multiplication.

LEMMA 4.1. ([5, p. 103]) Let Ω be a commuting family of matrices. Then there
exists a unitary matrix U such that for every A ∈ Ω, U∗AU is an upper triangular
matrix.

The following theorem characterizes the matrices whose powers become and re-
main normal.

THEOREM 4.2. Let A be an n× n complex matrix with exactly m eigenvalues
equal to 0. Then the following statements are equivalent:

(i) There exists a positive integer k such that Ai is normal for all integers i � k.

(ii) There exists a unitary matrix U such that A = U

[
N 0
0 Λ

]
U∗, where N is a

strictly upper triangular matrix of order m and Λ is an invertible diagonal matrix of
order n−m.

Proof. (i)⇒(ii). First note that {Ai}i�k is a commuting family. By Lemma 4.1,
there exists a unitary matrix V such that V ∗AiV is an upper triangular matrix for all inte-
gers i � k. Since V ∗AiV is normal, V ∗AiV = (V ∗AV )i is diagonal for all integers i � k.

By Theorem 2.2, there exists a permutation matrix P such that V ∗AV = P

[
N1 0
0 Λ

]
PT ,

where N1 is a nilpotent matrix of order m and Λ is an invertible diagonal matrix of
order n−m. Then there exists a unitary matrix W of order m such that W ∗N1W is

a strictly upper triangular matrix. Let N = W ∗N1W, U = VP

[
W 0
0 In−m

]
. Then U is

unitary and A = U

[
N 0
0 Λ

]
U∗.

(ii)⇒(i). This is clear by direct verification and it suffice to choose k equal to
m. �

COROLLARY 4.3. Let A be an n×n complex matrix with exactly m eigenvalues
equal to 0. Then the following statements are equivalent:

(i) There exists a positive integer k such that Ai is Hermitian for all integers i � k.

(ii) There exists a unitary matrix U such that A = U

[
N 0
0 Λ

]
U∗, where N is a

strictly upper triangular matrix of order m and Λ is an invertible real diagonal matrix
of order n−m.
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