A NOTE ON TRIANGULAR OPERATORS ON SMOOTH SEQUENCE SPACES

ELIF UYANIK AND MURAT HAYRETTIN YURDAKUL*

Dedicated to the memory of Prof. Dr. Tosun Terzioğlu

(Communicated by R. Curto)

Abstract. For a scalar sequence $(\theta_n)_{n \in \mathbb{N}}$, let *C* be the matrix defined by $c_n^k = \theta_{n-k+1}$ if $n \ge k$, $c_n^k = 0$ if n < k. The map between Köthe spaces $\lambda(A)$ and $\lambda(B)$ is called a Cauchy Product map if it is determined by the triangular matrix *C*. In this note we introduced some necessary and sufficient conditions for a Cauchy Product map on a nuclear Köthe space $\lambda(A)$ to nuclear G_1 -space $\lambda(B)$ to be linear and continuous. Its transpose is also considered.

1. Introduction

We refer the reader to [3], [4] and [5] for the terminology used but not defined here. Let $A = (a_n^k)_{n,k\in\mathbb{N}}$ be a matrix of real numbers such that $0 \le a_n^k \le a_n^{k+1}$ for all n,k and $\sup_k a_n^k > 0$. The ℓ^1 - Köthe space $\lambda(A)$ defined by the matrix A is the space of all sequences of scalars $x = (x_n)$ such that

$$\|x\|_k = \sum_n |x_n| a_n^k < \infty, \quad \forall k \in \mathbb{N}.$$

With the topology generated by the system of seminorms $\{\|.\|_k, k \in \mathbb{N}\}$, it is a Fréchet space.

The topological dual of $\lambda(A)$ is isomorphic to the space of all sequences u for which $|u_n| \leq Ca_n^k$ for some k and C > 0.

It is well known that a Köthe space $\lambda(A)$ associated with the matrix A is nuclear if and only if for each k there exists m such that

$$\sum_{n} \frac{a_n^k}{a_n^m} < +\infty$$

Keywords and phrases: Köthe spaces, smooth sequence spaces, Cauchy product.

This research was partially supported by the Turkish Scientific and Technological Research Council.

^{*} Corresponding author.

Mathematics subject classification (2010): 47B37, 46A45.

and in this case the fundamental system of norms $||x||_k = \sum_n |x_n|a_n^k$ can be replaced by the equivalent system of norms

$$||x||_k = \sup_n |x_n|a_n^k, \quad k \in \mathbb{N}.$$

The infinite and finite type power series spaces are well known examples of Köthe spaces given by the matrices $(e^{k\alpha_n})$ respectively $(e^{-\frac{\alpha_n}{k}})$ where (α_n) is a monotonically increasing sequence going to infinity. The space $A(\mathbb{C})$ of all entire functions on \mathbb{C} and the space $A(\mathbb{D})$ of all holomorphic functions on the unit disc can be represented as an infinite respectively finite type power series spaces.

Smooth sequence spaces were introduced in [6] as a generalization of power series spaces. A Köthe set $A = \{(a_n^k)\}$ is called a G_{∞} -set and the corresponding Köthe space $\lambda(A)$ a G_{∞} -space if A satisfies the followings:

(1) $a_n^1 = 1$, $a_n^k \leq a_{n+1}^k$ for each k and n;

(2)
$$\forall k \exists j \text{ with } (a_n^k)^2 = O(a_n^j)$$

A Köthe set $B = \{(b_n^k)\}$ is called a G_1 -set and the corresponding Köthe space $\lambda(B)$ a G_1 -space if B satisfies the followings:

- (1) $0 < b_{n+1}^k \leq b_n^k < 1$ for each k and n;
- (2) $\forall k \exists j \text{ with } b_n^k = O((b_n^j)^2).$

We need the following result [1].

LEMMA 1. Let $\lambda(A)$ and $\lambda(B)$ be Köthe spaces. A map $T : \lambda(A) \longrightarrow \lambda(B)$ is continuous linear map if and only if for each k there exists m such that

$$\sup_n \frac{\|Te_n\|_k}{\|e_n\|_m} < +\infty.$$

If (a_n) , (b_n) are two sequences of scalars, then the Cauchy product $(c_n) = (a_n) * (b_n)$ of (a_n) and (b_n) is defined by $c_n = \sum_{k=1}^n a_{n+1-k}b_k$.

Now let $\theta = (\theta_n)$ be a fixed sequence of scalars and let $\lambda(A)$, $\lambda(B)$ be two nuclear ℓ^1 -Köthe spaces. We define the Cauchy Product mapping T_{θ} from $\lambda(A)$ into $\lambda(B)$ by $T_{\theta}x = \theta * x$, $x = (x_n) \in \lambda(A)$. So, $T_{\theta} : \lambda(A) \longrightarrow \lambda(B)$ can be determined by the lower triangular matrix

$$C = \begin{pmatrix} \theta_1 & 0 & 0 & 0 & \cdots \\ \theta_2 & \theta_1 & 0 & 0 & \cdots \\ \theta_3 & \theta_2 & \theta_1 & 0 & \cdots \\ \vdots & & \ddots & \end{pmatrix}.$$

2. Cauchy product map on Köthe spaces

In this section we introduce some necessary and sufficient conditions for the map T_{θ} to be linear and continuous.

THEOREM 1. Let $\lambda(A)$ be a nuclear Köthe space, $\lambda(B)$ be a nuclear G_1 -space. Then the Cauchy product map $T_{\theta} : \lambda(A) \longrightarrow \lambda(B)$ is linear continuous operator if and only if the following hold:

- *i*) $\theta \in \lambda(B)$;
- *ii*) $\lambda(A) \subset \lambda(B)$.

Proof. Let $T_{\theta} : \lambda(A) \longrightarrow \lambda(B)$ be a continuous linear operator. Note that $||T_{\theta}e_n||_k = ||(0,0,...,0,\theta_1,\theta_2,\cdots)||_k = \sup_{j \ge n} |\theta_{j-n+1}|b_j^k$, for $n \in \mathbb{N}$. Clearly $||e_n||_m = a_n^m$. So, by Lemma 1 $\forall k$, $\exists m$, $\exists \rho > 0$ such that

$$\sup_{j\geqslant n}|\theta_{j-n+1}|b_j^k\leqslant\rho a_n^m,\quad\forall n\in\mathbb{N}.$$

Choose j = n. Then $\forall k, \exists m, \exists C > 0$ such that

$$b_n^k \leqslant Ca_n^m$$

i.e. $\lambda(A) \subset \lambda(B)$. Since $T_{\theta}e_1 \in \lambda(B)$, it follows that $\theta \in \lambda(B)$.

Conversely, since B is a G_1 -set and by ii) and i) we have for a given k, there are $m_1(k)$ and $m_2(m_1)$ such that

$$\begin{aligned} \|T_{\theta}e_{n}\|_{k} &= \sup_{j \ge n} |\theta_{j-n+1}| b_{j}^{k} \leqslant C_{1} \sup_{j \ge n} |\theta_{j-n+1}| (b_{j}^{m_{1}})^{2} \leqslant C_{1} \sup_{j \ge n} (|\theta_{j-n+1}| b_{j}^{m_{1}}) (b_{n}^{m_{1}}) \\ &\leqslant C_{2} \sup_{j \ge n} (|\theta_{j-n+1}| b_{j}^{m_{1}}) (a_{n}^{m_{2}}) \leqslant C_{2} \sup_{j \ge n} (|\theta_{j-n+1}| b_{j-n+1}^{m_{1}}) (a_{n}^{m_{2}}) \leqslant Ca_{n}^{m_{2}}. \end{aligned}$$

Therefore, $\forall k$, $\exists m_2$ such that

$$\sup_{n}\frac{\|T_{\theta}e_{n}\|_{k}}{\|e_{n}\|_{m_{2}}}<\infty,$$

that is, T_{θ} is continuous. \Box

We consider the map $T_{\theta}' : \lambda(A) \longrightarrow \lambda(B)$ which is determined by the matrix C' (the transpose of C) and try to find necessary and sufficient conditions for the continuity of T_{θ}' .

THEOREM 2. Let $\lambda(A)$ be a nuclear G_{∞} -space, $\lambda(B)$ be a nuclear Köthe space. Then, $T_{\theta}' : \lambda(A) \longrightarrow \lambda(B)$ which is given above is linear continuous operator if and only if the following hold:

i) $\theta \in \lambda(A)'$;

ii) $\lambda(A) \subset \lambda(B)$.

Proof. The matrix C^t of the operator $T_{\theta}' : \lambda(A) \longrightarrow \lambda(B)$ is the following upper triangular matrix:

$$C^{t} = \begin{pmatrix} \theta_{1} \ \theta_{2} \ \theta_{3} \ \theta_{4} \cdots \\ 0 \ \theta_{1} \ \theta_{2} \ \theta_{3} \cdots \\ 0 \ 0 \ \theta_{1} \ \theta_{2} \cdots \\ \vdots \qquad \ddots \end{pmatrix}.$$

Let $T_{\theta}' : \lambda(A) \longrightarrow \lambda(B)$ be a continuous linear operator. Note that $||T_{\theta}'e_n||_k = ||(\theta_n, \theta_{n-1}, \dots, \theta_1, 0, 0, \dots)||_k = \sup_{1 \le i \le n} |\theta_{n+1-i}| b_i^k$, for $n \in \mathbb{N}$. So, by Lemma 1 $\forall k$, $\exists m$, $\exists \mu > 0$ such that

$$\sup_{1\leqslant i\leqslant n}|\theta_{n+1-i}|b_i^k\leqslant \mu a_n^m,\quad\forall n\in\mathbb{N}.$$

Let i = 1. Hence $\exists m, \exists C = \frac{\mu}{b_1^k} > 0$ such that

$$|\theta_n| \leq Ca_n^m, \quad \forall n$$

i.e. $\theta \in \lambda(A)'$. Let i = n. Then $\forall k$, $\exists m$ such that

$$b_n^k \leqslant \frac{\mu}{|\theta_1|} a_n^m,$$

i.e.

$$\lambda(A) \subset \lambda(B).$$

On the other hand, since A is a G_{∞} -set and by i) and ii) for a given k, there are m_1 and $m_2(k)$ and $m = max\{m_1, m_2\}$ such that

$$\begin{aligned} \|T_{\theta}'e_n\|_k &= \sup_{1 \leq i \leq n} |\theta_{n-i+1}| b_i^k \leq C_1 \sup_{1 \leq i \leq n} a_{n-i+1}^{m_1} b_i^k \leq C_1 \sup_{1 \leq i \leq n} a_{n-i+1}^{m_1} a_i^{m_2} \leq C_1 a_n^{m_1} a_n^{m_2} \\ &\leq C_2 (a_n^m)^2. \end{aligned}$$

Since $\lambda(A)$ is G_{∞} - space, for this $m, \exists j$ such that

$$\sup_n \frac{(a_n^m)^2}{a_n^j} < \infty$$

Therefore, $\forall k, \exists j \text{ such that}$

$$\sup_{n}\frac{\|T_{\theta}'e_n\|_k}{\|e_n\|_j}<\infty,$$

that is, T_{θ}' is continuous. \Box

It is known that \mathscr{S} is a normal sequence space if whenever $|x_i| < |y_i|$ and $y = (y_i) \in \mathscr{S}$, then $x = (x_i) \in \mathscr{S}$ [2].

REMARK 1. Now we write $\theta \in \mathscr{S}$ when the Cauchy product map $T_{\theta} : \lambda(A) \longrightarrow \lambda(B)$ above is continuous. If $\theta, \eta \in \mathscr{S}$, $\lambda \in \mathscr{K}$, then clearly $T_{\theta+\eta}$ and $T_{\lambda\theta}$ will be continuous since T_{θ} and T_{η} are continuous. Hence \mathscr{S} is a vector space.

Now, let $|\theta_i| < |\eta_i|, \forall i, \eta \in \mathscr{S}$. Since T_{η} is continuous, for all k we find m so that

$$\sup_{n}\left\{\sup_{j\geq n}\left|\theta_{j-n+1}\right|\frac{b_{j}^{k}}{a_{n}^{m}}\right\}\leqslant \sup_{n}\left\{\sup_{j\geq n}\left|\eta_{j-n+1}\right|\frac{b_{j}^{k}}{a_{n}^{m}}\right\}<\infty,$$

i.e. T_{θ} is continuous.

Therefore $\theta \in \mathscr{S}$. Hence we obtain that \mathscr{S} is a normal sequence space.

REFERENCES

- L. CRONE AND W. ROBINSON, *Diagonal maps and diameters in Köthe spaces*, Israel J. of Math. 17, (1975), 13–22.
- [2] G. KÖTHE, Topological Vector Spaces 1, Springer-Verlag 1969.
- [3] R. MEISE AND D. VOGT, Introduction to Functional Analysis, Clarendon Press, Oxford, 1997.
- [4] A. PIETSCH, Nuclear Locally Convex Spaces, Springer-Verlag, Berlin-New York, 1972.
- [5] M. S. RAMANUJAN AND T. TERZIOĞLU, Subspaces of smooth sequence spaces, Studia Math. 65, (1979), 299–312.
- [6] T. TERZIOĞLU, Die diametrale Dimeansion von lokalkonvexen Räumen, Collect. Math. 20, (1969), 49–99.

(Received March 15, 2017)

Elif Uyanık Department of Mathematics Middle East Technical University 06800 Ankara, Turkey e-mail: euyanik@metu.edu.tr

Murat Hayrettin Yurdakul Department of Mathematics Middle East Technical University 06800 Ankara, Turkey e-mail: myur@metu.edu.tr

Operators and Matrices www.ele-math.com oam@ele-math.com