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THE STIELTJES STRING AND ITS ASSOCIATED NODAL POINTS

CHE-WEI TSAO AND CHUN-KONG LAW

(Communicated by M. Zinchenko)

Abstract. Based on the theory of Stieltjes strings first introduced by Gantmakher and Krein
in [4], we define the nodal points for a Stieltjes string. We show that when the eigenvalue is
maximal, there are exactly n+ 1 nodal points for the D-D problem and n nodal points for the
D-N problem, where n is the total number of non-zero point masses. We also find the position
of these nodal points in terms of continued fractions involving the point masses m1, . . . ,mj and
lengths l0, . . . , l j−1 in between the positions of these masses.

1. Introduction

Consider the problem of n point masses (m1, . . . ,mn) attached to a string of
length L . Let m0 = mn+1 = 0 be two point masses attached at the two endpoints of the
string. For j = 0, . . . ,n−1 the distance between the positions of masses mj and mj+1

is denoted by l j . So L = ∑n
j=0 l j .

Now when the string is subjected to a small tension, the point masses will have
vertical vibrations wj(t)’s. Gantmakher and Krein (1960) performed an analysis of the
relation between these vibrations and the mj ’s, l j ’s. Along the horizontal direction

Tj−1 cosα j−1 = Tj cosα j = · · · = T0 cosα0 := T,

where Tj is the tension in the segment of string between mj and mj+1 , and α j is the
angle between this segment and the horizontal direction. (see figure)

Next apply Newton’s second law of motion to see that

−mj
d2wj

dt2
= Tj sinα j −Tj−1 sinα j−1 = T tanα j −T tanα j−1.

Assume that α j ∼ 0 for all j � 1 and T is fixed with T ≡ 1. Then,

−mj
d2wj

dt2
=

Δwj+1

l j
− Δwj

l j−1
=

wj+1(t)−wj(t)
l j

+
wj−1(t)−wj(t)

l j−1
.
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We consider two boundary conditions :

1. Dirichlet-Dirichlet condition (D-D problem): w0(t) = wn+1(t) = 0.

2. Dirichlet-Neumann condition (D-N problem) : w0(t) = 0, wn(t) = wn+1(t) .

Using the discrete Fourier transform, wj(t) = u jeiλ t , we obtain the difference equation

u j+1−u j

l j
+

u j−1−u j

l j−1
+mjλ 2u j = 0, ( j = 1, · · · ,n). (1)

Let z = λ 2 , u j := R2 j−2(z)u1 and R2 j−1(z) =
1
l j

(R2 j(z)−R2 j−2(z)) . Assuming u1 �= 0,

(1) is transformed into the following system.{
R2 j−1(z) = R2 j−3(z)−mjzR2 j−2(z)

R2 j(z) = l jR2 j−1(z)+R2 j−2(z)
. (2)

Using (2) and u0 = 0 for both the conditions (D-D and D-N), we have

R0 = 1, R−2 = 0, R−1 =
1
l0

.

From (2), it is easy to see that for any j,Rj(z) is a polynomial of degree � j/2� .
For the D-D problem, un+1 = 0, implying R2n(z) = 0. For the D-N problem, un =

un+1 implies that R2n−2(z) = R2n(z) . Hence R2n−1(z) = 0.
Zeros of R2n (denoted by ẑ ) are called eigenvalues of the D-D problem. Hence

R2n(z) can be viewed as the characteristic function. Similarly, zeros of R2n−1 (denoted
by z ) are called eigenvalue for the D-N problem, and R2n−1(z) is the associated char-
acteristic function.

Furthermore, observe that

R2 j(z)
R2 j−1(z)

= l j +
1

R2 j−1(z)
R2 j−2(z)

= l j +
1

−mjz+ R2 j−3(z)
R2 j−2(z)

.
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Then we obtain a continued fraction by induction. Namely

R2n(z)
R2n−1(z)

= [ln; −mnz, ln−1,−mn−1z, . . . , l0]. (3)

Through this paper, we use the following notation to denote a finite continued fraction:

[a0; a1, . . . ,ak] = a0 +
1

a1 + 1
a2+···+ 1

ak

.

By (3), we have

R2n(0)
R2n−1(0)

= ln + ln−1 + ln−2 + · · · + l0 = L (Total length).

Therefore,

R2n(z)
R2n−1(z)

=
R2n(0)

R2n−1(0)

(
1+a1z+ · · · +anzn

1+b1z+ · · · +bnzn

)
=

L ∏n
1(1− z/ẑ j)

∏n
1(1− z/z j)

,

where {ẑ j} are the eigenvalues for the D-D problem, and {z j} are the eigenvalues for
the D-N problem.

THEOREM 1.1. ([6])

(a) Given {l j} ’s and {mj} ’s, the rational function R2n(z)
R2n−1(z)

is a continued fraction
made up of constants and linear polynomials, as given in (3).

(b) Let {z j} be the zeros of R2n−1 and {ẑ j} the zeros of R2n . If L , {ẑ j} ’s and
{z j} ’s are all given, then the {l j} ’s and {mj} ’s can be recovered from (3).

Note that part (b) is in fact an inverse eigenvalue problem to solve for 2n+1 quantities
in terms of 2n+1 known eigenvalues.

The above is the basic theory of Stieltjes strings (for the D-D and D-N problems),
first introduced by Gantmakher and Krein [4] and also studied by Kac and Krein [6].
Recently Pivovarchik et al [1, 2] studied the corresponding problem for more general
trees. In particular, they showed that from the d + 1 eigenvalues, one can recover all
the point masses mk, j and lengths lk, j , by a method similar to Lagrange interpolation.
Later they extended the result to a general tree of Stieltjes strings [7, 10]. Other related
issues can be found in [9, 8].

In this paper, we investigate the nodal problem for Stieltjes strings on a finite
interval. In (1), if for some j , u j and u j+1 have opposite signs, then the position x
when the interpolation of the string between (l j,u j) and (k j+1,u j+1) intersects the l -
axis, so that the interpolating line segment passes through (x,0) . We call this position
x a nodal point of the solution defined by �u = (u1, . . . ,un) . We shall show that there
are exactly n + 1 nodal points for the D-D problem associated with the maximal D-
D eigenvalue ẑ , and exactly n nodal points for the D-N problem associated with the
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maximal D-N eigenvalue z . Furthermore we shall give the position of the jth nodal
point x j using a continued fraction. Denote by ẑn the largest D-D eigenvalue and by
zn the largest D-N eigenvalue.

Our main theorem is

THEOREM 1.2. There is a maximal number of n+1(respectively n) nodal points
for the D-D problem (respectively D-N problem). Furthermore,

(a) The associated nodal points {x̂ j} for the D-D problem can be expressed in terms
of ẑ , {l j} ’s and {mj} ’s as follows: x̂0 = 0, x̂n = L, and for j = 1, . . . ,n−1 ,

x̂ j = [
j−1

∑
i=0

li; mjẑn,−l j−1,mj−1ẑn, . . . ,m1ẑn,−l0]. (4)

(b) The associated nodal points {x j} for the D-N problem can be expressed in terms
of z , {l j} ’s and {mj} ’s as follows: x0 = 0 , and for j = 1, . . . ,n−1 ,

x j = [
j−1

∑
i=0

li; mj zn,−l j−1,mj−1 zn, . . . ,m1 zn,−l0] . (5)

Furthermore the D-D nodal points and D-N nodal points are interlacing. That is,

0 = x̂0 = x0 < x1 < x̂1 < · · · < x̂n−1 < xn−1 < x̂n = L. (6)

Note the similarity in the above formulas for nodal points x̂ j and x j , both being ex-
pressed in terms of l0, . . . , l j−1 and m0, . . . ,mj as continued fractions.

Theorem 1.2 will be proved in Section 2. In Section 3, we shall prove Lemma 2.1
which is instrumental in our proof of Theorem 1.2. The proof requires some intricate
analysis. We need to use an interlacing theorem for matrix eigenvalues [5] for the proof.

We believe that our results are useful in applications.

2. Nodal problem

We now consider the nodal problem associated with (1). For the D-D problem,
we let

Ã j(z) :=
−1
l j−1

+
−1
l j

+mjz ; Aj(z) := l jÃ j(z).

Then (1) becomes the following equation

M̂n(z)

⎛⎜⎜⎜⎝
u1

u2
...

un

⎞⎟⎟⎟⎠ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Ã1(z) 1
l1

1
l1

Ã2(z) 1
l2

. . .
. . .

. . .
1

ln−2
Ãn−1(z) 1

ln−1
1

ln−1
Ãn(z)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎝
u1

u2
...
un

⎞⎟⎟⎟⎠=�0. (1)
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We denote the above coefficient matrix by M̂n(z) . Note that detM̂n(z) is a characteristic
function for the D-D problem. Similarly, the characteristic matrix for the D-N problem
is given by

Mn(z) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Ã1(z) 1
l1

1
l1

Ã2(z) 1
l2

. . .
. . .

. . .
1

ln−2
Ãn−1(z) 1

ln−1
1

ln−1

−1
ln−1

+mnz

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (2)

If �u �=�0, then both matrices are singular and the characteristic equations detM̂n(z) =
0 and detMn(z) = 0 have solutions. As we know these zeros are also the solutions of
R2n(z) = 0 and R2n−1(z) = 0, respectively.

Obviously both detM̂n(z) and detMn(z) are polynomials of degree n in z . By
Theorem 3.1 below, both ẑ j and z j are real and distinct. Let ẑ1 < ẑ2 < · · · < ẑn−1 <

ẑn be the zeros of detM̂n(z) = 0; and z1 < z2 < · · · < zn−1 < zn be the zeros of
detMn(z) = 0. Then ẑ = ẑn (respectively z = zn ) is the maximal eigenvalue of the
D-D problem (respectively D-N problem).

Proof of theorem 1.2.
For simplicity, we let M̂n = M̂n(ẑ) , Ã j = Ã j(ẑ) , Aj = Aj(ẑ) . From (1), we have

u2 = −l1Ã1u1 = −A1u1 .

u3 =
−l2
l1

u1− l2Ã2u2 = −(
l2

l1(−A1)
+A2)u2 . (3)

By induction, for all j = 1, . . . ,n ,

u j = −

⎛⎜⎜⎜⎜⎜⎜⎝
l j−1

l j−2
× 1

−l j−2
l j−3

× 1
. . .× 1

−l2
l1

× 1
−A1

−A2

−A3

−Aj−2

+Aj−1

⎞⎟⎟⎟⎟⎟⎟⎠ u j−1

:= −A j−1(ẑ)u j−1 . (4)

Now we need a lemma, the proof of which is deferred to the next section.

LEMMA 2.1. For all j = 1, . . . ,n−1 ,

(a) A j(ẑ) > 0 .

(b)
1+A j(ẑ)

l j
= [mjẑ;−l j−1,mj−1ẑ, . . . ,m1ẑ,−l0] .
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Since u j = −A j−1(ẑ)u j−1 , we have u j−1u j < 0 for j = 2, . . . ,n by Lemma 2.1. Thus
when ẑ = ẑn , we obtain the maximum number of n+1 nodal points (including x̂0 = 0
and x̂n = L ) for the D-D problem. Also as consecutive u j ’s have the opposite signs.

We know that u0 = 0 and x̂0 = 0. By (4) and properties of similar triangles,
x̂1− l0

u1
=

l1
(1+A1(ẑ))u1

, so that x̂1 = l0 +
l1

1+A1(ẑ)
. Inductively, for j = 1, . . . ,n−1, we have

x̂ j =
j−1

∑
i=0

li +
l j

1+A j(ẑ)
.

The Dirichlet boundary condition un+1 = 0 implies that An := 0. Therefore Theorem
1.2(a) is valid.

Theorem 1.2(b) for the D-N problem can be established similarly. �

LEMMA 2.2. The nodal points {x̂ j} and {x j} are interlacing as in (6).

Proof. For j = 0, . . . ,n , let Lj =
j

∑
i=0

li . Then Ln = L . It is clear that

Lj > x̂ j , x j > Lj−1.

Next we use the known quantities (4) and (5) to observe that when j = 1⎧⎨⎩
x̂1 = l0 + 1

m1 ẑ− 1
l0

x1 = l0 + 1
m1 z− 1

l0

.

This implies that

m1ẑ− 1
l0

=
1

x̂1− l0
> 0 , m1 z − 1

l0
=

1
x1− l0

> 0. (5)

By Theorem 3.1 below, ẑ > z . Thus

0 < m1 z − 1
l0

< m1ẑ− 1
l0

,

so that x̂1 < x1 . Then by (4), (5) and (5),⎧⎪⎨⎪⎩
x̂2 = [l0 + l1; m2ẑ,−l1,m1ẑ,−l0] = l0 + l1 + 1

m2 ẑ+ 1
x̂1−l0−l1

= L1 + 1
m2 ẑ− 1

L1−x̂1

x2 = [l0 + l1, m2 z ,−l1,m1 z ,−l0] = l0 + l1 + 1
m2 z+ 1

x1−l0−l1

= L1 + 1
m2 z− 1

L1−x1

.

Hence

m2ẑ− 1
L1− x̂1

=
1

x̂2 −L1
> 0 , m2 z − 1

L1 − x1
=

1
x2 −L1

> 0.
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By Theorem 3.1 again, ẑ > z , and x1 > x̂1 . Thus we have x̂2 < x2 . Inductively, for
j = 3, . . . ,n−1, {

x̂ j = [Lj−1; mjẑ,−Lj−1 + x̂ j−1]
x j = [Lj−1; mj z ,−Lj−1 + x j−1]

.

So

mjẑ− 1
Lj−1− x̂ j−1

=
1

x̂ j −Lj−1
> 0 , mj z − 1

Lj−1− x j−1
=

1
x j −Lj−1

> 0.

Using Theorem 3.1 again, we have x̂ j < x j . Since x̂0 = x0 = 0, we conclude that (6)
is valid. �

3. Proof of lemma 2.1

THEOREM 3.1. ([4]) Given {l j} ’s and {mj} ’s in (1), then we can solve for {ẑ j}
and {z j} , where {ẑ j} are the zeros of R2n(z) = 0 and {z j} are the zeros of R2n−1(z) =
0 . Moreover

0 < z1 < ẑ1 < z2 < ẑ2 < · · · < zn < ẑn.

We also need an Interlacing Theorem given in the classical book of Horn and Johnson
[5, p.185].

THEOREM 3.2. If B = BT , B′ =
(

B �y
�yT b

)
, �y ∈ R

n and b ∈ R , then

λ ′
1 � λ1 � λ ′

2 � λ2 � λ ′
n � λn � λ ′

n+1,

where {λ j} are the eigenvalues of B and {λ ′
j} are the eigenvalues of B′ .

Proof of lemma 2.1(a).

From (1), detM̂j(z) is a polynomial of order j . Its zeros, z( j)
1 , . . . ,z( j)

j , are exactly
the eigenvalues of the D-D problem. We first claim that for j = 1, . . . ,n , the zeros of
detM̂j(z) interlace with those of detM̂j−1(z) . That is,

z( j)
1 < z( j−1)

1 < z( j)
2 < · · · < z( j)

j−1 < z( j−1)
j−1 < z( j)

j , (1)

and detM̂j(z) > 0 for all z > z( j)
j .

Observe that for j = 3, . . . ,n ,

detM̂j(z) = Ã j(z)detM̂j−1(z)− (
1

l j−1
)2 detM̂j−2(z) . (2)

Solving detM̂1(z) = 0, we get z(1)
1 =

1
m1

(
1
l0

+
1
l1

) , and we observe that detM̂1(z) > 0

for all z > z(1)
1 . Also z(2)

1 < z(2)
2 by Theorem 3.1. Then Theorem 3.2 implies that

z(2)
1 � z(1)

1 � z(2)
2 . If z(2)

i = z(1)
1 for some i , then ( 1

l1
)2 = 0, which is impossible. So

z(2)
1 < z(1)

1 < z(2)
2 . (3)
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Furthermore,

detM̂2(z) = Ã2(z)detM̂1(z)− (
1
l1

)2.

Hence detM̂2(z
(1)
1 ) = −( 1

l1
)2 < 0. This means detM̂2(z) > 0 for all z > z(2)

2 .

Next, by Theorem 3.1, z(3)
1 < z(3)

2 < z(3)
3 . Using Theorem 3.2 again, we have

z(3)
1 � z(2)

1 � z(3)
2 � z(2)

2 � z(3)
3 .

If z(3)
i = z(2)

j , for some i, j , then −( 1
l1
)2 detM̂1(z) = 0. Combining with (4), we have

z(3)
1 < z(2)

1 < z(3)
2 < z(2)

2 < z(3)
3 .

Then (1) follows by mathematical induction on j . Moreover, by (2),

detM̂j(z
( j−1)
j−1 ) = − 1

l2j−1

detM̂j−2(z
( j−1)
j−1 ) < 0.

This means that detM̂j(z) > 0 for all z > z( j)
j .

We know that ẑ = z(n)
n , the maximal zero of detM̂n(z) . Thus ẑ > z( j)

i , for all
n � j � i (where at least one of the inequalities is a strict one). By above argument,
detM̂j(ẑ) > 0 for all j = 1, . . . ,n−1 but detM̂n(ẑ) = 0. On the other hand, detM̂1(ẑ) =
Ã1(ẑ) > 0. Therefore by (2), Ã j(ẑ) > 0 for j = 1, . . . ,n .

Now, we claim that A j(ẑ) > 0 ∀ j = 1, . . . ,n−1. First A1(ẑ) = A1(ẑ) > 0. Then
by (3),

A2(ẑ) =
l2

l1(−l1Ã1(ẑ))
+ l2Ã2(ẑ) =

l2
Ã1(ẑ)

[−(
1
l1

)2 + Ã2(ẑ)Ã1(ẑ)]

=
l2

detM̂1(ẑ)
detM̂2(ẑ) > 0.

Inductively, for j = 3, . . . ,n−1, by (4),

A j(ẑ) =
l j

l j−1(−A j−1(ẑ))
+Aj(ẑ) =

l j detM̂j−2(ẑ)

−l2j−1 detM̂j−1(ẑ)
+Aj(ẑ)

=
l j

detM̂j−1(ẑ)

(
−detM̂j−2(ẑ)

l2j−1

+ Ã j(ẑ)detM̂j−1(ẑ)

)

=
l j

detM̂j−1(ẑ)
detM̂j(ẑ) > 0.

Thus A j(ẑ) > 0 for all j = 1, . . . ,n−1, and

An(ẑ) =
ln

detM̂n−1(ẑ)
detM̂n(ẑ) = 0. �



THE STIELTJES STRING 371

Before we prove Lemma 2.1(b), we let for j = 1, . . . ,n−1,

Fj(ẑ) := [0; mjẑ,−l j−1,mj−1ẑ, l j−1, . . . ,m1ẑ,−l0] .

Proof of lemma 2.1(b).

We need to show that for all j = 1, . . . ,n−1,
l j

1+A j(ẑ)
= Fj(ẑ) . For simplicity,

we let A j = A j(ẑ) , Fj = Fj(ẑ) , and

Aj = l jÃ j(ẑ) = −l j(
1

l j−1
−mjẑ)−1.

Obviously A1 = A1 , and A2 =
l2

l1(−A1)
+A2 . So

A3 =
l3
l2
× 1

−l2
l1(−A1)

−A2
+A3 =

l3
l2(−A2)

+A3.

It is easy to see that

A j =
l j

l j−1(−A j−1)
+Aj, ∀ j = 2, . . . ,n−1 .

Next,
l1

1+A1
=

l1
1+A1

=
l1

−l1( 1
l0
−m1ẑ)

=
1

m1ẑ− 1
l0

= F1 .

Therefore we have
1
l1

(
1

A1
+1) =

1
l1 −F1

.

By induction on j ,

l j

1+A j
=

l j

1+ l j
l j−1(−A j−1)

+Aj

=
l j

l j( 1
l j−1(−A j−1)

+ −1
l j−1

+mjẑ)
=

1

mjẑ− 1
l j−1

( 1
A j−1

+1)

=
1

mjẑ+ 1
−l j−1+Fj−1

= Fj. �

4. Further discussion

So we have solved the direct problem of finding the nodal points of x̂i (resp. xi )
from the point masses mj ’s and lengths l j ’s and eigenvalues ẑn (resp. zn ). Can one
solve the inverse problem of finding mj ’s and l j ’s (in total 2n + 1 quantities), using
the knowledge of another (2n+1) quantities: ẑn , zn , x̂i , xi ( i = 1, . . . ,n−1) and total
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length L? We call this an inverse nodal problem for the Stieltjes string. This problem
is still open.

We would also like to remark that our problem (1) can be reformulated as a prob-
lem involving Jacobi matrices:

J�u = λ 2X�u,

where J is the n×n tridiagonal matrix of the form

J =

⎛⎜⎜⎜⎜⎜⎜⎝

1
l1

−1
l1−1

l1
1
l1

+ 1
l2

−1
l2

. . .
. . .

. . .
−1
ln−2

−1
ln−2

+ −1
ln−1

−1
ln−1

1
ln−1

bn

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where bn =
1

ln−1
+

1
ln

for D-D problems; bn = 1
ln

for D-N problems. And X =

diag[m1,m2, . . . ,mn] , a diagonal matrix. Let �v = X1/2�u . Then (4) is transformed to

H�v = X−1/2JX−1/2�v = λ 2�v,

where H is still a Jacobi matrix. The topic of Jacobi matrices has been extensively
studied. See, for example, [3, 11] and references therein. It would be interesting to
apply the theory to this nodal problem. In fact, our matrices M̂n and Mn both satisfy
Mn = zX − J . Moreover, it is shown in [11, p.78] that the number of nodal points of
�u(zk) in (0,L) is exactly k , and so is that of �u( ˆzk+1) . However, the definition of nodes
in [11] is different from our definition of nodal points. Our results should be new in
literature.
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