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Abstract. A recent paper of Shemesh shows triangularizability of a pair {A,B} of complex
matrices satisfying the condition A[A,B] = [A,B]B = 0 , or equivalently, the matrices A and B
commute with their product AB . In this paper we extend this result to polynomially compact
operators on Banach spaces. The case when the underlying space is Hilbert and one of operators
is normal is also studied. Furthermore, we consider families of polynomially compact operators
whose iterated commutators of some fixed length are zero. We also obtain a structure result in
the special case of a finite family of algebraic operators.

1. Introduction

The property that operators A and B commute with their commutator [A,B] =
AB−BA was studied extensively in the literature. For example, by a theorem of Klei-
necke [8] and Shirokov [17] the condition [A, [A,B]] = 0 implies that the commutator
[A,B] is quasinilpotent. If A and B are algebraic elements of an associative algebra,
then the assumption [A, [A,B]] = 0 implies that [A,B] is nilpotent. In the literature, this
is known as Jacobson’s lemma. The situation is even more interesting for operators on
Hilbert spaces. Putnam [12] proved that whenever a normal operator A on a Hilbert
space commutes with a commutator [A,B] , then A and B commute. This result can be,
in particular, applied to complex matrices. In this special case the assumption that A is
normal can be replaced with the weaker assumption that A is diagonalizable. Shapiro
[15, Theorem 10] proved that in this case the condition [A, [A,B]] = 0 together with
diagonalizability of A imply that A and B commute.

The main goal of this paper is to prove that families of polynomially compact op-
erators, which are in some sense close to commutative ones, have plenty of invariant
subspaces. Probably the most known result of this type, which is proved by an appli-
cation of Lomonosov’s theorem, states that every commutative family of polynomially
compact operators on a complex Banach space is triangularizable. We will extend this
result (see Theorem 3.1) to families of polynomially compact operators with the prop-
erty for which there exists a positive integer n such that all iterated commutators of
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length at least n are zero. This result improves Murphy’s result [11] which was proved
only in the case for compact operators A and B which commute with their commutator.

On the other hand, the property that operators A and B commute with their prod-
uct AB was not studied so far in the literature in great extent. A recent paper of Shemesh
[16] shows triangularizability of a pair {A,B} of complex matrices satisfying the con-
dition A[A,B] = [A,B]B = 0, or equivalently, the matrices A and B commute with
their product AB . We extend this result to polynomially compact operators on Banach
spaces. We also consider algebras generated by finite families of algebraic operators.

This paper is organized as follows. In Section 2, we gather relevant definitions
and notation needed throughout the text. In Section 3, we consider triangularizability of
families of polynomially compact operators. We also study general algebraic properties
of algebras generated by them. In Section 4, we extend the above-mentioned result of
Shemesh to polynomially compact operators on a complex Banach space. We also
consider a special case when the underlying space is a Hilbert space and one of the
operators is normal.

2. Preliminaries

Let V be a complex vector space. By an operator on a vector space V we mean
a linear transformation from V into itself. An operator on V is scalar if it is a scalar
multiple of the identity operator I on V . Otherwise, it is called nonscalar. The notation
[S,T ] is used as an abbreviation for the commutator ST − TS , where S and T are
operators on V . An operator T on V is said to be algebraic if there exists a nonzero
complex polynomial p such that the operator p(T ) = 0. The monic polynomial of
smallest degree with this property is called the minimal polynomial of an algebraic
operator T . By deg p we denote the degree of a polynomial p . An operator T is said
to be nilpotent if Tn = 0 for some positive integer n . The smallest n with this property
is called the nilpotency index of T , and it is denoted by n(T ) .

A subspace M of V is invariant under an operator T on V whenever T (M) ⊆M .
A subspace M of V is nontrivial if {0} �= M �= V . Let F be a family of operators on
V . A subspace M of V is invariant under F if M is invariant under every T ∈ F . If,
in addition, the subspace M is invariant under every operator S that commutes with all
operators of F , M is said to be hyperinvariant under F . A family F is algebraically
reducible if there exists a nontrivial subspace invariant under F . A family F is al-
gebraically triangularizable if there is a chain of invariant subspaces for F which is
maximal as a subspace chain. When V is a Banach space, we replace subspaces by
closed subspaces and operators by bounded operators to obtain the corresponding def-
initions of reducibility, triangularizability and hyperinvariance. For details, see the
monograph [14].

By B(X) we denote the Banach algebra of all bounded operators on a Banach
space X , and by K (X) its subalgebra of all compact operators. An operator T ∈B(X)
is said to be polynomially compact if there exists a nonzero complex polynomial p
such that the operator p(T ) is compact. The monic polynomial of smallest degree with
this property is called the minimal polynomial of a polynomially compact operator T .
Note that an operator T ∈ B(X) is polynomially compact if and only if the canonical
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projection from B(X) to the Calkin algebra B(X)/K (X) maps T to an algebraic
element.

The following well-known theorem of Lomonosov [10] is essential for our results.

THEOREM 2.1. A nonscalar operator on an infinite-dimensional complex Banach
space which commutes with a nonzero compact operator has a nontrivial hyperinvari-
ant closed subspace.

An application of Theorem 2.1 gives the following result (see, e.g., [9]).

COROLLARY 2.2. A nonscalar polynomially compact operator on a complex Ba-
nach space has a nontrivial hyperinvariant closed subspace.

Corollary 2.2 and the Triangularization lemma (see, e.g., [14, Lemma 7.1.11])
imply the following triangularizability result.

COROLLARY 2.3. Every commutative family of polynomially compact operators
is triangularizable.

Let F be a family of operators on V . Define F [0] = F , and F [k] = {[A,B] : A ∈
F [k−1],B∈F} for k = 1,2, . . . . If F [k] = {0} for some k∈N , the family F is said to
be L-nilpotent. In particular, if F [1] = {0} , then operators from F commute. Note that
every nilpotent Lie algebra is L-nilpotent. If there exists k ∈ N such that T1T2 . . .Tk = 0
for every choice of T1 , T2 , . . . , Tk in F , the family F is said to be nilpotent. Clearly,
if F is a nilpotent family, then it is L-nilpotent as well. We say that F is locally
(L-)nilpotent if every finite subset of F is (L-)nilpotent. An algebra A is said to be
locally finite if every finitely-generated subalgebra of A is finite-dimensional. The Ja-
cobson radical of an algebra A , denoted by J(A ) , is defined as the intersection of all
primitive ideals of A . If the algebra A is finite-dimensional, then J(A ) is the unique
maximal nilpotent ideal of A . Although, in general, the algebra A does not contain
maximal nilpotent ideals, J(A ) contains left and right ideals of A which consist of
nilpotent elements (see, e.g., [2]).

3. L-nilpotent families

By Corollary 2.3, every commutative family of polynomially compact operators is
triangularizable. We extend this result to L-nilpotent families of polynomially compact
operators.

THEOREM 3.1. Let F be a L-nilpotent family of polynomially compact operators
on a complex Banach space X . Then the family F is triangularizable.

Proof. By the Triangularization lemma it suffices to prove that the family F is
reducible. We may assume that F contains a nonscalar operator. If F [1] = {0} , then
F is reducible, by Corollary 2.3. So, we may assume that F [k] = {0} and F [k−1] �=
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{0} for some k � 2. Therefore, there exist operators A ∈ F [k−2] and B ∈ F such
that [A,B] �= 0 and every operator in F commutes with [A,B] . Furthermore, it follows
from Wielandt’s theorem [6, 18] that [A,B] is not a scalar operator.

Suppose first that there exists an operator C in F such that C is not algebraic.
Then there exists a polynomial p such that p(C) is a nonzero compact operator, and
the space X is necessarily infinite-dimensional. Since [[A,B],C] = 0, the compact op-
erator p(C) commutes with the nonscalar operator [A,B] , and so [A,B] has a nontrivial
hyperinvariant subspace, by Theorem 2.1. Since every operator in F commutes with
[A,B] , it follows that the family F is reducible.

Suppose now that F consists of algebraic operators. In this case the commutator
[A,B] is nilpotent, by Jacobson’s lemma (see, e.g., [1]). Since every operator in F
commutes with [A,B] , the kernel ker([A,B]) is a nontrivial closed subspace that is
invariant under F . This completes the proof. �

Triangularizable families of operators on finite-dimensional vector spaces have
plenty of important and interesting properties. As an example, if S and T are simulta-
neously triangularizable, then their commutator [S,T ] is nilpotent. This is often proved
by representing S and T by upper triangular matrices with respect to some basis of the
underlying space. In general, in infinite-dimensional vector spaces we cannot expect
the same idea to work. However, in the case of finite L-nilpotent families of algebraic
operators, operators can be still represented by upper triangular finite operator matrices
with scalar operators as their diagonal entries.

THEOREM 3.2. Let F be a finite L-nilpotent family of algebraic operators on a
complex vector space V , and let A be the algebra generated by F . Then there exists
a finite direct decomposition of V with respect to which every member of A has an
upper triangular block form having scalar operators for diagonal blocks.

Proof. Consider first the case when F [1] = {0} . Let us denote by d(T ) the degree
of the minimal polynomial of an algebraic operator T . We will use the induction on
the sum s(F ) := ∑T∈F d(T ) . If F consists of scalar operators, i.e., s(F ) is equal to
the cardinality of F , then the conclusion of the theorem clearly holds. So, assume that
there is a nonscalar operator A ∈ F .

Assume first that the minimal polynomial of A is of the form (λ −λ0)m , where
λ0 is the only eigenvalue of A and m � 2. Then V1 := ker(A−λ0)m−1 is a nontrivial
subspace of V that is invariant under every member of A . Choosing any vector space
complement V2 of V1 , every member of A has an upper triangular 2×2 block form,
with respect to the decomposition V = V1⊕V2 . Furthermore, the minimal polynomial
of the restriction of A to V1 is equal to (λ − λ0)m−1 , and the range of the operator
A−λ0 is contained in V1 , so that the compression of A to V2 is a scalar operator. If,
for each i = 1,2, we consider the family F |Vi consisting from all compressions of
members of F to Vi , then we have s(F |Vi) < s(F ) , so that we can use the induction
hypothesis to F |Vi , and consequently we obtain the conclusion of the theorem for F .

Assume now that A has at least 2 eigenvalues, so that the minimal polynomial of
A is of the form (λ − λ1)m q(λ ) , where λ1 is an eigenvalue of A , m � 1, and q(λ )
is a nontrivial polynomial not having λ1 as one of its zeros. Then V1 := ker(A−λ1)m
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is a nontrivial subspace of V that is invariant under every member of A . Choosing
any vector complement V2 of V1 , every member of A has an upper triangular 2× 2
block form, with respect to the decomposition V = V1⊕V2 . Furthermore, the minimal
polynomial of the restriction of A to V1 is equal to (λ −λ1)m , and the minimal polyno-
mial of the compression of A to V2 divides the polynomial q(λ ) . If, for each i = 1,2,
we consider the family F |Vi consisting from all compressions of members of F to
Vi , then we also have s(F |Vi) < s(F ) , and so we can use the induction hypothesis
again to get the conclusion of the theorem for F . This completes the proof in the case
F [1] = {0} .

Consider now the general case. To each family F satisfying the assumptions
of the theorem, we associate a pair of two integers as follows. If F [1] = {0} , put
c(F ) := (1,1) . Otherwise, define c(F ) := (k,∑n([A,B])) , where k � 2 is determined
by the conditions F [k] = {0} and F [k−1] �= {0} , and the sum runs over all A ∈F [k−2]

and B∈F with [A,B] �= 0. Note that, by Jacobson’s lemma, the commutator [A,B] (in
the sum) is necessarily nilpotent, since B commutes with it. We will prove the theorem
by induction over the set of all possible values of c(F ) that is a subset of N×N ,
ordered lexicographically.

The base case of induction holds by the first part of the proof. Assume therefore
that F is a family satisfying the assumptions of the theorem, and we have F [k] = {0}
and F [k−1] �= {0} for some k � 2. Choose A∈F [k−2] and B∈F such that [A,B] �= 0.
Then the image V1 := ran([A,B]) is a nontrivial subspace of V that is invariant under
every member of A . Choosing any vector space complement V2 of V1 , every mem-
ber of A has an upper triangular 2× 2 block form, with respect to the decomposi-
tion V = V1 ⊕V2 . Furthermore, the nilpotency index of the restriction of [A,B] to V1

is smaller than n([A,B]) , and the compression of [A,B] to V2 is a zero operator. It
follows that, for given i = 1,2, the family F |Vi consisting from all compressions of
members of F to Vi has the property that c(F |Vi) < c(F ) . Therefore, we can use the
induction hypothesis to obtain the conclusion of the theorem for F . This completes
the proof. �

As a consequence of Theorem 3.2, we can establish the following algebraic prop-
erties of the algebra A .

COROLLARY 3.3. Under the assumptions of Theorem 3.2, the algebra A is a
finite-dimensional algebra of algebraic operators, its Jacobson radical J(A ) is nilpo-
tent, and the quotient algebra A /J(A ) is isomorphic to Cn for some n ∈ N .

Proof. By Theorem 3.2, there is a direct decomposition V = V1 ⊕ ·· ·⊕Vm with
respect to which every member of A has an upper triangular block form having scalar
operators for diagonal blocks. For i = 1, . . . ,m , we denote by Pi the projector on Vi . If
F = {A1, . . . ,Ar} then, for each j = 1, . . . ,r , there are uniquely determined complex
numbers λ1, j, . . . ,λm, j such that Aj = ∑m

i=1 λi, jPi +Nj , where Nj is a nilpotent operator
having strictly upper triangular block form, with respect to the decomposition above.
Then the algebra A is contained in the linear span of the set

{Pi1Nj1Pi2Nj2Pi3Nj3 · · ·PikNjkPik+1 ,k = 0,1,2, . . . ,m,1 � is � m,1 � js � r}.
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It follows that the algebra A is finite-dimensional, and so its members are algebraic
operators. The Jacobson radical J(A ) is exactly the set of all nilpotent operators from
A . Then it is not difficult to show that the homomorphism p : A → Cm defined for
generators by p(Aj) = (λ1, j,λ2, j, . . . ,λm, j) gives an isomorphism of A /J(A ) and Cn

for some n � m . We complete the proof with a comment that the classical Wedderburn
theory could be also used here. �

Guinand [3] constructed a pair {A,B} of weighted shifts on the Hilbert space l2

such that the semigroup generated by them consists of nilpotent operators of nilpotency
index 3. Moreover, the sum A+B is equal to the forward shift, so that, in particular,
the algebra generated by A and B is infinite-dimensional. This example shows that
an algebra generated by a finite triangularizable family of algebraic operators is not
necessarily finite-dimensional.

We proceed by exploring algebraic properties of locally L-nilpotent families of
algebraic operators. Hadwin et al. [5] constructed a locally nilpotent non-nilpotent
associative algebra A of nilpotent operators on a separable Hilbert space that is not
reducible. This example shows that Theorem 3.1, in general, does not hold for locally
L-nilpotent families of polynomially compact operators. However, as an application
of Hadwin’s result [4] the algebra A is algebraically triangularizable. We prove next
that every locally L-nilpotent family of algebraic operators on a complex vector space
is algebraically triangularizable.

COROLLARY 3.4. Let F be a locally L-nilpotent family of algebraic operators
on a complex vector space, and let A be the algebra generated by F . Then the
following statements hold for the algebra A :

(a) A is locally finite.

(b) A /J(A ) is commutative.

(c) J(A ) = {T ∈ A : T is nilpotent}.
(d) A is algebraically triangularizable.

Proof. To prove (a), let A1, . . . ,An be arbitrary operators from A , and let F0

be a finite subset of F such that the associative algebra A0 generated by F0 con-
tains A1, . . . ,An. Since the family F is locally L-nilpotent, the algebra A0 is finite-
dimensional, by Corollary 3.3.

To prove (b), we must show that commutators of operators from A are contained
in the radical J(A ) of A . In order to prove this, let us choose arbitrary operators A
and B in F , and an arbitrary operator T from the ideal generated by AB−BA . Then
there exist λ ∈ C , k ∈ N and operators C,D,E1, . . . ,Ek,F1, . . . ,Fk ∈ A such that

T = λ (AB−BA)+C(AB−BA)+ (AB−BA)D+
k

∑
i=1

Ei(AB−BA)Fi.

Let F0 be a finite subset of F such that the algebra A0 generated by F0 contains
operators A,B,C,D,E1, . . . ,Ek,F1, . . . ,Fk. Since the algebra A0/J(A0) is commutative
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and J(A0) is a nilpotent ideal of A0 by Corollary 3.3, the operator T is contained in
J(A0) , and is therefore nilpotent. This implies that the ideal in A generated by the
operator AB−BA consists of nilpotent operators, which implies that AB−BA∈ J(A ) .

Since the algebra A is locally finite, it consists of algebraic operators, so that (b)
together with [4, Theorem 2.4] give (c) and (d). �

Although locally nilpotent families of polynomially compact operators are not nec-
essarily triangularizable, this is the case under the additional assumption that operators
essentially commute, that is, their images in the Calkin algebra commute.

COROLLARY 3.5. Locally L-nilpotent family F of essentially commuting poly-
nomially compact operators on a complex Banach space X is triangularizable. Fur-
thermore, if A is the associative algebra generated by F , then the Banach algebra
A /J(A ) is commutative.

Proof. We first claim that the associative algebra A generated by F is essen-
tially commutative algebra of polynomially compact operators. In order to prove this,
let π : B(X) → B(X)/K (X) be the canonical projection from B(X) to the Calkin
algebra B(X)/K (X) . Since the algebra π(A ) is generated by π(F ) , the algebra
π(A ) is commutative. By [9, Lemma 1.6] the algebra π(A ) consists of algebraic
elements. Therefore, the algebra A is essentially commutative and consists of polyno-
mially compact operators which proves the claim.

Choose arbitrary A and B∈A . Then there exists a finite subset F0 ⊆F such that
A and B are contained in the associative algebra generated by F0 . Since F is a locally
L-nilpotent family of polynomially compact operators, the set F0 is triangularizable
by Theorem 3.1. From this we conclude that the pair {A,B} is triangularizable, so that
the set F is triangularizable by [9, Theorem 2.10] (see also [7]). The remaining part
of the corollary follows from [7, Theorem 3.5]. �

4. Operators A and B commute with the product AB

Theorem 3.1 can be applied to the special case when F consists of two operators
A and B . This implies that whenever polynomially compact operators A and B on
a Banach space satisfy [A, [A,B]] = [B, [A,B]] = 0, then A and B are simultaneously
triangularizable. Recently, Shemesh [16] proved that complex n×n matrices A and B
are simultaneously triangularizable whenever A[A,B] = [A,B]B = 0, or equivalently, A
and B commute with their product AB . We extend this result to polynomially compact
operators.

THEOREM 4.1. Let A and B be polynomially compact operators on a complex
Banach space X . If A[A,B] = [A,B]B = 0 , then A and B are simultaneously triangu-
larizable.

Proof. By the Triangularization lemma, it suffices to prove reducibility of the pair
{A,B} . In view of Corollary 2.2 we may assume that neither A nor B is a scalar
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operator and that AB �= BA . We consider two cases.

Case 1: The product AB is not a scalar operator.
Assume first that A and B are algebraic operators with the minimal polynomials

pA and pB , respectively. Since A and B commute with AB , we have (AB)n = AnBn for
all n ∈ N , and so the set {(AB)n : n ∈ N} is contained in the finite-dimensional space
spanned by {AjBk : 0 � j < deg pA,0 � k < deg pB} . It follows that the operator AB
is algebraic. Since it is not a scalar operator, there exists an eigenspace of AB that is
a nontrivial closed subspace of X . Since every eigenspace is hyperinvariant, it follows
that the pair {A,B} is reducible.

Assume now that at least one of the operators A and B is not algebraic. Then the
space X is necessarily infinite-dimensional, and there is a nonzero compact operator K
obtained as a polynomial of either A and B such that K commutes with AB . Therefore,
the operator AB has a nontrivial hyperinvariant closed subspace, by Theorem 2.1. This
proves that the pair {A,B} is reducible.

Case 2: The product AB is a scalar operator.
If AB = 0, then the range of B is not dense in X , and so its closure is a nontrivial

closed subspace invariant under both A and B . Hence, we may assume that AB �= 0.
Multiplying A by a suitable complex number if necessary, we may assume further that
AB = I . It is easy to see that the range ranB is a closed subspace. If ranB = X then
B is invertible and A = B−1 , so that A and B commute, contradicting the assumption
from the beginning of the proof. Therefore, the closed subspace ranB is proper.

Assume first that the operator B is algebraic. Since AB = I , B cannot be nilpotent,
so that there exists an eigenvalue λ �= 0 such that the corresponding eigenspace ker(B−
λ I) is a proper closed subspace of X . If x ∈ ker(B− λ I) , then 0 = A(B− λ I)x =
x−λAx , and so Ax = 1/λ ·x ∈ ker(B−λ I) which proves that ker(B−λ I) is invariant
under A . Since it is also invariant under B , the pair {A,B} is reducible.

Assume now that the operator B is not algebraic. Then the space X is necessarily
infinite-dimensional. Let p be the minimal polynomial of the polynomially compact
operator B , so that K := p(B) is a nonzero compact operator. Define a number c and
a polynomial q by c := p(0) and q(z) := (p(z)− c)/z . We claim that c �= 0. Assume
otherwise that c = 0. Since AB = I , the operator B is not compact, and so deg p � 2.
Since the operator q(B) = Ap(B) = AK is also compact, this contradicts the minimality
of p , and so the claim is proved. Since the operator K − cI has a finite descent, there
exists a positive integer m0 such that ran((K−cI) j) = ran((K−cI)m0) for all j � m0 .
Since Bnq(B)n = (Bq(B))n = (p(B)− cI)n = (K− cI)n for every n ∈ N , we have

ran(K− cI)m0 = ran(K− cI) j ⊆ ran(Bj)

for all j � m0 . Since K is compact and c �= 0, the quotient Banach space X/ran(K −
cI)m0 is finite-dimensional. Therefore, there exists a positive integer n0 such that
ran(Bj) = ran(Bn0) for all j � n0 and the codimension of ran(Bn0) is finite. The
subspace ran(Bn0) is obviously invariant under the operator B . If x ∈ ran(Bn0) =
ran(Bn0+1) , then there exists y∈X such that x = Bn0+1y , and so Ax = Bn0y∈ ran(Bn0) .
This shows that ran(Bn0) is also invariant under A . Since ran(Bn0) is a finite-
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-codimensional subspace that is contained in a proper subspace ranB , it is a nontrivial
closed subspace of X . This proves that the pair {A,B} is reducible. �

Shemesh [16] also proved that the pair {A,B} of complex n×n matrices is trian-
gularizable whenever A[A,B] = B[A,B] = 0. We provide an extension of this result to
polynomially compact operators.

THEOREM 4.2. Let A and B be polynomially compact operators on a complex
Banach space X . If A[A,B] = B[A,B] = 0 , then A and B are simultaneously triangu-
larizable.

Proof. Similarly as in the proof of Theorem 4.1 we only need to prove reducibility
of the pair {A,B} of nonscalar noncommuting polynomially compact operators. In this
case, the closure of the range of the operator AB−BA is a nontrivial closed subspace
of X which is invariant under both A and B . �

So far, we considered operators acting on Banach spaces. When they act on Hilbert
spaces, we can say more. Suppose that A and B are polynomially compact operators
on a Hilbert space H . If A is normal and [A, [A,B]] = 0, then by Putnam’s theorem
[12, Theorem III] A and B commute, and so they are simultaneously triangularizable.
Similar conclusion (see Theorem 4.4) holds whenever A is normal and A[A,B] = 0.
However, the following easy example shows that, in general, A and B do not commute.

EXAMPLE 4.3. By a direct calculation one can verify that simultaneously trian-
gularizable matrices

A =
[

1 0
0 0

]
and B =

[
0 0
1 0

]

satisfy A[A,B] = 0, while

AB−BA =
[

0 0
−1 0

]
.

THEOREM 4.4. Let A and B be polynomially compact operators on a Hilbert
space H . Suppose that A is normal and that A[A,B] = 0 . Then A and B are si-
multaneously triangularizable and [A,B]2 = 0 . If B is also normal, then A and B are
simultaneously diagonalizable, and so they commute.

Proof. Clearly, we may assume that A and B are not scalar operators. If A is
injective, the assumption A[A,B] = 0 implies that [A,B] = 0, and so A and B are
simultaneously triangularizable. Therefore, we may assume that the kernel kerA is a
nontrivial closed subspace of H . Since the operator A is normal, A and B can be
represented as

A =
[

0 0
0 A22

]
and B =

[
B11 B12

B21 B22

]
,

with respect to the decomposition H = kerA⊕ (kerA)⊥ = kerA⊕ ranA . Since A2B =
ABA , we obtain that A2

22B21 = 0 and A22(A22B22 −B22A22) = 0, and so B21 = 0 and
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A22B22 = B22A22 , as A22 is injective. Now it is easy to see that we have [A,B]2 = 0.
Since commuting polynomially compact operators A22 and B22 are simultaneously tri-
angularizable and the polynomially compact operator B11 is triangularizable, we con-
clude that A and B are simultaneously triangularizable.

Assume now that B is also normal. By [13, Corollary 1.24, p. 22], it is also com-
pletely normal, i.e., every its invariant closed subspace M is reducing (that is, M⊥ is
also invariant). It follows that B12 = 0 in the above representation of B . Therefore,
B is block diagonal, and so A and B commute. By [13, Proposition 1.10, p. 24], the
operator A is diagonalizable, that is, the set of its eigenvectors spans the space H .
So, there exist N > 1 (where we do not exclude the possibility N = ∞), pairwise dif-
ferent complex numbers {λk}N

k=1 and pairwise orthogonal projections {Pk}N
k=1 such

that A =
N⊕

k=1
λkPk . Since AB = BA , the range of each projection Pk is a reducing sub-

space for the operator B . Since the restriction of B to the range of Pk is polynomially
compact and normal, it is diagonalizable by [13, Proposition 1.10, p. 24]. From here it
follows that A and B are simultaneously diagonalizable. �

We complete the paper by the dual version of Theorem 4.4.

THEOREM 4.5. Let A and B be polynomially compact operators on a Hilbert
space H . Suppose that B is normal and that [A,B]B = 0 . Then A and B are si-
multaneously triangularizable and [A,B]2 = 0 . If A is also normal, then A and B are
simultaneously diagonalizable, and so they commute.

Proof. Since B∗[B∗,A∗] = ([A,B]B)∗ = 0, the pair {A∗,B∗} of polynomially com-
pact operators is triangularizable and [B∗,A∗]2 = 0, by Theorem 4.4. The latter implies
that [A,B]2 = 0. Let C be one of triangularizing chains for the pair {A∗,B∗} . Then
the set C⊥ := {M⊥ : M ∈ C } is a chain of closed subspaces invariant under A and
B . Since the mapping N 	→ N⊥ is an anti-isomorphism of the lattice of all closed sub-
spaces of H , the chain C⊥ is also a maximal chain of closed subspaces of H . This
proves that A and B are simultaneously triangularizable.

If A and B are normal, then A∗ and B∗ are simultaneously diagonalizable, by
Theorem 4.4. The conclusion of the theorem now immediately follows. �
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