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COMPACT PERTURBATIONS OF DRAZIN INVERTIBLE OPERATORS

BOTING JIA* AND YOULING FENG

(Communicated by R. Curto)

Abstract. Necessary and sufficient conditions for the invariance of Drazin invertibility under
compact perturbations are established. This proves a conjecture of Kaifan Yang and Hongke Du.

1. Introduction

Throughout this note, .77 is a complex separable infinite dimensional Hilbert
space. We denote by Z(.%) the algebra of all bounded linear operators on .7, and
by J# () the ideal of all compact operators acting on .##°. Recall that an operator
T € B(H) is said to be Drazin invertible [6] if there exist a nonnegative integer n and
S € B(H) such that

TS=ST, TS*=S, T"'s=r1" (1)

In this case, the smallest nonnegative integer n such that the equalities (1) hold is called
the Drazin index of T. Note that invertible operators are always Drazin invertible. It
is well known that T is Drazin invertible if and only if T has finite ascent and descent
(see [12, Chapter 3, Theorem 10] or [1]), that is, there is a nonnegative integer n such
that

N(TY) = N (T"Y, Z(T") = 2(T"™).

Here and in what follows, .4 (T') denotes the kernel of T and Z(T) denotes the range
of T.

In 1996, Koliha [11] introduced a generalization of Drazin invertibility. An op-
erator T on ¢ is said to be generalized Drazin invertible if there exists R € B(H)
such that TR = RT, TR> = R and TR — T is quasinilpotent. Recall that an operator
X € B(H) is called quasinilpotent if o(X) = {0}.

In general the Drazin inverse is unstable under small perturbations. Many of previ-
ous papers are devoted to the perturbation theory of the Drazin inverse (see [2, 3, 5, 14,
15]). We remark that Drazin invertibility is also unstable under perturbations (see [16]
for counterexamples). In their paper [16], K. Yang and H. Du investigated the stability
of Drazin invertibility under small perturbations and finite-rank perturbations. A nec-
essary and sufficient condition is given for the invariance of Drazin invertibility under
small perturbations (see [16, Theorem 1.2]). In addition, K. Yang and H. Du raised the
following conjecture.
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CONJECTURE 1.1. ([16], Conjecture 3.5) Let A € %() be Drazin invertible
with Drazin index k. If 0 is in the unbounded component of p(A|;(4t)) and dim22(A%)*
< oo, then A + K is Drazin invertible for any compact operator K € A(¢).

In this note it is completely determined when an operator T satisfies that all com-
pact perturbations of 7 are Drazin invertible. In particular, we give a positive answer
to Conjecture 1.1.

Before we state the main result, we first introduce some terminology.

Let T € #(). We denote by o(T) and p(T) the spectrum of T and the re-
solvent set of T respectively. T is called a semi-Fredholm operator, if % (T) is closed
and either dim.4#"(T) or dim.#"(T*) is finite. In this case, ind T = dim A (T) —
dim.A4(T*) is called the index of T. In particular, if —oo < ind T < oo, then T is
called a Fredholm operator. The Wolf spectrum 0, (T) is defined by

01,.(T) ={A € C: T — A is not semi-Fredholm}.

The set ps_p(T) = C\ 05,.(T) is called the semi-Fredholm domain of T. Note that
ps—r(T) is an open subset of C, p(T) C ps—r(T) and ps—r(T +K) = ps_p(T) for all
Ke ().

For convenience we will use the term “D-invertible” for “Drazin invertible”, and
use the term “d-invertible” for “generalized Drazin invertible”.

The main result of this note is the following theorem.

THEOREM 1.2. For T € B(H), the following statements are equivalent.
(i) T+K is D-invertible for all K € J# (5€).
(ii) T +K is d-invertible for all K € ¢ ().
(iii) 0 lies in the unbounded component of ps—p(T).

We shall prove in Section 2 the following lemma, which shows that the result
stated in Conjecture 1.1 is a consequence of Theorem 1.2.

LEMMA 1.3. Let T € B(H) be Drazin invertible with Drazin index n. Then the
following two statements are equivalent.

(i) 0 lies in the unbounded component of p(T | zrn)) and dimZ(T")*+ < eo.

(ii) 0O lies in the unbounded component of ps_r(T).
2. Proof of theorem 1.2
We first gather some known results we will rely on.

Given a subset A of C, we denote by iso A the set of all isolated points of A, and
by inte A the interior of A.
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Let T € B(). For —eo < n < oo, denote
plp(T) = {1 € py p(T) :ind (A—T) =n}.

By the continuity of index function, {ps(f)F(T) :—oo L 1 < oo} are pairwise disjoint
open subsets of C.

If A is a nonempty clopen subset of ¢(7), then there exists an analytic Cauchy
domain Q such that A C Q and [0(T)\A]NQ = 0. We let E(A;T) denote the Riesz
idempotent of T corresponding to A, that is,

1
E(AT) = %/F(JL — 1),

where T" = dQ is positively oriented with respect to Q in the sense of complex vari-
able theory. By the Riesz Decomposition Theorem ([ 13, Theorem 2.10]), 57 (A;T) :=
Z(E(A;T)) is an invariant subspace of T and o(T|x ;) = A. If A €iso o(T),
then {1} is a clopen subset of o(T); if, in addition, dim.sZ({A};T) < e, then A is
called a normal eigenvalue of T . We denote by oyp(T) the set of all normal eigenvalues
of T. The reader is referred to [4, Chapter XI] or [8, Chapter 1] for more details.

LEMMA 2.1. ([4], page 366) Let T € B(H) and A € iso 6(T). Then the fol-
lowing statements are equivalent.

() A€ oo(T).
Gi) A ep(T).
(ii)) A € ps—r(T).
Let T € B(s). For A € ps_p(T), the minimal index of A — T is defined by
minind (A — T) = min{dim A4 (A — T),dim A" (A —T)"*}.
LEMMA 2.2. ([8], Corollary 1.14) Let T € B(H). Then
G) p\°%(T) includes the resolvent set p(T) of T, and 6o(T);
(i) if n#0, then ps(f)F(T) is a bounded set;

(iii) the function A — minind (A — T) is constant on every component of ps—r(T)
except for an at most denumerable subset p}_p(T) of ps—r(T) without limit
points in ps_p(T).
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COROLLARY 2.3. Let T € B(S). If A lies in the unbounded component of
ps—r(T), then either A € p(T) or A € 6p(T).

Proof. Denote by Q the unbounded component of ps_r(T) containing A. In
view of Lemma 2.2 (iii), there exist a nonnegative integer n and an at most denumerable
subset T of Q (which has no limit points in Q) such that minind (z —T) = n for
7€ Q\T.

Claim. n =0 and Q c p”%(T).

Denote by G the unbounded component of p(7'). It is easy to see that G C Q.
Since ind (z—T) =0 for z € G and ind (-) is constant on Q, we obtain Q C ps(g)F(T).
On the other hand, note that minind (z—7) =n for z € G\T. Since G\ T # 0 and
minind (z—T) =0 for z € G, we deduce that n = 0. This proves the claim.

Now assume that A € 6(T). It suffices to prove that A € 6y(T). In view of Claim,
we have [Q\T] C p(T). It follows that A € T'. Since I" has no limits in €, we deduce
that A € iso o(T). By Lemma 2.1, it follows that A € op(T). O

COROLLARY 2.4. Let T € B(H). If Q is the unbounded component of ps—r(T)
and G is the unbounded component of p(T), then Q\ 0p(T) =G.

Proof. By definitions, the inclusion “ D is clear.

“C”. Note that Q is an unbounded connected open subset of C and cy(7') con-
sists of some isolated points of ¢ (7). It follows that Q\ (T is still unbounded, con-
nected and open. From Corollary 2.3, one can see the inclusion [Q\ op(T)] C p(T).
Therefore [Q\ 0p(T)] C G. Thus we are done. [

LEMMA 2.5. ([10], Lemma 3.2.6) Let T € B() and suppose that O # A C
011e(T). Then, given € > 0, there exists a compact operator K with ||K|| < € such
that

N x4
x5

where = 74 & 7, N is a diagonal normal operator of uniformly infinite multi-
plicity, 6(N) = 01.(N) =A and o(T) = o(A).

The point spectrum of an operator 7' is denoted by 0, (7).
LEMMA 2.6. ([9], Lemma 5.3) Let T € B() and let @ be a union of bounded

components of ps—r(T)] such that ®Ninte 6,(T) = 0. Then there exists K € ()
such that ® C o(T +K).

LEMMA 2.7. ([11]) Let A € B(S). Then A is d-invertible if and only if O is not
an accumulation point of 6(A).
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LEMMA 2.8. ([7], Theorem 2.5) An operator T € HB(7€) is D-invertible with
Drazin index n if and only if Z(T") is closed and

-1

with respect to the space decomposition 7 = Z(T") S X (T")*, where A is invertible
and B is nilpotent of order n.

By Lemma 2.8, if T is D-invertible, then either 0 € p(T) or 0 € iso 6(7T'). Hence
D-invertible operators are always d-invertible.

LEMMA 2.9. Let T € B(°). If 0 € 0o(T), then T is D-invertible.

Proof. Denote A= o (T)\{0}. We claim that A # 0. In fact, if not, then o(7) =
{0} and, by definition, .2#° = 7 ({0};T) < o, a contradiction. Then both A and {0}
are nonempty clopen subsets of &(7).

Denote 7% = 7 ({0};T) and 4 = S (A;T). Then, by the Riesz Decompo-
sition Theorem (see [13, Theorem 2.10]), %), 74 are complementary invariant sub-
spaces of T and

o(Tl) = {0}, o(T|g)=A.

Since dim.7%) < oo, it is easy to see that T| »; is nilpotent (say, of order n). Note that
T | is invertible. Then

N(T") =N (T =, R(T") = R(T") = 4.

Therefore T is D-invertible. []
Now we are going to give the proof of theorem 1.2.

Proof of theorem 1.2. “(iii)==(1)”. Assume that O lies in the unbounded com-
ponent of p,_r(T). Let K be a compact operator on 5. Since semi-Fredholm do-
mains are invariant under compact perturbations, we deduce that O still lies in the un-
bounded component of ps;_r(T + K). By Corollary 2.3, we have either 0 € p(T + K)
or 0 € 0p(T +K). Then, by Lemma 2.9, T + K is D-invertible.

“(i)==-(i1)”. This is obvious, since D-invertible operators are always d-invertible.

“(il)=(iii)”. Assume that T + K is d-invertible for all K € # (). For a
proof by contradiction, we assume that 0 does not lie in the unbounded component of
01re(T). Then either O € 0y, (T) or O lies in a bounded component of p;_r(T). So
the rest of the proof is divided into two cases.

Case 1. 0 € 0;,.(T).

By Lemma 2.5, there exists K; € ¢ () such that

E
T+K = [8A:|
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relative to some space decomposition S = 4 & 5%, where dimJ#] = . Then we
can choose an orthonormal basis {e;: i =1,2,3,---} of . For x € S, define

Kox = i enjen
n=1 n

Then K, € # (). Set C =K, + K5 . Itis easy to see that C € J# () and
(T+C)en=Kren=-ey/n, Yn=1.

Thus {1/n:n>1} C 06,(T +C). Hence 0 is an accumulation point of o(7 +C). By
Lemma 2.7, T + C is not d-invertible, a contradiction.

Case 2. 0 lies in a bounded component Q of p,_r(T).

In view of Lemma 2.2 (iii), there exist a nonnegative integer n and an at most
denumerable subset I of Q (which has no limit points in Q) such that minind (z —
T)=nforze Q\T.

Note that T is d-invertible. Then, by Lemma 2.7, we have either 0 € p(T) or
0 €iso o(T). Then there exists 6 > 0 such that [B(0,6)\ {0}] C p(T). It follows that
[B(0,6)\ {0}] € Q and minind (T —z) =ind (T —z) =0 for z € [B(0,8)\ {0}]. Thus
QC ps(g)F(T) and, by Lemma 2.2 (iii), n = 0. Thus we have proved that ind (T —z) =0
for z € Q and minind (7T —z) =0 for z € Q\T. It follows that [Q\T] C p(T). So
Qninte 0,(T) = 0. By Lemma 2.6, there exists K € % () such that Q C o(T +
K). Thus 0 is an accumulation point of o(T +K). By Lemma 2.7, T + K is not
d-invertible, a contradiction. Thus the proof is complete. [l

Proof of lemma 1.3. Since T is D-invertible, by Lemma 2.8, Z(T") is closed and
T can be represented as
AE
r=[3]

with respect to the space decomposition . = Z(T") © % (T")*, where A is invertible
and B is nilpotent of order n. Thus A =T'|5(7n).

“(i)==(ii)”. Since 0 lies in the unbounded component of p(A), it follows that 0
lies in the unbounded component of ps_r(A). On the other hand, noting that
dimZ(T")* < o, we deduce that B,E are both compact and ps_r(A) = ps—r(T).
This proves “(i) = (ii)”.

“(ii)==(i)”. Note that o(B) = {0} and 0 ¢ o(A). By [8, Corollary 3.22], T is
similar to A @ B, thatis, TX = X (A® B) for some invertible X € Z(.¢).

Claim. dimZ(T")* < o.

In fact, if dimZ(T")* = oo, then dim.4# (B) = c (since B is nilpotent). Thus
dim 4 (T) = dim 4 (A® B) = «. Also, B* is nilpotent acting on Z(T")*. Thus we
also have dim A4 (T*) = dim.#"(A* @ B*) =eo. So T is not semi-Fredholm, contra-
dicting the hypothesis that 0 € p;_¢(T'). This proves the claim.

By Claim, we have p;_p(A) = ps_r(T). It follows that O lies in the unbounded
component Q of p,_r(A). Since 0 € p(A), we have 0 € [Q\ 6p(A)]. In view of
Corollary 2.4, 0 lies in the unbounded component of p(A). O
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We conclude this note with an example.

EXAMPLE 2.10. Assume that {e;};>__, is an orthonormal basis of .7 and define
T € B(H) as
Tei=e¢jr1, VieZ.

Here Z denotes the set of integers. Then T is a bilateral shift and
0(T)=01,(T)={z€C:lz]=1}.

So 0 lies in the unique bounded component of ps_r (7). By Theorem 1.2, there exists
Ko € () such that T + K is not d-invertible.
Set R=2[+T. Then

0(R) =0pe(R) ={z€C:|z—2|=1}.

So 0 lies in the unbounded component of ps;_r(R). By Theorem 1.2, R+ K is D-
invertible for all K € 2 (7).
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