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COMPACT PERTURBATIONS OF DRAZIN INVERTIBLE OPERATORS

BOTING JIA ∗ AND YOULING FENG

(Communicated by R. Curto)

Abstract. Necessary and sufficient conditions for the invariance of Drazin invertibility under
compact perturbations are established. This proves a conjecture of Kaifan Yang and Hongke Du.

1. Introduction

Throughout this note, H is a complex separable infinite dimensional Hilbert
space. We denote by B(H ) the algebra of all bounded linear operators on H , and
by K (H ) the ideal of all compact operators acting on H . Recall that an operator
T ∈ B(H ) is said to be Drazin invertible [6] if there exist a nonnegative integer n and
S ∈ B(H ) such that

TS = ST, TS2 = S, Tn+1S = Tn. (1)

In this case, the smallest nonnegative integer n such that the equalities (1) hold is called
the Drazin index of T . Note that invertible operators are always Drazin invertible. It
is well known that T is Drazin invertible if and only if T has finite ascent and descent
(see [12, Chapter 3, Theorem 10] or [1]), that is, there is a nonnegative integer n such
that

N (Tn) = N (Tn+1), R(Tn) = R(Tn+1).

Here and in what follows, N (T ) denotes the kernel of T and R(T ) denotes the range
of T .

In 1996, Koliha [11] introduced a generalization of Drazin invertibility. An op-
erator T on H is said to be generalized Drazin invertible if there exists R ∈ B(H )
such that TR = RT , TR2 = R and T 2R−T is quasinilpotent. Recall that an operator
X ∈ B(H ) is called quasinilpotent if σ(X) = {0} .

In general the Drazin inverse is unstable under small perturbations. Many of previ-
ous papers are devoted to the perturbation theory of the Drazin inverse (see [2, 3, 5, 14,
15]). We remark that Drazin invertibility is also unstable under perturbations (see [16]
for counterexamples). In their paper [16], K. Yang and H. Du investigated the stability
of Drazin invertibility under small perturbations and finite-rank perturbations. A nec-
essary and sufficient condition is given for the invariance of Drazin invertibility under
small perturbations (see [16, Theorem 1.2]). In addition, K. Yang and H. Du raised the
following conjecture.
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CONJECTURE 1.1. ([16], Conjecture 3.5) Let A ∈ B(H ) be Drazin invertible
with Drazin index k . If 0 is in the unbounded component of ρ(A|R(Ak)) and dimR(Ak)⊥

< ∞ , then A+K is Drazin invertible for any compact operator K ∈ B(H ) .

In this note it is completely determined when an operator T satisfies that all com-
pact perturbations of T are Drazin invertible. In particular, we give a positive answer
to Conjecture 1.1.

Before we state the main result, we first introduce some terminology.
Let T ∈ B(H ) . We denote by σ(T ) and ρ(T ) the spectrum of T and the re-

solvent set of T respectively. T is called a semi-Fredholm operator, if R(T ) is closed
and either dimN (T ) or dimN (T ∗) is finite. In this case, ind T = dimN (T )−
dimN (T ∗) is called the index of T . In particular, if −∞ < ind T < ∞ , then T is
called a Fredholm operator. The Wolf spectrum σlre(T ) is defined by

σlre(T ) = {λ ∈ C : T −λ is not semi-Fredholm}.

The set ρs−F(T ) = C \σlre(T ) is called the semi-Fredholm domain of T . Note that
ρs−F(T ) is an open subset of C , ρ(T )⊂ ρs−F(T ) and ρs−F(T +K) = ρs−F(T ) for all
K ∈ K (H ) .

For convenience we will use the term “D-invertible” for “Drazin invertible”, and
use the term “d-invertible” for “generalized Drazin invertible”.

The main result of this note is the following theorem.

THEOREM 1.2. For T ∈ B(H ) , the following statements are equivalent.

(i) T +K is D-invertible for all K ∈ K (H ) .

(ii) T +K is d-invertible for all K ∈ K (H ) .

(iii) 0 lies in the unbounded component of ρs−F(T ) .

We shall prove in Section 2 the following lemma, which shows that the result
stated in Conjecture 1.1 is a consequence of Theorem 1.2.

LEMMA 1.3. Let T ∈B(H ) be Drazin invertible with Drazin index n. Then the
following two statements are equivalent.

(i) 0 lies in the unbounded component of ρ(T |R(Tn)) and dimR(Tn)⊥ < ∞ .

(ii) 0 lies in the unbounded component of ρs−F(T ) .

2. Proof of theorem 1.2

We first gather some known results we will rely on.
Given a subset Δ of C , we denote by iso Δ the set of all isolated points of Δ , and

by inte Δ the interior of Δ .
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Let T ∈ B(H ) . For −∞ � n � ∞ , denote

ρ (n)
s−F(T ) = {λ ∈ ρs−F(T ) : ind (λ −T) = n}.

By the continuity of index function, {ρ (n)
s−F(T ) : −∞ � n � ∞} are pairwise disjoint

open subsets of C .
If Δ is a nonempty clopen subset of σ(T ) , then there exists an analytic Cauchy

domain Ω such that Δ ⊂ Ω and [σ(T )\Δ]∩Ω = /0 . We let E(Δ;T ) denote the Riesz
idempotent of T corresponding to Δ , that is,

E(Δ;T ) =
1

2π i

∫
Γ
(λ −T )−1dλ ,

where Γ = ∂Ω is positively oriented with respect to Ω in the sense of complex vari-
able theory. By the Riesz Decomposition Theorem ([13, Theorem 2.10]), H (Δ;T ) :=
R(E(Δ;T )) is an invariant subspace of T and σ(T |H (Δ;T)) = Δ . If λ ∈ iso σ(T ) ,
then {λ} is a clopen subset of σ(T ) ; if, in addition, dimH ({λ};T ) < ∞ , then λ is
called a normal eigenvalue of T . We denote by σ0(T ) the set of all normal eigenvalues
of T . The reader is referred to [4, Chapter XI] or [8, Chapter 1] for more details.

LEMMA 2.1. ([4], page 366) Let T ∈ B(H ) and λ ∈ iso σ(T ) . Then the fol-
lowing statements are equivalent.

(i) λ ∈ σ0(T ) .

(ii) λ ∈ ρ (0)
s−F(T ) .

(iii) λ ∈ ρs−F(T ) .

Let T ∈ B(H ) . For λ ∈ ρs−F(T ) , the minimal index of λ −T is defined by

min ind (λ −T ) = min{dimN (λ −T ),dimN (λ −T )∗}.

LEMMA 2.2. ([8], Corollary 1.14) Let T ∈ B(H ) . Then

(i) ρ (0)
s−F(T ) includes the resolvent set ρ(T ) of T , and σ0(T );

(ii) if n �= 0 , then ρ (n)
s−F(T ) is a bounded set;

(iii) the function λ �→ minind (λ −T ) is constant on every component of ρs−F(T )
except for an at most denumerable subset ρ s

s−F(T ) of ρs−F(T ) without limit
points in ρs−F(T ) .
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COROLLARY 2.3. Let T ∈ B(H ) . If λ lies in the unbounded component of
ρs−F(T ) , then either λ ∈ ρ(T ) or λ ∈ σ0(T ) .

Proof. Denote by Ω the unbounded component of ρs−F(T ) containing λ . In
view of Lemma 2.2 (iii), there exist a nonnegative integer n and an at most denumerable
subset Γ of Ω (which has no limit points in Ω) such that minind (z− T ) = n for
z ∈ Ω\Γ .

Claim. n = 0 and Ω ⊂ ρ (0)
s−F(T ) .

Denote by G the unbounded component of ρ(T ) . It is easy to see that G ⊂ Ω .

Since ind (z−T ) = 0 for z ∈G and ind (·) is constant on Ω , we obtain Ω ⊂ ρ (0)
s−F(T ) .

On the other hand, note that minind (z−T ) = n for z ∈ G \Γ . Since G \Γ �= /0 and
minind (z−T ) = 0 for z ∈ G , we deduce that n = 0. This proves the claim.

Now assume that λ ∈σ(T ) . It suffices to prove that λ ∈ σ0(T ) . In view of Claim,
we have [Ω\Γ]⊂ ρ(T ) . It follows that λ ∈ Γ . Since Γ has no limits in Ω , we deduce
that λ ∈ iso σ(T ) . By Lemma 2.1, it follows that λ ∈ σ0(T ) . �

COROLLARY 2.4. Let T ∈B(H ) . If Ω is the unbounded component of ρs−F(T )
and G is the unbounded component of ρ(T ) , then Ω\σ0(T ) = G.

Proof. By definitions, the inclusion “⊃” is clear.
“⊂”. Note that Ω is an unbounded connected open subset of C and σ0(T ) con-

sists of some isolated points of σ(T ) . It follows that Ω\σ0(T ) is still unbounded, con-
nected and open. From Corollary 2.3, one can see the inclusion [Ω \σ0(T )] ⊂ ρ(T ) .
Therefore [Ω\σ0(T )] ⊂ G . Thus we are done. �

LEMMA 2.5. ([10], Lemma 3.2.6) Let T ∈ B(H ) and suppose that /0 �= Δ ⊂
σlre(T ) . Then, given ε > 0 , there exists a compact operator K with ‖K‖ < ε such
that

T +K =
[
N ∗
0 A

]
H1

H2
,

where H = H1 ⊕H2 , N is a diagonal normal operator of uniformly infinite multi-
plicity, σ(N) = σlre(N) = Δ and σ(T ) = σ(A) .

The point spectrum of an operator T is denoted by σp(T ) .

LEMMA 2.6. ([9], Lemma 5.3) Let T ∈ B(H ) and let Φ be a union of bounded
components of ρs−F(T )] such that Φ∩ inte σp(T ) = /0 . Then there exists K ∈ K (H )
such that Φ ⊂ σ(T +K) .

LEMMA 2.7. ([11]) Let A∈B(H ) . Then A is d-invertible if and only if 0 is not
an accumulation point of σ(A) .
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LEMMA 2.8. ([7], Theorem 2.5) An operator T ∈ B(H ) is D-invertible with
Drazin index n if and only if R(Tn) is closed and

T =
[
A E
0 B

]

with respect to the space decomposition H = R(Tn)⊕R(Tn)⊥ , where A is invertible
and B is nilpotent of order n.

By Lemma 2.8, if T is D-invertible, then either 0 ∈ ρ(T ) or 0 ∈ iso σ(T ) . Hence
D-invertible operators are always d-invertible.

LEMMA 2.9. Let T ∈ B(H ) . If 0 ∈ σ0(T ) , then T is D-invertible.

Proof. Denote Δ = σ(T )\{0} . We claim that Δ �= /0 . In fact, if not, then σ(T ) =
{0} and, by definition, H = H ({0};T ) < ∞ , a contradiction. Then both Δ and {0}
are nonempty clopen subsets of σ(T ) .

Denote H0 = H ({0};T ) and H1 = H (Δ;T ) . Then, by the Riesz Decompo-
sition Theorem (see [13, Theorem 2.10]), H0,H1 are complementary invariant sub-
spaces of T and

σ(T |H0) = {0}, σ(T |H1) = Δ.

Since dimH0 < ∞ , it is easy to see that T |H0 is nilpotent (say, of order n ). Note that
T |H1 is invertible. Then

N (Tn) = N (Tn+1) = H0, R(Tn) = R(Tn+1) = H1.

Therefore T is D-invertible. �
Now we are going to give the proof of theorem 1.2.

Proof of theorem 1.2. “(iii)=⇒(i)”. Assume that 0 lies in the unbounded com-
ponent of ρs−F(T ) . Let K be a compact operator on H . Since semi-Fredholm do-
mains are invariant under compact perturbations, we deduce that 0 still lies in the un-
bounded component of ρs−F(T +K) . By Corollary 2.3, we have either 0 ∈ ρ(T +K)
or 0 ∈ σ0(T +K) . Then, by Lemma 2.9, T +K is D-invertible.

“(i)=⇒(ii)”. This is obvious, since D-invertible operators are always d-invertible.
“(ii)=⇒(iii)”. Assume that T + K is d-invertible for all K ∈ K (H ) . For a

proof by contradiction, we assume that 0 does not lie in the unbounded component of
σlre(T ) . Then either 0 ∈ σlre(T ) or 0 lies in a bounded component of ρs−F(T ) . So
the rest of the proof is divided into two cases.

Case 1. 0 ∈ σlre(T ) .
By Lemma 2.5, there exists K1 ∈ K (H ) such that

T +K1 =
[
0 E
0 A

]
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relative to some space decomposition H = H1 ⊕H2 , where dimH1 = ∞ . Then we
can choose an orthonormal basis {ei : i = 1,2,3, · · ·} of H1 . For x ∈ H , define

K2x =
∞

∑
n=1

〈x,en〉en

n
.

Then K2 ∈ K (H ) . Set C = K1 +K2 . It is easy to see that C ∈ K (H ) and

(T +C)en = K2en = en/n, ∀n � 1.

Thus {1/n : n � 1} ⊂ σp(T +C) . Hence 0 is an accumulation point of σ(T +C) . By
Lemma 2.7, T +C is not d-invertible, a contradiction.

Case 2. 0 lies in a bounded component Ω of ρs−F(T ) .
In view of Lemma 2.2 (iii), there exist a nonnegative integer n and an at most

denumerable subset Γ of Ω (which has no limit points in Ω) such that minind (z−
T ) = n for z ∈ Ω\Γ .

Note that T is d-invertible. Then, by Lemma 2.7, we have either 0 ∈ ρ(T ) or
0∈ iso σ(T ) . Then there exists δ > 0 such that [B(0,δ )\{0}]⊂ ρ(T ) . It follows that
[B(0,δ )\{0}]⊂ Ω and minind (T − z) = ind (T − z) = 0 for z ∈ [B(0,δ )\{0}] . Thus

Ω⊂ ρ (0)
s−F(T ) and, by Lemma 2.2 (iii), n = 0. Thus we have proved that ind (T −z) = 0

for z ∈ Ω and minind (T − z) = 0 for z ∈ Ω \Γ . It follows that [Ω \Γ] ⊂ ρ(T ) . So
Ω∩ inte σp(T ) = /0 . By Lemma 2.6, there exists K ∈ K (H ) such that Ω ⊂ σ(T +
K) . Thus 0 is an accumulation point of σ(T + K) . By Lemma 2.7, T + K is not
d-invertible, a contradiction. Thus the proof is complete. �

Proof of lemma 1.3. Since T is D-invertible, by Lemma 2.8, R(Tn) is closed and
T can be represented as

T =
[
A E
0 B

]

with respect to the space decomposition H = R(Tn)⊕R(Tn)⊥ , where A is invertible
and B is nilpotent of order n . Thus A = T |R(Tn) .

“(i)=⇒(ii)”. Since 0 lies in the unbounded component of ρ(A) , it follows that 0
lies in the unbounded component of ρs−F(A) . On the other hand, noting that
dimR(Tn)⊥ < ∞ , we deduce that B,E are both compact and ρs−F(A) = ρs−F(T ) .
This proves “(i)=⇒(ii)”.

“(ii)=⇒(i)”. Note that σ(B) = {0} and 0 /∈ σ(A) . By [8, Corollary 3.22], T is
similar to A⊕B , that is, TX = X(A⊕B) for some invertible X ∈ B(H ) .

Claim. dimR(Tn)⊥ < ∞ .

In fact, if dimR(Tn)⊥ = ∞ , then dimN (B) = ∞ (since B is nilpotent). Thus
dimN (T ) = dimN (A⊕B) = ∞ . Also, B∗ is nilpotent acting on R(Tn)⊥ . Thus we
also have dimN (T ∗) = dimN (A∗ ⊕B∗) = ∞ . So T is not semi-Fredholm, contra-
dicting the hypothesis that 0 ∈ ρs−F(T ) . This proves the claim.

By Claim, we have ρs−F(A) = ρs−F(T ) . It follows that 0 lies in the unbounded
component Ω of ρs−F(A) . Since 0 ∈ ρ(A) , we have 0 ∈ [Ω \σ0(A)] . In view of
Corollary 2.4, 0 lies in the unbounded component of ρ(A) . �
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We conclude this note with an example.

EXAMPLE 2.10. Assume that {ei}∞
i=−∞ is an orthonormal basis of H and define

T ∈ B(H ) as
Tei = ei+1, ∀i ∈ Z.

Here Z denotes the set of integers. Then T is a bilateral shift and

σ(T ) = σlre(T ) = {z ∈ C : |z| = 1}.
So 0 lies in the unique bounded component of ρs−F(T ) . By Theorem 1.2, there exists
K0 ∈ K (H ) such that T +K0 is not d-invertible.

Set R = 2I +T . Then

σ(R) = σlre(R) = {z ∈ C : |z−2|= 1}.
So 0 lies in the unbounded component of ρs−F(R) . By Theorem 1.2, R + K is D-
invertible for all K ∈ K (H ) .
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1988, pp. 113–158.

[10] C. L. JIANG AND Z. Y. WANG, Structure of Hilbert space operators, World Scientific Publishing Co.
Pte. Ltd., Hackensack, NJ, 2006.

[11] J. J. KOLIHA, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), no. 3, 367–381.
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