COMPACT PERTURBATIONS OF DRAZIN INVERTIBLE OPERATORS

Boting Jia* and Youling Feng
(Communicated by R. Curto)

Abstract

Necessary and sufficient conditions for the invariance of Drazin invertibility under compact perturbations are established. This proves a conjecture of Kaifan Yang and Hongke Du.

1. Introduction

Throughout this note, \mathscr{H} is a complex separable infinite dimensional Hilbert space. We denote by $\mathscr{B}(\mathscr{H})$ the algebra of all bounded linear operators on \mathscr{H}, and by $\mathscr{K}(\mathscr{H})$ the ideal of all compact operators acting on \mathscr{H}. Recall that an operator $T \in \mathscr{B}(\mathscr{H})$ is said to be Drazin invertible [6] if there exist a nonnegative integer n and $S \in \mathscr{B}(\mathscr{H})$ such that

$$
\begin{equation*}
T S=S T, \quad T S^{2}=S, \quad T^{n+1} S=T^{n} \tag{1}
\end{equation*}
$$

In this case, the smallest nonnegative integer n such that the equalities (1) hold is called the Drazin index of T. Note that invertible operators are always Drazin invertible. It is well known that T is Drazin invertible if and only if T has finite ascent and descent (see [12, Chapter 3, Theorem 10] or [1]), that is, there is a nonnegative integer n such that

$$
\mathscr{N}\left(T^{n}\right)=\mathscr{N}\left(T^{n+1}\right), \quad \mathscr{R}\left(T^{n}\right)=\mathscr{R}\left(T^{n+1}\right) .
$$

Here and in what follows, $\mathscr{N}(T)$ denotes the kernel of T and $\mathscr{R}(T)$ denotes the range of T.

In 1996, Koliha [11] introduced a generalization of Drazin invertibility. An operator T on \mathscr{H} is said to be generalized Drazin invertible if there exists $R \in \mathscr{B}(\mathscr{H})$ such that $T R=R T, T R^{2}=R$ and $T^{2} R-T$ is quasinilpotent. Recall that an operator $X \in \mathscr{B}(\mathscr{H})$ is called quasinilpotent if $\sigma(X)=\{0\}$.

In general the Drazin inverse is unstable under small perturbations. Many of previous papers are devoted to the perturbation theory of the Drazin inverse (see [2, 3, 5, 14, 15]). We remark that Drazin invertibility is also unstable under perturbations (see [16] for counterexamples). In their paper [16], K. Yang and H. Du investigated the stability of Drazin invertibility under small perturbations and finite-rank perturbations. A necessary and sufficient condition is given for the invariance of Drazin invertibility under small perturbations (see [16, Theorem 1.2]). In addition, K. Yang and H. Du raised the following conjecture.

[^0]Conjecture 1.1. ([16], Conjecture 3.5) Let $A \in \mathscr{B}(\mathscr{H})$ be Drazin invertible with Drazin index k. If 0 is in the unbounded component of $\rho\left(\left.A\right|_{\mathscr{R}\left(A^{k}\right)}\right)$ and $\operatorname{dim} \mathscr{R}\left(A^{k}\right)^{\perp}$ $<\infty$, then $A+K$ is Drazin invertible for any compact operator $K \in \mathscr{B}(\mathscr{H})$.

In this note it is completely determined when an operator T satisfies that all compact perturbations of T are Drazin invertible. In particular, we give a positive answer to Conjecture 1.1.

Before we state the main result, we first introduce some terminology.
Let $T \in \mathscr{B}(\mathscr{H})$. We denote by $\sigma(T)$ and $\rho(T)$ the spectrum of T and the resolvent set of T respectively. T is called a semi-Fredholm operator, if $\mathscr{R}(T)$ is closed and either $\operatorname{dim} \mathscr{N}(T)$ or $\operatorname{dim} \mathscr{N}\left(T^{*}\right)$ is finite. In this case, ind $T=\operatorname{dim} \mathscr{N}(T)-$ $\operatorname{dim} \mathscr{N}\left(T^{*}\right)$ is called the index of T. In particular, if $-\infty<\operatorname{ind} T<\infty$, then T is called a Fredholm operator. The Wolf spectrum $\sigma_{l r e}(T)$ is defined by

$$
\sigma_{\text {lre }}(T)=\{\lambda \in \mathbb{C}: T-\lambda \text { is not semi-Fredholm }\} .
$$

The set $\rho_{s-F}(T)=\mathbb{C} \backslash \sigma_{\text {lre }}(T)$ is called the semi-Fredholm domain of T. Note that $\rho_{s-F}(T)$ is an open subset of $\mathbb{C}, \rho(T) \subset \rho_{s-F}(T)$ and $\rho_{s-F}(T+K)=\rho_{s-F}(T)$ for all $K \in \mathscr{K}(\mathscr{H})$.

For convenience we will use the term "D-invertible" for "Drazin invertible", and use the term "d-invertible" for "generalized Drazin invertible".

The main result of this note is the following theorem.

THEOREM 1.2. For $T \in \mathscr{B}(\mathscr{H})$, the following statements are equivalent.
(i) $T+K$ is D-invertible for all $K \in \mathscr{K}(\mathscr{H})$.
(ii) $T+K$ is d-invertible for all $K \in \mathscr{K}(\mathscr{H})$.
(iii) 0 lies in the unbounded component of $\rho_{s-F}(T)$.

We shall prove in Section 2 the following lemma, which shows that the result stated in Conjecture 1.1 is a consequence of Theorem 1.2.

Lemma 1.3. Let $T \in \mathscr{B}(\mathscr{H})$ be Drazin invertible with Drazin index n. Then the following two statements are equivalent.
(i) 0 lies in the unbounded component of $\rho\left(\left.T\right|_{\mathscr{R}\left(T^{n}\right)}\right)$ and $\operatorname{dim} \mathscr{R}\left(T^{n}\right)^{\perp}<\infty$.
(ii) 0 lies in the unbounded component of $\rho_{s-F}(T)$.

2. Proof of theorem 1.2

We first gather some known results we will rely on.
Given a subset Δ of \mathbb{C}, we denote by iso Δ the set of all isolated points of Δ, and by inte Δ the interior of Δ.

Let $T \in \mathscr{B}(\mathscr{H})$. For $-\infty \leqslant n \leqslant \infty$, denote

$$
\rho_{s-F}^{(n)}(T)=\left\{\lambda \in \rho_{s-F}(T): \operatorname{ind}(\lambda-T)=n\right\} .
$$

By the continuity of index function, $\left\{\rho_{s-F}^{(n)}(T):-\infty \leqslant n \leqslant \infty\right\}$ are pairwise disjoint open subsets of \mathbb{C}.

If Δ is a nonempty clopen subset of $\sigma(T)$, then there exists an analytic Cauchy domain Ω such that $\Delta \subset \Omega$ and $[\sigma(T) \backslash \Delta] \cap \bar{\Omega}=\emptyset$. We let $E(\Delta ; T)$ denote the Riesz idempotent of T corresponding to Δ, that is,

$$
E(\Delta ; T)=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma}(\lambda-T)^{-1} \mathrm{~d} \lambda
$$

where $\Gamma=\partial \Omega$ is positively oriented with respect to Ω in the sense of complex variable theory. By the Riesz Decomposition Theorem ([13, Theorem 2.10]), $\mathscr{H}(\Delta ; T):=$ $\mathscr{R}(E(\Delta ; T))$ is an invariant subspace of T and $\sigma\left(\left.T\right|_{\mathscr{H}(\Delta ; T)}\right)=\Delta$. If $\lambda \in$ iso $\sigma(T)$, then $\{\lambda\}$ is a clopen subset of $\sigma(T)$; if, in addition, $\operatorname{dim} \mathscr{H}(\{\lambda\} ; T)<\infty$, then λ is called a normal eigenvalue of T. We denote by $\sigma_{0}(T)$ the set of all normal eigenvalues of T. The reader is referred to [4, Chapter XI] or [8, Chapter 1] for more details.

Lemma 2.1. ([4], page 366) Let $T \in \mathscr{B}(\mathscr{H})$ and $\lambda \in$ iso $\sigma(T)$. Then the following statements are equivalent.
(i) $\lambda \in \sigma_{0}(T)$.
(ii) $\lambda \in \rho_{s-F}^{(0)}(T)$.
(iii) $\lambda \in \rho_{s-F}(T)$.

Let $T \in \mathscr{B}(\mathscr{H})$. For $\lambda \in \rho_{s-F}(T)$, the minimal index of $\lambda-T$ is defined by

$$
\operatorname{minind}(\lambda-T)=\min \left\{\operatorname{dim} \mathscr{N}(\lambda-T), \operatorname{dim} \mathscr{N}(\lambda-T)^{*}\right\}
$$

Lemma 2.2. ([8], Corollary 1.14) Let $T \in \mathscr{B}(\mathscr{H})$. Then
(i) $\rho_{s-F}^{(0)}(T)$ includes the resolvent set $\rho(T)$ of T, and $\sigma_{0}(T)$;
(ii) if $n \neq 0$, then $\rho_{s-F}^{(n)}(T)$ is a bounded set;
(iii) the function $\lambda \mapsto \operatorname{minind}(\lambda-T)$ is constant on every component of $\rho_{s-F}(T)$ except for an at most denumerable subset $\rho_{s-F}^{s}(T)$ of $\rho_{s-F}(T)$ without limit points in $\rho_{s-F}(T)$.

Corollary 2.3. Let $T \in \mathscr{B}(\mathscr{H})$. If λ lies in the unbounded component of $\rho_{s-F}(T)$, then either $\lambda \in \rho(T)$ or $\lambda \in \sigma_{0}(T)$.

Proof. Denote by Ω the unbounded component of $\rho_{s-F}(T)$ containing λ. In view of Lemma 2.2 (iii), there exist a nonnegative integer n and an at most denumerable subset Γ of Ω (which has no limit points in Ω) such that $\operatorname{minind}(z-T)=n$ for $z \in \Omega \backslash \Gamma$.

Claim. $n=0$ and $\Omega \subset \rho_{s-F}^{(0)}(T)$.
Denote by G the unbounded component of $\rho(T)$. It is easy to see that $G \subset \Omega$. Since ind $(z-T)=0$ for $z \in G$ and ind (\cdot) is constant on Ω, we obtain $\Omega \subset \rho_{s-F}^{(0)}(T)$. On the other hand, note that minind $(z-T)=n$ for $z \in G \backslash \Gamma$. Since $G \backslash \Gamma \neq \emptyset$ and minind $(z-T)=0$ for $z \in G$, we deduce that $n=0$. This proves the claim.

Now assume that $\lambda \in \sigma(T)$. It suffices to prove that $\lambda \in \sigma_{0}(T)$. In view of Claim, we have $[\Omega \backslash \Gamma] \subset \rho(T)$. It follows that $\lambda \in \Gamma$. Since Γ has no limits in Ω, we deduce that $\lambda \in$ iso $\sigma(T)$. By Lemma 2.1, it follows that $\lambda \in \sigma_{0}(T)$.

Corollary 2.4. Let $T \in \mathscr{B}(\mathscr{H})$. If Ω is the unbounded component of $\rho_{s-F}(T)$ and G is the unbounded component of $\rho(T)$, then $\Omega \backslash \sigma_{0}(T)=G$.

Proof. By definitions, the inclusion " \supset " is clear.
" \subset ". Note that Ω is an unbounded connected open subset of \mathbb{C} and $\sigma_{0}(T)$ consists of some isolated points of $\sigma(T)$. It follows that $\Omega \backslash \sigma_{0}(T)$ is still unbounded, connected and open. From Corollary 2.3, one can see the inclusion $\left[\Omega \backslash \sigma_{0}(T)\right] \subset \rho(T)$. Therefore $\left[\Omega \backslash \sigma_{0}(T)\right] \subset G$. Thus we are done.

Lemma 2.5. ([10], Lemma 3.2.6) Let $T \in \mathscr{B}(\mathscr{H})$ and suppose that $\emptyset \neq \Delta \subset$ $\sigma_{\text {lre }}(T)$. Then, given $\varepsilon>0$, there exists a compact operator K with $\|K\|<\varepsilon$ such that

$$
T+K=\left[\begin{array}{cc}
N & * \\
0 & A
\end{array}\right] \begin{aligned}
& \mathscr{H}_{1} \\
& \mathscr{H}_{2}
\end{aligned},
$$

where $\mathscr{H}=\mathscr{H}_{1} \oplus \mathscr{H}_{2}, N$ is a diagonal normal operator of uniformly infinite multiplicity, $\sigma(N)=\sigma_{\text {lre }}(N)=\bar{\Delta}$ and $\sigma(T)=\sigma(A)$.

The point spectrum of an operator T is denoted by $\sigma_{p}(T)$.

Lemma 2.6. ([9], Lemma 5.3) Let $T \in \mathscr{B}(\mathscr{H})$ and let Φ be a union of bounded components of $\left.\rho_{s-F}(T)\right]$ such that $\Phi \cap$ inte $\sigma_{p}(T)=\emptyset$. Then there exists $K \in \mathscr{K}(\mathscr{H})$ such that $\Phi \subset \sigma(T+K)$.

Lemma 2.7. ([11]) Let $A \in \mathscr{B}(\mathscr{H})$. Then A is d-invertible if and only if 0 is not an accumulation point of $\sigma(A)$.

Lemma 2.8. ([7], Theorem 2.5) An operator $T \in \mathscr{B}(\mathscr{H})$ is D-invertible with Drazin index n if and only if $\mathscr{R}\left(T^{n}\right)$ is closed and

$$
T=\left[\begin{array}{cc}
A & E \\
0 & B
\end{array}\right]
$$

with respect to the space decomposition $\mathscr{H}=\mathscr{R}\left(T^{n}\right) \oplus \mathscr{R}\left(T^{n}\right)^{\perp}$, where A is invertible and B is nilpotent of order n.

By Lemma 2.8, if T is D-invertible, then either $0 \in \rho(T)$ or $0 \in$ iso $\sigma(T)$. Hence D-invertible operators are always d-invertible.

Lemma 2.9. Let $T \in \mathscr{B}(\mathscr{H})$. If $0 \in \sigma_{0}(T)$, then T is D-invertible.

Proof. Denote $\Delta=\sigma(T) \backslash\{0\}$. We claim that $\Delta \neq \emptyset$. In fact, if not, then $\sigma(T)=$ $\{0\}$ and, by definition, $\mathscr{H}=\mathscr{H}(\{0\} ; T)<\infty$, a contradiction. Then both Δ and $\{0\}$ are nonempty clopen subsets of $\sigma(T)$.

Denote $\mathscr{H}_{0}=\mathscr{H}(\{0\} ; T)$ and $\mathscr{H}_{1}=\mathscr{H}(\Delta ; T)$. Then, by the Riesz Decomposition Theorem (see [13, Theorem 2.10]), $\mathscr{H}_{0}, \mathscr{H}_{1}$ are complementary invariant subspaces of T and

$$
\sigma\left(\left.T\right|_{\mathscr{H}_{0}}\right)=\{0\}, \quad \sigma\left(\left.T\right|_{\mathscr{H}_{1}}\right)=\Delta
$$

Since $\operatorname{dim} \mathscr{H}_{0}<\infty$, it is easy to see that $\left.T\right|_{\mathscr{H}_{0}}$ is nilpotent (say, of order n). Note that $\left.T\right|_{\mathscr{H}_{1}}$ is invertible. Then

$$
\mathscr{N}\left(T^{n}\right)=\mathscr{N}\left(T^{n+1}\right)=\mathscr{H}_{0}, \quad \mathscr{R}\left(T^{n}\right)=\mathscr{R}\left(T^{n+1}\right)=\mathscr{H}_{1} .
$$

Therefore T is D-invertible.
Now we are going to give the proof of theorem 1.2.
Proof of theorem 1.2. "(iii) \Longrightarrow (i)". Assume that 0 lies in the unbounded component of $\rho_{s-F}(T)$. Let K be a compact operator on \mathscr{H}. Since semi-Fredholm domains are invariant under compact perturbations, we deduce that 0 still lies in the unbounded component of $\rho_{s-F}(T+K)$. By Corollary 2.3, we have either $0 \in \rho(T+K)$ or $0 \in \sigma_{0}(T+K)$. Then, by Lemma 2.9, $T+K$ is D-invertible.
"(i) \Longrightarrow (ii)". This is obvious, since D-invertible operators are always d-invertible.
"(ii) \Longrightarrow (iii)". Assume that $T+K$ is d-invertible for all $K \in \mathscr{K}(\mathscr{H})$. For a proof by contradiction, we assume that 0 does not lie in the unbounded component of $\sigma_{\text {lre }}(T)$. Then either $0 \in \sigma_{\text {lre }}(T)$ or 0 lies in a bounded component of $\rho_{s-F}(T)$. So the rest of the proof is divided into two cases.

Case 1. $0 \in \sigma_{l r e}(T)$.
By Lemma 2.5 , there exists $K_{1} \in \mathscr{K}(\mathscr{H})$ such that

$$
T+K_{1}=\left[\begin{array}{ll}
0 & E \\
0 & A
\end{array}\right]
$$

relative to some space decomposition $\mathscr{H}=\mathscr{H}_{1} \oplus \mathscr{H}_{2}$, where $\operatorname{dim} \mathscr{H}_{1}=\infty$. Then we can choose an orthonormal basis $\left\{e_{i}: i=1,2,3, \cdots\right\}$ of \mathscr{H}_{1}. For $x \in \mathscr{H}$, define

$$
K_{2} x=\sum_{n=1}^{\infty} \frac{\left\langle x, e_{n}\right\rangle e_{n}}{n}
$$

Then $K_{2} \in \mathscr{K}(\mathscr{H})$. Set $C=K_{1}+K_{2}$. It is easy to see that $C \in \mathscr{K}(\mathscr{H})$ and

$$
(T+C) e_{n}=K_{2} e_{n}=e_{n} / n, \quad \forall n \geqslant 1
$$

Thus $\{1 / n: n \geqslant 1\} \subset \sigma_{p}(T+C)$. Hence 0 is an accumulation point of $\sigma(T+C)$. By Lemma 2.7, $T+C$ is not d-invertible, a contradiction.

Case 2. 0 lies in a bounded component Ω of $\rho_{s-F}(T)$.
In view of Lemma 2.2 (iii), there exist a nonnegative integer n and an most denumerable subset Γ of Ω (which has no limit points in Ω) such that minind $(z-$ $T)=n$ for $z \in \Omega \backslash \Gamma$.

Note that T is d-invertible. Then, by Lemma 2.7, we have either $0 \in \rho(T)$ or $0 \in$ iso $\sigma(T)$. Then there exists $\delta>0$ such that $[B(0, \delta) \backslash\{0\}] \subset \rho(T)$. It follows that $[B(0, \delta) \backslash\{0\}] \subset \Omega$ and minind $(T-z)=\operatorname{ind}(T-z)=0$ for $z \in[B(0, \delta) \backslash\{0\}]$. Thus $\Omega \subset \rho_{s-F}^{(0)}(T)$ and, by Lemma 2.2 (iii), $n=0$. Thus we have proved that ind $(T-z)=0$ for $z \in \Omega$ and minind $(T-z)=0$ for $z \in \Omega \backslash \Gamma$. It follows that $[\Omega \backslash \Gamma] \subset \rho(T)$. So $\Omega \cap$ inte $\sigma_{p}(T)=\emptyset$. By Lemma 2.6, there exists $K \in \mathscr{K}(\mathscr{H})$ such that $\Omega \subset \sigma(T+$ $K)$. Thus 0 is an accumulation point of $\sigma(T+K)$. By Lemma 2.7, $T+K$ is not d-invertible, a contradiction. Thus the proof is complete.

Proof of lemma 1.3. Since T is D-invertible, by Lemma 2.8, $\mathscr{R}\left(T^{n}\right)$ is closed and T can be represented as

$$
T=\left[\begin{array}{ll}
A & E \\
0 & B
\end{array}\right]
$$

with respect to the space decomposition $\mathscr{H}=\mathscr{R}\left(T^{n}\right) \oplus \mathscr{R}\left(T^{n}\right)^{\perp}$, where A is invertible and B is nilpotent of order n. Thus $A=\left.T\right|_{\mathscr{R}\left(T^{n}\right)}$.
"(i) \Longrightarrow (ii)". Since 0 lies in the unbounded component of $\rho(A)$, it follows that 0 lies in the unbounded component of $\rho_{s-F}(A)$. On the other hand, noting that $\operatorname{dim} \mathscr{R}\left(T^{n}\right)^{\perp}<\infty$, we deduce that B, E are both compact and $\rho_{s-F}(A)=\rho_{s-F}(T)$. This proves " $(\mathrm{i}) \Longrightarrow$ (ii)".
"(ii) \Longrightarrow (i)". Note that $\sigma(B)=\{0\}$ and $0 \notin \sigma(A)$. By [8, Corollary 3.22], T is similar to $A \oplus B$, that is, $T X=X(A \oplus B)$ for some invertible $X \in \mathscr{B}(\mathscr{H})$.

Claim. $\operatorname{dim} \mathscr{R}\left(T^{n}\right)^{\perp}<\infty$.
In fact, if $\operatorname{dim} \mathscr{R}\left(T^{n}\right)^{\perp}=\infty$, then $\operatorname{dim} \mathscr{N}(B)=\infty$ (since B is nilpotent). Thus $\operatorname{dim} \mathscr{N}(T)=\operatorname{dim} \mathscr{N}(A \oplus B)=\infty$. Also, B^{*} is nilpotent acting on $\mathscr{R}\left(T^{n}\right)^{\perp}$. Thus we also have $\operatorname{dim} \mathscr{N}\left(T^{*}\right)=\operatorname{dim} \mathscr{N}\left(A^{*} \oplus B^{*}\right)=\infty$. So T is not semi-Fredholm, contradicting the hypothesis that $0 \in \rho_{s-F}(T)$. This proves the claim.

By Claim, we have $\rho_{s-F}(A)=\rho_{s-F}(T)$. It follows that 0 lies in the unbounded component Ω of $\rho_{s-F}(A)$. Since $0 \in \rho(A)$, we have $0 \in\left[\Omega \backslash \sigma_{0}(A)\right]$. In view of Corollary 2.4, 0 lies in the unbounded component of $\rho(A)$.

We conclude this note with an example.
EXAmple 2.10. Assume that $\left\{e_{i}\right\}_{i=-\infty}^{\infty}$ is an orthonormal basis of \mathscr{H} and define $T \in \mathscr{B}(\mathscr{H})$ as

$$
T e_{i}=e_{i+1}, \quad \forall i \in \mathbb{Z}
$$

Here \mathbb{Z} denotes the set of integers. Then T is a bilateral shift and

$$
\sigma(T)=\sigma_{\text {lre }}(T)=\{z \in \mathbb{C}:|z|=1\} .
$$

So 0 lies in the unique bounded component of $\rho_{s-F}(T)$. By Theorem 1.2, there exists $K_{0} \in \mathscr{K}(\mathscr{H})$ such that $T+K_{0}$ is not d-invertible.

Set $R=2 I+T$. Then

$$
\sigma(R)=\sigma_{\text {lre }}(R)=\{z \in \mathbb{C}:|z-2|=1\} .
$$

So 0 lies in the unbounded component of $\rho_{s-F}(R)$. By Theorem 1.2, $R+K$ is Dinvertible for all $K \in \mathscr{K}(\mathscr{H})$.

Acknowledgement. Research for this paper was supported by NSFC (11601181), NSSFC (16BTJ020) and a grant (2018B24) from Jilin University of Finance and Economics.

REFERENCES

[1] P. Aiena, M. T. Biondi, and C. Carpintero, On Drazin invertibility, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2839-2848.
[2] N. Castro GonzÁLEZ, Additive perturbation results for the Drazin inverse, Linear Algebra Appl. 397 (2005), 279-297.
[3] N. Castro González and J. J. Koliha, Perturbation of the Drazin inverse for closed linear operators, Integral Equations Operator Theory 36 (2000), no. 1, 92-106.
[4] J. B. Conway, A course in functional analysis, 2nd Edition, Vol. 96 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1990.
[5] H. Diao, Structured perturbations of Drazin inverse, Appl. Math. Comput. 158 (2004), no. 2, 419432.
[6] M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly 65 (1958), 506-514.
[7] H. K. Du and C. Y. Deng, The representation and characterization of Drazin inverses of operators on a Hilbert space, Linear Algebra Appl. 407 (2005), 117-124.
[8] D. A. Herrero, Approximation of Hilbert space operators, Vol. 1, 2nd ed., Pitman Res. Notes Math. Ser., vol. 224, Longman Sci. Tech., Harlow, 1989.
[9] D. A. Herrero, T. J. Taylor, and Z. Y. Wang, Variation of the point spectrum under compact perturbations, in: Topics in operator theory, Vol. 32 of Oper. Theory Adv. Appl., Birkhäuser, Basel, 1988, pp. 113-158.
[10] C. L. Jiang and Z. Y. Wang, Structure of Hilbert space operators, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006.
[11] J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), no. 3, 367-381.
[12] V. MÜLER, Spectral theory of linear operators and spectral sysems on Banach Algebras, Birkhäser Verlag, Berlin, 2003.
[13] H. Radjavi and P. Rosenthal, Invariant subspaces, 2nd ed., Dover Publications Inc., Mineola, NY, 2003.
[14] V. RaKOCEVIC AND Y. WEI, The perturbation theory for the Drazin inverse and its applications II, J. Aust. Math. Soc. 70 (2001), no. 2, 189-197.
[15] Y. Wei and G. Wang, The perturbation theory for the Drazin inverse and its applications, Linear Algebra Appl. 258 (1997), 179-186.
[16] K. Yang and H. Du, Perturbations of Drazin invertible operators, Front. Math. China 10 (2015), no. 1, 199-208.
(Received October 9, 2017)
Boting Jia
School of Statistics
Jilin University of Finance and Economics Changchun 130117, P. R. China
e-mail: botingjia@163.com
Youling Feng
School of Management Science and Information Engineering
Jilin University of Finance and Economics
Changchun 130117, P.R. China
e-mail: fengyouling79@163.com

[^0]: Mathematics subject classification (2010): 47A55, 47A58, 47A05, 15A09.
 Keywords and phrases: Drazin inverse, generalized Drazin inverse, compact operators, spectrum.

 * Corresponding author.

