SIMILARITY JORDAN MULTIPLICATIVE MAPS

Zijie Qin and Fangyan Lu

(Communicated by P. Šemrl)

Abstract. We characterize bijections $\phi: B(X) \rightarrow B(X)$ satisfying that $\phi(A B+B A)$ and $\phi(A) \phi(B)+$ $\phi(B) \phi(A)$ are similar for all $A, B \in B(X)$.

1. Introduction

Let X be a complex Banach space. By $B(X)$ and X^{*} we denote the algebra of all bounded linear operators on X and the topological dual of X, respectively. For $A \in B(X), A^{*}$ is its adjoint. Two operators A, B in $B(X)$ are called similar, denoted by $A \sim B$, if there exists an invertible operator S in $B(X)$ such that $A=S B S^{-1}$.

Our main result reads as follows. Recall that a map $T: X \rightarrow X$ is called semilinear if it is additive and there is an automorphism $h: \mathbb{C} \rightarrow \mathbb{C}$ such that $T(\boldsymbol{\lambda} x)=h(\boldsymbol{\lambda}) x$ for all $x \in X$ and $\lambda \in \mathbb{C}$. Given two operators A, B, their Jordan product is defined by $A \circ B=A B+B A$.

THEOREM 1.1. Let X be a complex Banach space of dimension $\geqslant 3$ and ϕ : $B(X) \rightarrow B(X)$ a bijective map satisfying

$$
\begin{equation*}
\phi(A \circ B) \sim \phi(A) \circ \phi(B) \tag{1.1}
\end{equation*}
$$

for all $A, B \in B(X)$. Then one of the following holds.
(1) There is a semilinear bijection $T: X \rightarrow X$ such that

$$
\phi(A)=T A T^{-1}, \quad A \in B(X)
$$

Moreover, if X is infinite-dimensional, then T is bounded and linear or conjugatelinear.
(2) The space X is reflexive and there is a semilinear bijection $T: X^{*} \rightarrow X$ such that

$$
\phi(A)=T A^{*} T^{-1}, A \in B(X)
$$

Moreover, if X is infinite-dimensional, then T is bounded and linear or conjugatelinear.

[^0]There are two distinct motivations. First is the works on Jordan multiplicative map. A map $\phi: B(X) \rightarrow B(X)$ is called Jordan multiplicative if $\phi(A \circ B)=\phi(A) \circ \phi(B)$ for all $A, B \in B(X)$. In [14], the second author showed that a bijective Jordan mutiplicative map of $B(X)$ is additive. Various generalizations are available. For example, papers [11, 24, 25] weakened the bijectivity assumption; papers [1, 2, 9, 10, 16] altered the underlying algebra. In the present paper, we weaken the equality into the "approximate" equality.

The second motivation for our study is the works on simility-preserving maps. A map $\phi: B(X) \rightarrow B(X)$ is said to be similarity-preserving if $\phi(A) \sim \phi(B)$ whenever $A \sim B$. Hiai [6] and Lim [13] characterized similarity-preserving linear map on the matrix algebra. Various generalizations are available. For example, papers [8, 15, 23, 17] studied infinite-dimensional space case; papers [4, 7] weakened the linearity; papers $[18,19,20]$ considered other type of similarity. In the present paper, we consider nonlinear similarity-preserving maps concerning the Jordan product.

2. Proofs

This section is due to proving Theorem 1.1. Throughout this section, X is a complex Banach space with dimension at least $3, \phi$ is a surjection of $B(X)$ satisfying Eq.(1.1). An operator A is called nilpotent if there is a positive integer $n \in \mathbb{N}$ such that $A^{n}=0$. By $\mathscr{N}(X)$ we denote the set of all nilpotent operators in $B(X)$. For non-zero vectors $x \in X$ and $f \in X^{*}$, the rank-one operator $x \otimes f$ is defined as the map: $y \mapsto f(y) x, y \in X$. Then the symbol $\mathscr{N}_{1}(X)$ stands for the set of all rank-one operators in $\mathscr{N}(X)$.

We begin with an easy an useful observation.
Lemma 2.1. Let A and $x \otimes f$ be in $B(X)$. Then the following are equivalent:
(1) $A \circ x \otimes f \in \mathscr{N}(X)$.
(2) $f(A x)=0$ and $f(x) f\left(A^{2} x\right)=0$.
(3) $(A \circ x \otimes f)^{3}=0$.

Proof. That $(2) \Rightarrow(3)$ is an easy computation and that $(3) \Rightarrow(1)$ is obvious. To show that (1) \Rightarrow (2), we suppose that $A \circ x \otimes f \in \mathscr{N}(X)$. Then its trace is zero and therefore $f(A x)=0$. Thus $(A \circ x \otimes f)^{2}=f(x) A x \otimes f A+f\left(A^{2} x\right) x \otimes f$ and hence $f(x) f\left(A^{2} x\right)=0$ since it is nilpotent.

Lemma 2.2. Let $A \in B(X)$. Then $A \in \mathbb{C} I$ if and only if $A \circ N \in \mathscr{N}(X)$ for all $N \in \mathscr{N}(X)$.

Proof. The necessity is obvious. To verify the sufficiency, let $x \otimes f \in \mathscr{N}_{1}(X)$. Then $A \circ x \otimes f \in \mathscr{N}(X)$ and hence $f(A x)=0$ for all $x \otimes f \in \mathscr{N}_{1}(X)$ by Lemma 2.1. This implies $A \in \mathbb{C} I$.

Lemma 2.3. Suppose that X has dimension at least five. Let $A \in B(X)$ be such that $A^{2}=0$. Then the following are equivalent:
(1) $\operatorname{rank}(A) \geqslant 2$.
(2) There exists an operator $S \in B(X)$ such that $A \circ S \in \mathscr{N}(X)$ but $(A \circ S)^{4} \neq 0$.

Proof. (2) \Rightarrow (1). Suppose on the contrary that $\operatorname{rank}(A) \leqslant 1$. Then for any $S \in$ $B(X)$, if $A \circ S$ is nilpotent, then $(A \circ S)^{3}=0$ by Lemma 2.1, a contradiction.
$(1) \Rightarrow(2)$. We distinguish two cases.
Case 1: $\operatorname{rank}(A)=2$. Write $A=x_{1} \otimes f_{3}+x_{2} \otimes f_{4}$, where $x_{1}, x_{2} \in X$ are linearly independent, $f_{3}, f_{4} \in X^{*}$ are linearly independent, $f_{j}\left(x_{i}\right)=0$ for all $i=1,2$ and $j=$ 3,4 . Since X is has dimension at least 5 , we can find $x_{3}, x_{4}, x_{5} \in X$ and f_{1}, f_{2}, f_{5} such that $f_{i}\left(x_{j}\right)=\delta_{i j}$ for all $1 \leqslant i, j \leqslant 5$. Now set $S=x_{3} \otimes f_{5}+x_{4} \otimes f_{1}+x_{5} \otimes f_{2}$. Then $(A \circ S)^{4}=x_{2} \otimes f_{3} \neq 0$ and $(A \circ S)^{5}=0$.

Case 2: $\operatorname{rank}(A) \geqslant 3$. Then there exist vectors x_{1}, x_{2}, x_{3} in X such that $A x_{1}, A x_{2}, A x_{3}$ are linearly independent. Hence since $A^{2}=0$, the vectors $x_{1}, x_{2}, x_{3}, A x_{1}, A x_{2}, A x_{3}$ are linearly independent. Take $f_{1}, f_{2} \in X^{*}$ such that

$$
\begin{aligned}
& f_{1}\left(A x_{2}\right)=1, \quad f_{1}\left(x_{1}\right)=f_{1}\left(x_{2}\right)=f_{1}\left(A x_{1}\right)=0 \\
& f_{2}\left(A x_{3}\right)=f_{2}\left(x_{1}\right)=1, f_{2}\left(x_{2}\right)=f_{2}\left(A x_{1}\right)=f_{2}\left(A x_{2}\right)=0
\end{aligned}
$$

Set $S=x_{1} \otimes f_{1}+x_{2} \otimes f_{2}$. Then $(A \circ S)^{4}=A x_{1} \otimes f_{2} A \neq 0$ and $(A \circ S)^{5}=0$.
DEFINITION 2.4. We say that an operator is s-idempotent if it is a scalar multiple of an idempotent operator.

Observe that an operator is s-idempotent if and only if it is a scalar multiple of its square.

Lemma 2.5. Suppose that X has dimension at least five. Let A be s-idempotent. Then the following are equivalent.
(1) $\operatorname{rank}(A) \geqslant 2$.
(2) There exists an operator $S \in B(X)$ such that $A \circ S \in \mathscr{N}(X)$ and the rank of $(A \circ S)^{2}$ is greater than one.

Proof. Without loss of generality, we may assume that A is idempotent.
(2) \Rightarrow (1). Suppose $\operatorname{rank}(A)=1$. Write $A=x \otimes f$ with $f(x)=1$. Suppose $S \circ x \otimes f \in \mathscr{N}(X)$ for an operator $S \in B(X)$. Then $f(S x)=0$ and $f\left(S^{2} x\right)=0$ by Lemma 2.1. Consequently, $(S \circ x \otimes f)^{2}=S x \otimes f S$ has rank at most one.
$(1) \Rightarrow(2)$. We distinguish two cases.
Case 1: $2 \leqslant \operatorname{rank}(A) \leqslant 3$. Then we can take x_{1}, x_{2} from the image of A and x_{3}, x_{4} from the image of $I-A$ such that $x_{1}, x_{2}, x_{3}, x_{4}$ are linearly independent. Take $f_{1}, f_{2}, f_{3}, f_{4}$ from X^{*} such that $f_{i}\left(x_{j}\right)=\delta_{i j}, 1 \leqslant i, j \leqslant 4$. Set $S=x_{2} \otimes f_{4}(I-A)+$
$x_{4} \otimes f_{1} A+x_{1} \otimes f_{3}(I-A)$. Then $(A \circ S)^{2}=x_{4} \otimes f_{3}(I-A)+x_{2} \otimes f_{1} A$ has rank two and $(A \circ S)^{4}=0$.

Case 2: $\operatorname{rank}(A) \geqslant 4$. Since A is idempotent, we can take vectors $x_{1}, x_{2}, x_{3}, x_{4}$ from the range of A and vectors $f_{1}, f_{2}, f_{3}, f_{4}$ from the range of A^{*} such that $f_{i}\left(x_{j}\right)=\delta_{i j}$ for all $1 \leqslant i, j \leqslant 4$. Set $S=x_{1} \otimes f_{2}+x_{2} \otimes f_{3}+x_{3} \otimes f_{4}$. Then $(A \circ S)^{2}=4\left(x_{1} \otimes f_{3}+\right.$ $\left.x_{2} \otimes f_{4}\right)$ has rank two and $(A \circ S)^{4}=0$.

Proof of Theorem 1.1. For clarity of exposition, we proceed in steps.
STEP 1. We have $\phi(0)=0$.
By the surjectivity of ϕ, we can take $A \in B(X)$ such that $\phi(A)=0$. Then by Eq.(1.1),

$$
\phi(0)=\phi(A \circ 0) \sim \phi(A) \circ \phi(0)=0 .
$$

So $\phi(0)=0$.
Step 2. Let $A, B \in B(X)$.
(1) $\phi\left(2^{2^{n}-1} A^{2^{n}}\right) \sim 2^{2^{n}-1} \phi(A)^{2^{n}}$ for all $n \in \mathbb{N}$.
(2) $\phi\left(2^{2^{n}-1}(A \circ B)^{2^{n}}\right) \sim 2^{2^{n}-1}(\phi(A) \circ \phi(B))^{2^{n}}$ for all $n \in \mathbb{N}$.
(3) $A \in \mathscr{N}(X)$ if and only if $\phi(A) \in \mathscr{N}(X)$.
(4) $A \circ B \in \mathscr{N}(X)$ if and only if $\phi(A) \circ \phi(B) \in \mathscr{N}(X)$.

It is easy to see that (3) follows from (1), Step 1 and the injectivity of ϕ, and that (4) follows from (2), Step 1 and the injectivity of ϕ.

By Eq.(1.1), we have $\phi\left(2 A^{2}\right) \sim 2 \phi(A)^{2}$. Suppose that

$$
\phi\left(2^{2^{n}-1} A^{2^{n}}\right) \sim 2^{2^{n}-1} \phi(A)^{2^{n}} .
$$

Note that if two operators are similar then their squares are similar. Thus

$$
\left(2^{2^{n}-1} \phi(A)^{2^{n}}\right)^{2} \sim\left(\phi\left(2^{2^{n}-1} A^{2^{n}}\right)\right)^{2} \sim \frac{1}{2} \phi\left(2 \cdot\left(2^{2^{n}-1} A^{2^{n}}\right)^{2}\right)=\frac{1}{2} \phi\left(2^{2^{n+1}-1} A^{2^{n+1}}\right)
$$

So

$$
\phi\left(2^{2^{n+1}-1} A^{2^{n+1}}\right) \sim 2^{2^{n+1}-1} \phi(A)^{2^{n+1}}
$$

Therefore, by the induction, we prove (1).
Now by (1) and Eq.(1.1), we have

$$
\phi\left(2^{2^{n}-1}(A \circ B)^{2^{n}}\right) \sim 2^{2^{n}-1} \phi(A \circ B)^{2^{n}} \sim 2^{2^{n}-1}(\phi(A) \circ \phi(B))^{2^{n}}
$$

for all $n \in \mathbb{N}$. This proves (2).
Step 3. $\phi(A) \in \mathbb{C} I$ if and only if $A \in \mathbb{C} I$.
It is a consequence of Step 2 and Lemma 2.2.

STEP 4. There is a bijective map θ of \mathbb{C} onto itself such that $\phi(z I)=\theta(z) I$ and $\phi(2 z A) \sim 2 \theta(z) \phi(A)$ for all $z \in \mathbb{C}$ and $A \in B(X)$.

This is an easy consequence of Step 3 and Eq.(1.1).
Step 5. $\phi\left(\mathscr{N}_{1}(X)\right)=\mathscr{N}_{1}(X)$.
Apply [5, Theorem 2.1] when X is finite-dimensional and apply Step 2(3) and Lemma 2.3 when X is infinite-dimensional.

STEP 6. Let $A \in B(X)$ be non-nilpotent. Then $\phi(A)$ is s-idempotent if and only if A is s-idempotent. In particular, if A is idempotent, then $\frac{1}{\theta(1)} \phi(A)$ is idempotent.

First suppose that A is s-idempotent. Then $A=\lambda P$ for some nonzero scalar λ and some idempotent operator P. We can suppose that $P \neq I$; for otherwise, we are done by Step 3. Let $x \otimes f \in \mathscr{N}_{1}(X)$ be such that $f(\phi(A) x)=0$. By Step 5, we can take $y \otimes g \in \mathscr{N}_{1}(X)$ such that $\phi(y \otimes g)=x \otimes f$. Compute

$$
\begin{align*}
& (\phi(A) \circ x \otimes f)^{2}=f\left(\phi(A)^{2} x\right) x \otimes f \tag{2.1}\\
& (\phi(A) \circ x \otimes f)^{4}=0 \tag{2.2}
\end{align*}
$$

By Eq.(2.2) and Step 2(3), $A \circ y \otimes g \in \mathscr{N}(X)$. Then $g(A y)=0$ by Lemma 2.1 and hence $(A \circ y \otimes g)^{2}=0$. This together with Step 2 and Eq.(2.1) leads to $f\left(\phi(A)^{2} x\right)=0$ for all $x \otimes f \in \mathscr{N}_{1}(X)$ with $f(\phi(A) x)=0$. By [12, Lemma 2.4], there exist scalars $\alpha, \beta \in \mathbb{C}$ such that

$$
\phi(A)^{2}+\alpha \phi(A)+\beta I=0
$$

By the surjectivity of ϕ, we can take $S \in B(X)$ such that $\phi(S)=\phi(A)+\alpha I$. Then

$$
\phi(A \circ S) \sim \phi(A) \circ \phi(S)=-2 \beta I
$$

By Step 3, $A \circ S=\gamma I$ for some scalar γ. Then $\gamma(I-P)=(I-P)(A \circ S)(I-P)=0$. So $\gamma=0$ and hence $\beta=0$. Thus $\phi(A)^{2}+\alpha \phi(A)=0$. This implies that A is s-idempotent.

In a similar way, we can show that if $\phi(A)$ is s-idempotent then A is s-idempotent.
Now suppose that A is idempotent. Then $\phi(A)=\mu Q$, where $\mu \in \mathbb{C}$ and Q is an idempotent operator. Then $\phi(2 A)=\phi\left(2 A^{2}\right) \sim 2 \phi(A)^{2}=2 \mu^{2} Q$. On the other hand, by Step $4, \phi(2 A) \sim 2 \theta(1) \phi(A)=2 \mu \theta(1) Q$. We have $2 \mu^{2} Q \sim 2 \mu \theta(1) Q$. This implies that $\mu=\theta(1)$, completing the proof.

Step 7. Let $A \notin \mathscr{N}(X)$. Then $\phi(A)$ is of rank-one if and only so is A.
If X is finite-dimensional, the result can be concluded from [5, Theorem 2.1]. In the following, we assume that X is infinite-dimensional.

First suppose that A is of rank-one. Then A is s-idempotent and hence so is $\phi(A)$ by Step 6. Suppose $\phi(S) \circ \phi(A) \in \mathscr{N}(X)$ for some $S \in B(X)$. Then $S \circ A \in \mathscr{N}(X)$. By Lemma 2.5, $(S \circ A)^{2}$ has rank at most one. Then by Step 5, $\phi\left(2(A \circ S)^{2}\right)$ has rank at most one. Since

$$
(\phi(S) \circ \phi(A))^{2} \sim \frac{1}{2} \phi\left(2(A \circ S)^{2}\right)
$$

it follows that $(\phi(S) \circ \phi(A))^{2}$ has rank at most one. By Lemma 2.5, $\phi(A)$ is of rankone.

In a similar way, we can show that if $\phi(A)$ is of rank-one then so is A.

Step 8. Let P be an idempotent and λ be a nonzero scalar. Then $\phi(\lambda P)$ and $\phi(P)$ are linearly dependent.

Let $x \otimes f$ be any rank-one operator. Then by Steps 5 and 7, there is a rank-one operator $y \otimes g$ such that $\phi(y \otimes g)=x \otimes f$. Note that $\phi(\lambda P)$ and $\phi(P)$ are both sidempotent by Step 6. Then

$$
\begin{aligned}
f(\phi(P) x)=0 & \Leftrightarrow \phi(P) \circ x \otimes f \in \mathscr{N}(X) \Leftrightarrow P \circ y \otimes g \in \mathscr{N}(X) \Leftrightarrow(\lambda P) \circ y \otimes g \in \mathscr{N}(X) \\
& \Leftrightarrow \phi(\lambda P) \circ x \otimes f \in \mathscr{N}(X) \Leftrightarrow f(\phi(\lambda P) x)=0 .
\end{aligned}
$$

So $f(\phi(P) x)=0$ if and only if $f(\phi(\lambda P) x)=0$ for all $x \in X$ and $f \in X^{*}$. This implies that $\phi(\lambda P)$ and $\phi(P)$ are linearly dependent.

Recall that $\mathscr{P}(X)$ denotes the set of all idempotent operators in $B(X)$. In the following, we let $\psi=\left.\frac{1}{\theta(1)} \phi\right|_{\mathscr{P}(X)}$, the restriction of $\frac{1}{\theta(1)} \phi$ to $\mathscr{P}(X)$.

STEP 9. The following are true.
(1) The map ψ is a bijection from $\mathscr{P}(X)$ onto $\mathscr{P}(X)$.
(2) For $P, Q \in \mathscr{P}(X), P Q=Q P=0$ if and only if $\psi(P) \psi(Q)=\psi(Q) \psi(P)=0$.

We only show (1) since (2) is a direct verification.
First we know that the image of ψ is contained in $\mathscr{P}(X)$ by Step 6.
Next we show the surjectivity. Suppose that $\phi(A)$ is idempotent for some $A \in$ $B(X)$. Then A is s-idempotent by Step 6 . Write $A=\lambda P$ for some scalar $\lambda \in \mathbb{C}$ and some idempotent $P \in \mathscr{P}(X)$. Then by Step 8 , there is a scalar $\mu \in \mathbb{C}$ such that

$$
\phi(A)=\mu \phi(P)=\mu \theta(1) \psi(P)
$$

Since both $\phi(A)$ and $\psi(P)$ are idempotent, we conclude $\mu \theta(1)=1$ and then $\psi(P)=$ $\phi(A)$.

Finally, we show the injectivity. Let P_{1} and P_{2} be idempotents and suppose that $\psi\left(P_{1}\right)=\psi\left(P_{2}\right)$. Then $\phi\left(P_{1}\right)=\phi\left(P_{2}\right)$ and hence $P_{1}=P_{2}$ by the injectivity of ϕ.

Now by Step $9, \psi$ is a bijective map on $\mathscr{P}(X)$ preserving orthogonality in both directions. We can apply [21, Corollary 4.13] when X is finite-dimensional and [22, Corollary 1.4 and Corollary 1.5] when X is infinite-dimensional. Then one of the following holds:
(1) There is a semilinear bijection $T: X \rightarrow X$ such that

$$
\phi(P)=\theta(1) T P T^{-1}, P \in \mathscr{P}(X) .
$$

Moreover, if X is infinite-dimensional, then T is bounded and linear or conjugatelinear.
(2) The space X is reflexive and there is a semilinear bijection $T: X^{*} \rightarrow X$ such that

$$
\phi(P)=\theta(1) T P^{*} T^{-1}, P \in \mathscr{P}(X)
$$

Moreover, if X is infinite-dimensional, then T is bounded and linear or conjugatelinear.

Without loss of generality, in the rest of proof we assume the first case above holds and show that case 1 in Theorem 1.1 holds. Suppose that h is an automorphism of \mathbb{C} such that $T(\lambda x)=h(\lambda) T x$ for all $\lambda \in \mathbb{C}$ and $x \in X$. Then it is easy to verify that $T^{-1}(h(\lambda) x)=\lambda T^{-1} x$ for all $\lambda \in \mathbb{C}$ and $x \in X$. Therefore $T^{-1} A T \in B(X)$ for all $A \in B(X)$ and hence $T^{-1} \phi(\cdot) T$ is a bijection of $B(X)$ satisfying Eq.(1.1). So we may replace ϕ by $T^{-1} \phi T$ and then we have that

$$
\begin{equation*}
\phi(P)=\theta(1) P, P \in \mathscr{P}(X) \tag{2.3}
\end{equation*}
$$

Our aim is to show that $\phi(A)=A$ for all $A \in B(X)$.
STEP 10. There exists a function $\tau: B(X) \rightarrow \mathbb{C} \backslash\{0\}$ such that $\phi(A)=\tau(A) A$ for all $A \in B(X)$.

First we suppose that $A^{2}=0$. Then $\phi(A)^{2}=0$ by Step 2 . Therefore, for any $x \otimes f \in \mathscr{P}(X)$, by Eq.(2.3) we have

$$
\begin{aligned}
f(\phi(A) x)=0 & \Leftrightarrow \theta(1)(\phi(A) \circ x \otimes f) \in \mathscr{N}(X) \Leftrightarrow \phi(A) \circ \phi(x \otimes f) \in \mathscr{N}(X) \\
& \Leftrightarrow A \circ x \otimes f \in \mathscr{N}(X) \Leftrightarrow f(A x)=0
\end{aligned}
$$

and so $\phi(A)=\tau(A) A$ for some nonzero scalar $\tau(A)$ by [3, Lemma 2.16].
We now turn to the general case. Let $A \in B(X)$. By Step 3, we can assume $A \notin \mathbb{C} I$. For $x \in X, f \in X^{*}$ with $f(x)=0$ and $f(A x)=0$, since $A \circ x \otimes f \in \mathscr{N}(X)$, by the preceding result we have $\tau(x \otimes f)(\phi(A) \circ x \otimes f) \in \mathscr{N}(X)$, which implies $f(\phi(A) x)=0$. It follows from [12, Lemma 2.4] that

$$
\begin{equation*}
\phi(A)=\tau(A) A+\mu(A) I \tag{2.4}
\end{equation*}
$$

for some scalars $\tau(A)$ and $\mu(A)$.
It now suffices to show that $\mu(A)=0$. For this, first we suppose that A is of rankone. Then $\phi(A)$ is of rank-one. This together with Eq.(2.4) leads to $\mu(A)=0$. Next, we suppose that A has rank at most two. Then there exists an operator B of rank-one such that $A \circ B=0$. Thus we have $\phi(A) \circ \phi(B)=0$. By the preceding case, we can write $\phi(B)=\alpha B$ for some scalar α. Then from $(\tau(A) A+\mu(A) I) \circ(\alpha B)=0$, we get $\mu(A)=0$.

Finally, we consider the general case. Choose $y \in X$ such that y and $A y$ are linearly independent. Take $g \in X$ such that $g(y)=1$ and $g(A y)=0$. Since $A \circ y \otimes g$ has rank at most two, it follows that $\phi(A \circ y \otimes g)=\beta(A \circ y \otimes g)$ for some scalar β. From

$$
\phi(A \circ y \otimes g) \sim \phi(A) \circ \phi(y \otimes g)
$$

it follows

$$
\theta(1)(\tau(A) A+\mu(A) I) y \otimes g+y \otimes g(\tau(A) A+\mu(A) I)) \sim \beta(A \circ y \otimes g)
$$

Then by comparing the trace of the left and the right, we get $\mu(A)=0$, completing the proof.

Step 11. There is a scalar $\lambda_{0} \in \mathbb{C}$ such that $\tau(x \otimes f)=\lambda_{0}$ for all $x \otimes f \in \mathscr{N}_{1}(X)$. It suffices to show $\tau\left(x_{1} \otimes f_{1}\right)=\tau\left(x_{2} \otimes f_{2}\right)$ for any $x_{1} \otimes f_{1}, x_{2} \otimes f_{2} \in \mathscr{N}_{1}(X)$. We distinguish some cases.
Case 1: x_{1} and x_{2} are linearly independent, and $f_{1}=f_{2}$. Then we can choose $x_{0} \in X$ such that $f_{1}\left(x_{0}\right)=f_{2}\left(x_{0}\right)=1$. Notice that x_{0}, x_{1}, x_{2} are linearly independent. Then we can take f_{0} in X^{*} such that $f_{0}\left(x_{0}\right)=0$ and $f_{0}\left(x_{1}\right)=f_{0}\left(x_{2}\right)=1$. It is easy to see that $x_{0} \otimes f_{0} \in \mathscr{N}_{1}(X)$ and $x_{0} \otimes f_{i}+x_{i} \otimes f_{0} \in \mathscr{P}(X), i=1,2$. Since

$$
x_{0} \otimes f_{i}+x_{i} \otimes f_{0}=\left(x_{0} \otimes f_{0}\right) \circ\left(x_{i} \otimes f_{i}\right), i=1,2
$$

it follows that

$$
\phi\left(x_{0} \otimes f_{i}+x_{i} \otimes f_{0}\right) \sim \phi\left(x_{0} \otimes f_{0}\right) \circ \phi\left(x_{i} \otimes f_{i}\right), i=1,2
$$

Hence we have

$$
\theta(1)\left(x_{0} \otimes f_{i}+x_{i} \otimes f_{0}\right) \sim \tau\left(x_{i} \otimes f_{i}\right) \tau\left(x_{0} \otimes f_{0}\right)\left(x_{0} \otimes f_{i}+x_{i} \otimes f_{0}\right), i=1,2
$$

From this, we get $\tau\left(x_{i} \otimes f_{i}\right) \tau\left(x_{0} \otimes f_{0}\right)=\theta(1), i=1,2$. So $\tau\left(x_{1} \otimes f_{1}\right)=\tau\left(x_{2} \otimes f_{2}\right)$.
Case 2: f_{1} and f_{2} are linearly independent, and $x_{1}=x_{2}$.
By an argument similar to that in Case 1, we have $\tau\left(x_{1} \otimes f_{1}\right)=\tau\left(x_{2} \otimes f_{2}\right)$.
Case 3: $x_{1} \otimes f_{1}$ and $x_{2} \otimes f_{2}$ are linearly dependent, say $x_{2} \otimes f_{2}=\alpha x_{1} \otimes f_{1}$ for some scalar α. Take $y \in \operatorname{ker}\left(f_{1}\right)$ such that y and x_{1} are linearly independent. Then by Case 1, we have $\tau\left(x_{1} \otimes f_{1}\right)=\tau\left(y \otimes f_{1}\right)=\tau\left(\alpha x_{1} \otimes f_{1}\right)=\tau\left(x_{2} \otimes f_{2}\right)$.
Case 4: $f_{1}\left(x_{2}\right)=0$. Then

$$
\tau\left(x_{1} \otimes f_{1}\right)=\tau\left(x_{2} \otimes f_{1}\right)=\tau\left(x_{2} \otimes f_{2}\right)
$$

where the first equality is due to Cases 1 and 3, the second equality is due to Cases 2 and 3.

Finally, we consider the general case. Take $x_{3} \in \operatorname{ker} f_{1} \cap \operatorname{ker} f_{2}$. Then by Case 4 , we have $\tau\left(x_{1} \otimes f_{1}\right)=\tau\left(x_{3} \otimes f_{2}\right)=\tau\left(x_{2} \otimes f_{2}\right)$, completing the proof.

Step 12. We have $\lambda_{0}^{2}=\theta(1)$.
Let $x_{1}, x_{2} \in X$ and $f_{1}, f_{2} \in X^{*}$ be such that $f_{i}\left(x_{j}\right)=\delta_{i j}$ for all $1 \leqslant i, j \leqslant 2$. Then $x_{1} \otimes f_{2}, x_{2} \otimes f_{1} \in \mathscr{N}_{1}(X)$ and $x_{1} \otimes f_{1}+x_{2} \otimes f_{2} \in \mathscr{P}(X)$. Since

$$
\left(x_{1} \otimes f_{2}\right) \circ\left(x_{2} \otimes f_{1}\right)=x_{1} \otimes f_{1}+x_{2} \otimes f_{2}
$$

it follows that

$$
\lambda_{0}^{2}\left(\left(x_{1} \otimes f_{2}\right) \circ\left(x_{2} \otimes f_{1}\right)\right) \sim \theta(1)\left(x_{1} \otimes f_{1}+x_{2} \otimes f_{2}\right)
$$

So $\lambda_{0}^{2}=\theta(1)$.
STEP 13. If A is non-zero, non-invertible and non-s-idempotent, then $\tau(A)=\lambda_{0}$.

First suppose that there is $x_{0} \in X$ such that $A x_{0}$ doesn't lie in the linear span of x_{0} and $A^{2} x_{0}$. Then we can find $f_{0} \in X^{*}$ such that $f_{0}\left(x_{0}\right)=f_{0}\left(A^{2} x_{0}\right)=0$ while $f\left(A x_{0}\right)=1$. Then $x_{0} \otimes f_{0} \in \mathscr{N}_{1}(X)$ and $A \circ x_{0} \otimes f_{0} \in \mathscr{P}(X)$. Therefore, we have

$$
\theta(1)\left(A \circ x_{0} \otimes f_{0}\right) \sim \tau(A) \lambda_{0}\left(A \circ x_{0} \otimes f_{0}\right)
$$

So $\tau(A) \lambda_{0}=\theta(1)$ and hence $\tau(A)=\lambda_{0}$ since $\lambda_{0}^{2}=\theta(1)$.
Suppose now that $A x \in \operatorname{span}\left\{x, A^{2} x\right\}$ for all $x \in X$. Then by [12, Lemma 2.4], there are scalars α and β such that $\alpha A^{2}+A+\beta I=0$. Since A is non-invertible, we get $\beta=0$. Thus we have $\alpha A^{2}+A=0$. This implies that $A=0$ or A is s-idempotent, a contradiction.

STEP 14. $\lambda_{0}=\theta(1)=1$.
Take linearly independent vectors $x_{1}, x_{2} \in X$ and $f_{1}, f_{2} \in X^{*}$ such that $f_{1}\left(x_{1}\right)=0$ and $f_{1}\left(x_{2}\right)=f_{2}\left(x_{1}\right)=f_{2}\left(x_{2}\right)=1$. It is not difficult to verify that $x_{1} \otimes f_{2}+x_{2} \otimes f_{1}$ is non-invertible and non-s-idempotent. Note that $x_{1} \otimes f_{1} \in \mathscr{N}_{1}(X), x_{2} \otimes f_{2} \in \mathscr{P}(X)$ and

$$
x_{1} \otimes f_{2}+x_{2} \otimes f_{1}=\left(x_{1} \otimes f_{1}\right) \circ\left(x_{2} \otimes f_{2}\right)
$$

It follows from Step 13 that

$$
\lambda_{0}\left(x_{1} \otimes f_{2}+x_{2} \otimes f_{1}\right) \sim \lambda_{0} \theta(1)\left(x_{1} \otimes f_{2}+x_{2} \otimes f_{1}\right)
$$

Comparing the trace, we get $\theta(1)=1$.
Take linearly independent vectors $y_{1}, y_{2} \in X$ and $g_{1}, g_{2} \in X^{*}$ such that $g_{i}\left(y_{j}\right)=1$, $i, j=1,2$. It is not difficult to verify that $y_{1} \otimes g_{2}+y_{2} \otimes g_{1}$ is non-invertible and non-sidempotent. Note that $y_{1} \otimes g_{1}, y_{2} \otimes g_{2} \in \mathscr{P}(X)$ and

$$
y_{1} \otimes g_{2}+y_{2} \otimes g_{1}=\left(y_{1} \otimes g_{1}\right) \circ\left(y_{2} \otimes g_{2}\right)
$$

It follows

$$
\lambda_{0}\left(y_{1} \otimes g_{2}+y_{2} \otimes g_{1}\right) \sim \theta(1)^{2}\left(y_{1} \otimes g_{2}+y_{2} \otimes g_{1}\right)=y_{1} \otimes g_{2}+y_{2} \otimes g_{1}
$$

Comparing the trace, we get $\lambda_{0}=1$.
STEP 15. $\phi(A)=A$ for all $A \in B(X)$.
First we suppose $A \notin \mathbb{C} I$. Then there are $x \in X$ and $f \in X^{*}$ such that $f(x)=0$ and $f(A x)=1$. It is not difficult to verify that $A \circ x \otimes f$ is non-invertible and either idempotent or non-s-idempotent. Then from Step 13 and the relation

$$
\phi(A) \circ \phi(x \otimes f) \sim \phi(A \circ x \otimes f)
$$

we have

$$
\tau(A)(A \circ x \otimes f) \sim A \circ x \otimes f
$$

Comparing the trace, we get $\tau(A)=1$.

Finally, let $\mu \in \mathbb{C}$, and let P be an idempotent of rank-one. Then from the proceeding result, Step 14 and the relation

$$
\phi(2 \mu P) \sim \phi(\mu I) \circ \phi(P)
$$

we get that $2 \mu P \sim 2 \theta(\mu) P$. So $\theta(\mu)=\mu$ and then $\phi(\mu I)=\mu I$ for all $\mu \in \mathbb{C}$.

Acknowledgement.

The research was supported by the National Natural Science Foundation of China (Grant No. 11571247). The authors would like to thank the referee for leading our attention to paper [5], the very thorough reading and many helpful comments, which improves our manuscrpit.

REFERENCES

[1] R. An And J. Hou, Additivity of Jordan multiplicative maps on Jordan operator algebras, Taiwanese J. Math. 10 (2006) 45-64.
[2] Z. Bai and S. Du, Characterization of sum automorphisms and Jordan triple automorphisms of quantum probabilistic maps, J. Phys. A 43 (2010), 165210 (9 pp.).
[3] M. Doboviěk, B. Kuzma, G. Lešnjak, C. K. Li and T. Petek, Mappings that preserve pairs of operators with zero triple Jordan product, Linear Algebra Appl. 426 (2007), 255-279.
[4] S. Du And J. Hou, Nonlinear maps preserving similarity on $B(X)$, Linear Algebra Appl. 420 (2007), 506-516.
[5] A. E. Guterman and B. KuzMa, Preserving zeros of a polynomial, Communications in Algebra, 37 (2009), 4038-4064.
[6] F. Hiai, Similarity preserving linear maps on matrices, Linear Algebra Appl. 97 (1987), 127-139.
[7] J. Hou and X. ZHANG, Additive maps preserving similarity of operator on Banach spaces, Act Math.Sin.(Engl.Ser.) 22 (2006), 179-186.
[8] G. JI, Similarity-preserving linear maps on B(H), Linear Algebra Appl. 368 (2003), 249-257.
[9] Sang Og Kim and C. Park, Additivity of Jordan triple product homomorphisms on generalized matrix algebras, Bull. Korean Math. Soc. 50 (2013), 2027-2034.
[10] B. KuZMA, Jordan triple product homomorphisms, Monatsh. Math. 149 (2006), 119-128.
[11] G. LEŠnJAK AND N.-S. SZE, On injective Jordan semi-triple maps of M_{n}, Linear Algebra Appl. 414 (2006), 383-388.
[12] C. K. Li, P. ŠEMRL AND N.-S. SZE, Maps preserving the nilpotency of products of operators, Linear Algebra Appl. 424 (2007), 222-239.
[13] M. Lim, A note on similarity preserving linear maps on matrices, Linear Algebra Appl. 190 (1993), 229-233.
[14] F. Lu, Additivity of Jordan maps on standard operator algebras, Linear Algebra Appl. 357 (2002), 123-131.
[15] F. Lu and C. Peng, Similarity-preserving linear maps on $B(X)$, Studia Math. 209 (2012), 1-10.
[16] L. MOLNÁR, Non-linear Jordan triple automorphisms of sets of self-adjoint matrices and operators, Studia Math. 173 (2006), 39-48.
[17] T. Petek, Linear mappings preserving similarity on $B(H)$, Studia Math. 161 (2004), 177-186.
[18] T. Petek, A note on unitary similarity preserving linear mappings on $B(H)$, Linear Algebra Appl. 394 (2005), 217-224.
[19] T. Petek, Unitary similarity preserving linear Maps on $B(H)$, Integral Equations Operator Theory 82 (2015), 51-60.
[20] Z. QIN AND F. Lu, Involution similarity preserving linear maps, Studia Math. (to appear)
[21] P. ŠEMRL, Maps on idempotent matrices over division rings, J. Algebra 298 (2006), 142-187.
[22] P. ŠEMRL, Maps on idempotents, Studia Math. 169 (2005), 21-44.
[23] P. ŠEMRL, Similarity preserving linear maps, J. Operator Theory 60 (2008), 71-83.
[24] Z. Yang and F. Lu, Surjective Jordan maps and Jordan triple maps, Linear Algebra Appl. 535 (2017), 1-11.
[25] L. Zhao and J. Hou, Jordan zero-product preserving additive maps on operator algebras, J. Math. Anal. Appl. 314 (2006), 689-700.
(Received May 22, 2018)
Zijie Qin
Department of Mathematics
Soochow University
Suzhou 215006, China
e-mail: 20154207009@stu.suda.edu.cn
Fangyan Lu
Department of Mathematics
Soochow University
Suzhou 215006, China
e-mail: fylu@suda.edu.cn

[^0]: Mathematics subject classification (2010): 47A30, 47B49.
 Keywords and phrases: Jordan product, Jordan multiplicative map, similarity.

