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SIMILARITY JORDAN MULTIPLICATIVE MAPS

ZIJIE QIN AND FANGYAN LU

(Communicated by P. Šemrl)

Abstract. We characterize bijections φ :B(X)→B(X) satisfying that φ(AB+BA) and φ(A)φ(B)+
φ(B)φ(A) are similar for all A,B ∈ B(X) .

1. Introduction

Let X be a complex Banach space. By B(X) and X∗ we denote the algebra of
all bounded linear operators on X and the topological dual of X , respectively. For
A ∈ B(X) , A∗ is its adjoint. Two operators A,B in B(X) are called similar, denoted by
A ∼ B , if there exists an invertible operator S in B(X) such that A = SBS−1 .

Our main result reads as follows. Recall that a map T : X → X is called semilinear
if it is additive and there is an automorphism h : C → C such that T (λx) = h(λ )x for
all x ∈ X and λ ∈ C . Given two operators A,B , their Jordan product is defined by
A◦B = AB+BA .

THEOREM 1.1. Let X be a complex Banach space of dimension � 3 and φ :
B(X) → B(X) a bijective map satisfying

φ(A◦B)∼ φ(A)◦φ(B) (1.1)

for all A,B ∈ B(X) . Then one of the following holds.

(1) There is a semilinear bijection T : X → X such that

φ(A) = TAT−1, A ∈ B(X).

Moreover, if X is infinite-dimensional, then T is bounded and linear or conjugate-
linear.

(2) The space X is reflexive and there is a semilinear bijection T : X∗ → X such that

φ(A) = TA∗T−1, A ∈ B(X).

Moreover, if X is infinite-dimensional, then T is bounded and linear or conjugate-
linear.
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There are two distinct motivations. First is the works on Jordan multiplicative map.
A map φ : B(X) → B(X) is called Jordan multiplicative if φ(A◦B) = φ(A)◦φ(B) for
all A,B ∈ B(X) . In [14], the second author showed that a bijective Jordan mutiplicative
map of B(X) is additive. Various generalizations are available. For example, papers
[11, 24, 25] weakened the bijectivity assumption; papers [1, 2, 9, 10, 16] altered the
underlying algebra. In the present paper, we weaken the equality into the “approximate”
equality.

The second motivation for our study is the works on simility-preserving maps. A
map φ : B(X) → B(X) is said to be similarity-preserving if φ(A) ∼ φ(B) whenever
A∼ B . Hiai [6] and Lim [13] characterized similarity-preserving linear map on the ma-
trix algebra. Various generalizations are available. For example, papers [8, 15, 23, 17]
studied infinite-dimensional space case; papers [4, 7] weakened the linearity; papers
[18, 19, 20] considered other type of similarity. In the present paper, we consider non-
linear similarity-preserving maps concerning the Jordan product.

2. Proofs

This section is due to proving Theorem 1.1. Throughout this section, X is a com-
plex Banach space with dimension at least 3, φ is a surjection of B(X) satisfying
Eq.(1.1). An operator A is called nilpotent if there is a positive integer n ∈ N such
that An = 0. By N (X) we denote the set of all nilpotent operators in B(X) . For
non-zero vectors x ∈ X and f ∈ X∗ , the rank-one operator x⊗ f is defined as the map:
y �→ f (y)x , y ∈ X . Then the symbol N1(X) stands for the set of all rank-one operators
in N (X) .

We begin with an easy an useful observation.

LEMMA 2.1. Let A and x⊗ f be in B(X) . Then the following are equivalent:

(1) A◦ x⊗ f ∈ N (X) .

(2) f (Ax) = 0 and f (x) f (A2x) = 0 .

(3) (A◦ x⊗ f )3 = 0 .

Proof. That (2) ⇒ (3) is an easy computation and that (3) ⇒ (1) is obvious.
To show that (1) ⇒ (2), we suppose that A ◦ x⊗ f ∈ N (X) . Then its trace is zero
and therefore f (Ax) = 0. Thus (A ◦ x⊗ f )2 = f (x)Ax⊗ f A+ f (A2x)x⊗ f and hence
f (x) f (A2x) = 0 since it is nilpotent. �

LEMMA 2.2. Let A ∈ B(X) . Then A ∈ CI if and only if A ◦N ∈ N (X) for all
N ∈ N (X) .

Proof. The necessity is obvious. To verify the sufficiency, let x⊗ f ∈ N1(X) .
Then A ◦ x⊗ f ∈ N (X) and hence f (Ax) = 0 for all x⊗ f ∈ N1(X) by Lemma 2.1.
This implies A ∈ CI . �



SIMILARITY JORDAN MULTIPLICATIVE MAPS 397

LEMMA 2.3. Suppose that X has dimension at least five. Let A ∈ B(X) be such
that A2 = 0 . Then the following are equivalent:

(1) rank(A) � 2 .

(2) There exists an operator S ∈ B(X) such that A◦ S ∈ N (X) but (A◦ S)4 
= 0 .

Proof. (2) ⇒ (1). Suppose on the contrary that rank(A) � 1. Then for any S ∈
B(X) , if A◦ S is nilpotent, then (A◦ S)3 = 0 by Lemma 2.1, a contradiction.

(1) ⇒ (2). We distinguish two cases.
Case 1: rank(A) = 2. Write A = x1 ⊗ f3 + x2 ⊗ f4 , where x1,x2 ∈ X are linearly

independent, f3, f4 ∈ X∗ are linearly independent, f j(xi) = 0 for all i = 1,2 and j =
3,4. Since X is has dimension at least 5, we can find x3,x4,x5 ∈ X and f1, f2, f5 such
that fi(x j) = δi j for all 1 � i, j � 5. Now set S = x3 ⊗ f5 + x4 ⊗ f1 + x5 ⊗ f2 . Then
(A◦ S)4 = x2⊗ f3 
= 0 and (A◦ S)5 = 0.

Case 2: rank(A)� 3. Then there exist vectors x1,x2,x3 in X such that Ax1,Ax2,Ax3

are linearly independent. Hence since A2 = 0, the vectors x1,x2,x3,Ax1,Ax2,Ax3 are
linearly independent. Take f1, f2 ∈ X∗ such that

f1(Ax2) = 1, f1(x1) = f1(x2) = f1(Ax1) = 0;

f2(Ax3) = f2(x1) = 1, f2(x2) = f2(Ax1) = f2(Ax2) = 0.

Set S = x1⊗ f1 + x2⊗ f2 . Then (A◦ S)4 = Ax1⊗ f2A 
= 0 and (A◦ S)5 = 0. �

DEFINITION 2.4. We say that an operator is s-idempotent if it is a scalar multiple
of an idempotent operator.

Observe that an operator is s-idempotent if and only if it is a scalar multiple of its
square.

LEMMA 2.5. Suppose that X has dimension at least five. Let A be s-idempotent.
Then the following are equivalent.

(1) rank(A) � 2 .

(2) There exists an operator S ∈ B(X) such that A ◦ S ∈ N (X) and the rank of
(A◦ S)2 is greater than one.

Proof. Without loss of generality, we may assume that A is idempotent.
(2) ⇒ (1). Suppose rank(A) = 1. Write A = x⊗ f with f (x) = 1. Suppose

S ◦ x⊗ f ∈ N (X) for an operator S ∈ B(X) . Then f (Sx) = 0 and f (S2x) = 0 by
Lemma 2.1. Consequently, (S ◦ x⊗ f )2 = Sx⊗ f S has rank at most one.

(1) ⇒ (2). We distinguish two cases.
Case 1: 2 � rank(A) � 3. Then we can take x1,x2 from the image of A and

x3,x4 from the image of I −A such that x1,x2,x3,x4 are linearly independent. Take
f1, f2, f3, f4 from X∗ such that fi(x j) = δi j , 1 � i, j � 4. Set S = x2 ⊗ f4(I −A) +
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x4⊗ f1A+ x1⊗ f3(I−A) . Then (A◦ S)2 = x4⊗ f3(I−A)+ x2⊗ f1A has rank two and
(A◦ S)4 = 0.

Case 2: rank(A) � 4. Since A is idempotent, we can take vectors x1,x2,x3,x4

from the range of A and vectors f1, f2, f3, f4 from the range of A∗ such that fi(x j) = δi j

for all 1 � i, j � 4. Set S = x1 ⊗ f2 + x2 ⊗ f3 + x3 ⊗ f4 . Then (A ◦ S)2 = 4(x1 ⊗ f3 +
x2⊗ f4) has rank two and (A◦ S)4 = 0. �

Proof of Theorem 1.1. For clarity of exposition, we proceed in steps.

STEP 1. We have φ(0) = 0.
By the surjectivity of φ , we can take A ∈ B(X) such that φ(A) = 0. Then by

Eq.(1.1),
φ(0) = φ(A◦ 0)∼ φ(A)◦φ(0) = 0.

So φ(0) = 0.

STEP 2. Let A,B ∈ B(X) .

(1) φ(22n−1A2n
) ∼ 22n−1φ(A)2n

for all n ∈ N .

(2) φ(22n−1(A◦B)2n
) ∼ 22n−1(φ(A)◦φ(B))2n

for all n ∈ N .

(3) A ∈ N (X) if and only if φ(A) ∈ N (X) .

(4) A◦B∈ N (X) if and only if φ(A)◦φ(B) ∈ N (X) .

It is easy to see that (3) follows from (1), Step 1 and the injectivity of φ , and that
(4) follows from (2), Step 1 and the injectivity of φ .

By Eq.(1.1), we have φ(2A2) ∼ 2φ(A)2 . Suppose that

φ(22n−1A2n
) ∼ 22n−1φ(A)2n

.

Note that if two operators are similar then their squares are similar. Thus

(22n−1φ(A)2n
)2 ∼ (φ(22n−1A2n

))2 ∼ 1
2

φ(2 · (22n−1A2n
)2) =

1
2

φ(22n+1−1A2n+1
).

So
φ(22n+1−1A2n+1

) ∼ 22n+1−1φ(A)2n+1
.

Therefore, by the induction, we prove (1).
Now by (1) and Eq.(1.1), we have

φ(22n−1(A◦B)2n
) ∼ 22n−1φ(A◦B)2n ∼ 22n−1(φ(A)◦φ(B))2n

for all n ∈ N . This proves (2).

STEP 3. φ(A) ∈ CI if and only if A ∈ CI .
It is a consequence of Step 2 and Lemma 2.2.
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STEP 4. There is a bijective map θ of C onto itself such that φ(zI) = θ (z)I and
φ(2zA) ∼ 2θ (z)φ(A) for all z ∈ C and A ∈ B(X) .

This is an easy consequence of Step 3 and Eq.(1.1).

STEP 5. φ(N1(X)) = N1(X) .
Apply [5, Theorem 2.1] when X is finite-dimensional and apply Step 2(3) and

Lemma 2.3 when X is infinite-dimensional.

STEP 6. Let A ∈ B(X) be non-nilpotent. Then φ(A) is s-idempotent if and only
if A is s-idempotent. In particular, if A is idempotent, then 1

θ(1)φ(A) is idempotent.
First suppose that A is s-idempotent. Then A = λP for some nonzero scalar λ

and some idempotent operator P . We can suppose that P 
= I ; for otherwise, we are
done by Step 3. Let x⊗ f ∈ N1(X) be such that f (φ(A)x) = 0. By Step 5, we can take
y⊗g∈ N1(X) such that φ(y⊗g) = x⊗ f . Compute

(φ(A)◦ x⊗ f )2 = f (φ(A)2x)x⊗ f , (2.1)

(φ(A)◦ x⊗ f )4 = 0. (2.2)

By Eq.(2.2) and Step 2(3), A ◦ y⊗ g ∈ N (X) . Then g(Ay) = 0 by Lemma 2.1 and
hence (A◦ y⊗g)2 = 0. This together with Step 2 and Eq.(2.1) leads to f (φ(A)2x) = 0
for all x⊗ f ∈ N1(X) with f (φ(A)x) = 0. By [12, Lemma 2.4], there exist scalars
α,β ∈ C such that

φ(A)2 + αφ(A)+ β I = 0.

By the surjectivity of φ , we can take S ∈ B(X) such that φ(S) = φ(A)+ αI . Then

φ(A◦ S)∼ φ(A)◦φ(S) = −2β I.

By Step 3, A◦S = γI for some scalar γ . Then γ(I−P) = (I−P)(A◦S)(I−P) = 0. So
γ = 0 and hence β = 0. Thus φ(A)2 +αφ(A) = 0. This implies that A is s-idempotent.

In a similar way, we can show that if φ(A) is s-idempotent then A is s-idempotent.
Now suppose that A is idempotent. Then φ(A) = μQ , where μ ∈ C and Q is an

idempotent operator. Then φ(2A) = φ(2A2) ∼ 2φ(A)2 = 2μ2Q . On the other hand, by
Step 4, φ(2A) ∼ 2θ (1)φ(A) = 2μθ (1)Q . We have 2μ2Q ∼ 2μθ (1)Q . This implies
that μ = θ (1) , completing the proof.

STEP 7. Let A /∈ N (X) . Then φ(A) is of rank-one if and only so is A .
If X is finite-dimensional, the result can be concluded from [5, Theorem 2.1]. In

the following, we assume that X is infinite-dimensional.
First suppose that A is of rank-one. Then A is s-idempotent and hence so is φ(A)

by Step 6. Suppose φ(S) ◦ φ(A) ∈ N (X) for some S ∈ B(X) . Then S ◦A ∈ N (X) .
By Lemma 2.5, (S ◦A)2 has rank at most one. Then by Step 5, φ(2(A◦ S)2) has rank
at most one. Since

(φ(S)◦φ(A))2 ∼ 1
2

φ(2(A◦ S)2),

it follows that (φ(S) ◦ φ(A))2 has rank at most one. By Lemma 2.5, φ(A) is of rank-
one.

In a similar way, we can show that if φ(A) is of rank-one then so is A .



400 Z. QIN AND F. LU

STEP 8. Let P be an idempotent and λ be a nonzero scalar. Then φ(λP) and
φ(P) are linearly dependent.

Let x⊗ f be any rank-one operator. Then by Steps 5 and 7, there is a rank-one
operator y⊗ g such that φ(y⊗ g) = x⊗ f . Note that φ(λP) and φ(P) are both s-
idempotent by Step 6. Then

f (φ(P)x) = 0 ⇔ φ(P)◦ x⊗ f ∈ N (X) ⇔ P◦ y⊗g∈ N (X) ⇔ (λP)◦ y⊗g∈ N (X)
⇔ φ(λP)◦ x⊗ f ∈ N (X) ⇔ f (φ(λP)x) = 0.

So f (φ(P)x) = 0 if and only if f (φ(λP)x) = 0 for all x ∈ X and f ∈ X∗ . This implies
that φ(λP) and φ(P) are linearly dependent.

Recall that P(X) denotes the set of all idempotent operators in B(X) . In the
following, we let ψ = 1

θ(1)φ |P(X) , the restriction of 1
θ(1)φ to P(X) .

STEP 9. The following are true.

(1) The map ψ is a bijection from P(X) onto P(X) .

(2) For P,Q ∈ P(X) , PQ = QP = 0 if and only if ψ(P)ψ(Q) = ψ(Q)ψ(P) = 0.

We only show (1) since (2) is a direct verification.
First we know that the image of ψ is contained in P(X) by Step 6.
Next we show the surjectivity. Suppose that φ(A) is idempotent for some A ∈

B(X) . Then A is s-idempotent by Step 6. Write A = λP for some scalar λ ∈ C and
some idempotent P ∈ P(X) . Then by Step 8, there is a scalar μ ∈ C such that

φ(A) = μφ(P) = μθ (1)ψ(P).

Since both φ(A) and ψ(P) are idempotent, we conclude μθ (1) = 1 and then ψ(P) =
φ(A) .

Finally, we show the injectivity. Let P1 and P2 be idempotents and suppose that
ψ(P1) = ψ(P2) . Then φ(P1) = φ(P2) and hence P1 = P2 by the injectivity of φ .

Now by Step 9, ψ is a bijective map on P(X) preserving orthogonality in both
directions. We can apply [21, Corollary 4.13] when X is finite-dimensional and [22,
Corollary 1.4 and Corollary 1.5] when X is infinite-dimensional. Then one of the fol-
lowing holds:

(1) There is a semilinear bijection T : X → X such that

φ(P) = θ (1)TPT−1, P ∈ P(X).

Moreover, if X is infinite-dimensional, then T is bounded and linear or conjugate-
linear.

(2) The space X is reflexive and there is a semilinear bijection T : X∗ → X such that

φ(P) = θ (1)TP∗T−1, P ∈ P(X).

Moreover, if X is infinite-dimensional, then T is bounded and linear or conjugate-
linear.
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Without loss of generality, in the rest of proof we assume the first case above holds
and show that case 1 in Theorem 1.1 holds. Suppose that h is an automorphism of C

such that T (λx) = h(λ )Tx for all λ ∈ C and x ∈ X . Then it is easy to verify that
T−1(h(λ )x) = λT−1x for all λ ∈ C and x ∈ X . Therefore T−1AT ∈ B(X) for all
A ∈ B(X) and hence T−1φ(·)T is a bijection of B(X) satisfying Eq.(1.1). So we may
replace φ by T−1φT and then we have that

φ(P) = θ (1)P, P ∈ P(X). (2.3)

Our aim is to show that φ(A) = A for all A ∈ B(X) .

STEP 10. There exists a function τ : B(X)→C\{0} such that φ(A) = τ(A)A for
all A ∈ B(X) .

First we suppose that A2 = 0. Then φ(A)2 = 0 by Step 2. Therefore, for any
x⊗ f ∈ P(X) , by Eq.(2.3) we have

f (φ(A)x) = 0 ⇔ θ (1)(φ(A)◦ x⊗ f ) ∈ N (X) ⇔ φ(A)◦φ(x⊗ f ) ∈ N (X)
⇔ A◦ x⊗ f ∈ N (X) ⇔ f (Ax) = 0,

and so φ(A) = τ(A)A for some nonzero scalar τ(A) by [3, Lemma 2.16].
We now turn to the general case. Let A∈ B(X) . By Step 3, we can assume A /∈CI .

For x ∈ X , f ∈ X∗ with f (x) = 0 and f (Ax) = 0, since A ◦ x⊗ f ∈ N (X) , by the
preceding result we have τ(x⊗ f )(φ(A)◦x⊗ f )∈N (X) , which implies f (φ(A)x) = 0.
It follows from [12, Lemma 2.4] that

φ(A) = τ(A)A+ μ(A)I (2.4)

for some scalars τ(A) and μ(A) .
It now suffices to show that μ(A) = 0. For this, first we suppose that A is of rank-

one. Then φ(A) is of rank-one. This together with Eq.(2.4) leads to μ(A) = 0. Next,
we suppose that A has rank at most two. Then there exists an operator B of rank-one
such that A ◦B = 0. Thus we have φ(A) ◦ φ(B) = 0. By the preceding case, we can
write φ(B) = αB for some scalar α . Then from (τ(A)A+ μ(A)I)◦ (αB) = 0, we get
μ(A) = 0.

Finally, we consider the general case. Choose y ∈ X such that y and Ay are
linearly independent. Take g ∈ X such that g(y) = 1 and g(Ay) = 0. Since A ◦ y⊗ g
has rank at most two, it follows that φ(A ◦ y⊗ g) = β (A ◦ y⊗ g) for some scalar β .
From

φ(A◦ y⊗g)∼ φ(A)◦φ(y⊗g),

it follows

θ (1)(τ(A)A+ μ(A)I)y⊗g+ y⊗g(τ(A)A+ μ(A)I))∼ β (A◦ y⊗g).

Then by comparing the trace of the left and the right, we get μ(A) = 0, completing the
proof.
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STEP 11. There is a scalar λ0 ∈C such that τ(x⊗ f ) = λ0 for all x⊗ f ∈N1(X) .
It suffices to show τ(x1 ⊗ f1) = τ(x2 ⊗ f2) for any x1 ⊗ f1,x2 ⊗ f2 ∈ N1(X) . We

distinguish some cases.
Case 1: x1 and x2 are linearly independent, and f1 = f2 . Then we can choose x0 ∈ X
such that f1(x0) = f2(x0) = 1. Notice that x0,x1,x2 are linearly independent. Then we
can take f0 in X∗ such that f0(x0) = 0 and f0(x1) = f0(x2) = 1. It is easy to see that
x0⊗ f0 ∈ N1(X) and x0 ⊗ fi + xi⊗ f0 ∈ P(X) , i = 1,2. Since

x0⊗ fi + xi⊗ f0 = (x0⊗ f0)◦ (xi⊗ fi), i = 1,2,

it follows that

φ(x0 ⊗ fi + xi⊗ f0) ∼ φ(x0 ⊗ f0)◦φ(xi⊗ fi), i = 1,2.

Hence we have

θ (1)(x0⊗ fi + xi⊗ f0) ∼ τ(xi ⊗ fi)τ(x0 ⊗ f0)(x0 ⊗ fi + xi⊗ f0), i = 1,2.

From this, we get τ(xi ⊗ fi)τ(x0 ⊗ f0) = θ (1) , i = 1,2. So τ(x1 ⊗ f1) = τ(x2 ⊗ f2) .
Case 2: f1 and f2 are linearly independent, and x1 = x2 .

By an argument similar to that in Case 1, we have τ(x1 ⊗ f1) = τ(x2 ⊗ f2) .
Case 3: x1 ⊗ f1 and x2 ⊗ f2 are linearly dependent, say x2 ⊗ f2 = αx1 ⊗ f1 for some
scalar α . Take y ∈ ker( f1) such that y and x1 are linearly independent. Then by Case
1, we have τ(x1 ⊗ f1) = τ(y⊗ f1) = τ(αx1 ⊗ f1) = τ(x2 ⊗ f2) .
Case 4: f1(x2) = 0. Then

τ(x1⊗ f1) = τ(x2⊗ f1) = τ(x2⊗ f2),

where the first equality is due to Cases 1 and 3, the second equality is due to Cases 2
and 3.

Finally, we consider the general case. Take x3 ∈ ker f1 ∩ ker f2 . Then by Case 4,
we have τ(x1 ⊗ f1) = τ(x3 ⊗ f2) = τ(x2 ⊗ f2) , completing the proof.

STEP 12. We have λ 2
0 = θ (1) .

Let x1,x2 ∈ X and f1, f2 ∈ X∗ be such that fi(x j) = δi j for all 1 � i, j � 2. Then
x1⊗ f2,x2⊗ f1 ∈ N1(X) and x1 ⊗ f1 + x2⊗ f2 ∈ P(X) . Since

(x1⊗ f2)◦ (x2⊗ f1) = x1⊗ f1 + x2⊗ f2,

it follows that

λ 2
0 ((x1 ⊗ f2)◦ (x2⊗ f1)) ∼ θ (1)(x1⊗ f1 + x2⊗ f2).

So λ 2
0 = θ (1) .

STEP 13. If A is non-zero, non-invertible and non-s-idempotent, then τ(A) = λ0 .
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First suppose that there is x0 ∈ X such that Ax0 doesn’t lie in the linear span
of x0 and A2x0 . Then we can find f0 ∈ X∗ such that f0(x0) = f0(A2x0) = 0 while
f (Ax0) = 1. Then x0⊗ f0 ∈ N1(X) and A◦ x0⊗ f0 ∈ P(X) . Therefore, we have

θ (1)(A◦ x0⊗ f0) ∼ τ(A)λ0(A◦ x0⊗ f0).

So τ(A)λ0 = θ (1) and hence τ(A) = λ0 since λ 2
0 = θ (1) .

Suppose now that Ax ∈ span{x,A2x} for all x ∈ X . Then by [12, Lemma 2.4],
there are scalars α and β such that αA2 +A+ β I = 0. Since A is non-invertible, we
get β = 0. Thus we have αA2 +A = 0. This implies that A = 0 or A is s-idempotent,
a contradiction.

STEP 14. λ0 = θ (1) = 1.
Take linearly independent vectors x1,x2 ∈ X and f1, f2 ∈ X∗ such that f1(x1) = 0

and f1(x2) = f2(x1) = f2(x2) = 1. It is not difficult to verify that x1 ⊗ f2 + x2 ⊗ f1 is
non-invertible and non-s-idempotent. Note that x1⊗ f1 ∈N1(X) , x2⊗ f2 ∈ P(X) and

x1⊗ f2 + x2⊗ f1 = (x1 ⊗ f1)◦ (x2⊗ f2).

It follows from Step 13 that

λ0(x1⊗ f2 + x2⊗ f1) ∼ λ0θ (1)(x1⊗ f2 + x2⊗ f1).

Comparing the trace, we get θ (1) = 1.
Take linearly independent vectors y1,y2 ∈ X and g1,g2 ∈ X∗ such that gi(y j) = 1,

i, j = 1,2. It is not difficult to verify that y1⊗g2 + y2⊗g1 is non-invertible and non-s-
idempotent. Note that y1⊗g1,y2 ⊗g2 ∈ P(X) and

y1⊗g2 + y2⊗g1 = (y1 ⊗g1)◦ (y2⊗g2).

It follows

λ0(y1⊗g2 + y2⊗g1) ∼ θ (1)2(y1⊗g2 + y2⊗g1) = y1⊗g2 + y2⊗g1.

Comparing the trace, we get λ0 = 1.

STEP 15. φ(A) = A for all A ∈ B(X) .

First we suppose A /∈ CI . Then there are x ∈ X and f ∈ X∗ such that f (x) = 0
and f (Ax) = 1. It is not difficult to verify that A ◦ x⊗ f is non-invertible and either
idempotent or non-s-idempotent. Then from Step 13 and the relation

φ(A)◦φ(x⊗ f ) ∼ φ(A◦ x⊗ f ),

we have
τ(A)(A◦ x⊗ f )∼ A◦ x⊗ f .

Comparing the trace, we get τ(A) = 1.
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Finally, let μ ∈ C , and let P be an idempotent of rank-one. Then from the pro-
ceeding result, Step 14 and the relation

φ(2μP) ∼ φ(μI)◦φ(P),

we get that 2μP ∼ 2θ (μ)P . So θ (μ) = μ and then φ(μI) = μI for all μ ∈ C . �
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