SIMILARITY JORDAN MULTIPLICATIVE MAPS

ZIJIE QIN AND FANGYAN LU

(Communicated by P. Šemrl)

Abstract. We characterize bijections $\phi : B(X) \to B(X)$ satisfying that $\phi(AB+BA)$ and $\phi(A)\phi(B) + \phi(B)\phi(A)$ are similar for all $A, B \in B(X)$.

1. Introduction

Let *X* be a complex Banach space. By B(X) and X^* we denote the algebra of all bounded linear operators on *X* and the topological dual of *X*, respectively. For $A \in B(X)$, A^* is its adjoint. Two operators *A*, *B* in B(X) are called similar, denoted by $A \sim B$, if there exists an invertible operator *S* in B(X) such that $A = SBS^{-1}$.

Our main result reads as follows. Recall that a map $T: X \to X$ is called semilinear if it is additive and there is an automorphism $h: \mathbb{C} \to \mathbb{C}$ such that $T(\lambda x) = h(\lambda)x$ for all $x \in X$ and $\lambda \in \mathbb{C}$. Given two operators A, B, their Jordan product is defined by $A \circ B = AB + BA$.

THEOREM 1.1. Let X be a complex Banach space of dimension ≥ 3 and ϕ : B(X) \rightarrow B(X) a bijective map satisfying

$$\phi(A \circ B) \sim \phi(A) \circ \phi(B) \tag{1.1}$$

for all $A, B \in B(X)$. Then one of the following holds.

(1) There is a semilinear bijection $T: X \rightarrow X$ such that

$$\phi(A) = TAT^{-1}, \ A \in B(X).$$

Moreover, if X is infinite-dimensional, then T is bounded and linear or conjugatelinear.

(2) The space X is reflexive and there is a semilinear bijection $T: X^* \to X$ such that

$$\phi(A) = TA^*T^{-1}, \ A \in B(X).$$

Moreover, if X is infinite-dimensional, then T is bounded and linear or conjugate-linear.

© CENN, Zagreb Paper OaM-13-29

Mathematics subject classification (2010): 47A30, 47B49.

Keywords and phrases: Jordan product, Jordan multiplicative map, similarity.

There are two distinct motivations. First is the works on Jordan multiplicative map. A map $\phi : B(X) \to B(X)$ is called Jordan multiplicative if $\phi(A \circ B) = \phi(A) \circ \phi(B)$ for all $A, B \in B(X)$. In [14], the second author showed that a bijective Jordan multiplicative map of B(X) is additive. Various generalizations are available. For example, papers [11, 24, 25] weakened the bijectivity assumption; papers [1, 2, 9, 10, 16] altered the underlying algebra. In the present paper, we weaken the equality into the "approximate" equality.

The second motivation for our study is the works on simility-preserving maps. A map $\phi: B(X) \to B(X)$ is said to be similarity-preserving if $\phi(A) \sim \phi(B)$ whenever $A \sim B$. Hiai [6] and Lim [13] characterized similarity-preserving linear map on the matrix algebra. Various generalizations are available. For example, papers [8, 15, 23, 17] studied infinite-dimensional space case; papers [4, 7] weakened the linearity; papers [18, 19, 20] considered other type of similarity. In the present paper, we consider non-linear similarity-preserving maps concerning the Jordan product.

2. Proofs

This section is due to proving Theorem 1.1. Throughout this section, X is a complex Banach space with dimension at least 3, ϕ is a surjection of B(X) satisfying Eq.(1.1). An operator A is called nilpotent if there is a positive integer $n \in \mathbb{N}$ such that $A^n = 0$. By $\mathscr{N}(X)$ we denote the set of all nilpotent operators in B(X). For non-zero vectors $x \in X$ and $f \in X^*$, the rank-one operator $x \otimes f$ is defined as the map: $y \mapsto f(y)x, y \in X$. Then the symbol $\mathscr{N}_1(X)$ stands for the set of all rank-one operators in $\mathscr{N}(X)$.

We begin with an easy an useful observation.

LEMMA 2.1. Let A and $x \otimes f$ be in B(X). Then the following are equivalent:

- (1) $A \circ x \otimes f \in \mathcal{N}(X)$.
- (2) f(Ax) = 0 and $f(x)f(A^2x) = 0$.
- $(3) (A \circ x \otimes f)^3 = 0.$

Proof. That (2) \Rightarrow (3) is an easy computation and that (3) \Rightarrow (1) is obvious. To show that (1) \Rightarrow (2), we suppose that $A \circ x \otimes f \in \mathcal{N}(X)$. Then its trace is zero and therefore f(Ax) = 0. Thus $(A \circ x \otimes f)^2 = f(x)Ax \otimes fA + f(A^2x)x \otimes f$ and hence $f(x)f(A^2x) = 0$ since it is nilpotent. \Box

LEMMA 2.2. Let $A \in B(X)$. Then $A \in \mathbb{C}I$ if and only if $A \circ N \in \mathcal{N}(X)$ for all $N \in \mathcal{N}(X)$.

Proof. The necessity is obvious. To verify the sufficiency, let $x \otimes f \in \mathcal{N}_1(X)$. Then $A \circ x \otimes f \in \mathcal{N}(X)$ and hence f(Ax) = 0 for all $x \otimes f \in \mathcal{N}_1(X)$ by Lemma 2.1. This implies $A \in \mathbb{C}I$. \Box LEMMA 2.3. Suppose that X has dimension at least five. Let $A \in B(X)$ be such that $A^2 = 0$. Then the following are equivalent:

(1) $rank(A) \ge 2$.

(2) There exists an operator $S \in B(X)$ such that $A \circ S \in \mathcal{N}(X)$ but $(A \circ S)^4 \neq 0$.

Proof. (2) \Rightarrow (1). Suppose on the contrary that rank(A) \leq 1. Then for any $S \in B(X)$, if $A \circ S$ is nilpotent, then $(A \circ S)^3 = 0$ by Lemma 2.1, a contradiction.

 $(1) \Rightarrow (2)$. We distinguish two cases.

Case 1: rank(A) = 2. Write $A = x_1 \otimes f_3 + x_2 \otimes f_4$, where $x_1, x_2 \in X$ are linearly independent, $f_3, f_4 \in X^*$ are linearly independent, $f_j(x_i) = 0$ for all i = 1, 2 and j = 3, 4. Since X is has dimension at least 5, we can find $x_3, x_4, x_5 \in X$ and f_1, f_2, f_5 such that $f_i(x_j) = \delta_{ij}$ for all $1 \leq i, j \leq 5$. Now set $S = x_3 \otimes f_5 + x_4 \otimes f_1 + x_5 \otimes f_2$. Then $(A \circ S)^4 = x_2 \otimes f_3 \neq 0$ and $(A \circ S)^5 = 0$.

Case 2: rank(A) \geq 3. Then there exist vectors x_1, x_2, x_3 in X such that Ax_1, Ax_2, Ax_3 are linearly independent. Hence since $A^2 = 0$, the vectors $x_1, x_2, x_3, Ax_1, Ax_2, Ax_3$ are linearly independent. Take $f_1, f_2 \in X^*$ such that

$$f_1(Ax_2) = 1, \qquad f_1(x_1) = f_1(x_2) = f_1(Ax_1) = 0;$$

$$f_2(Ax_3) = f_2(x_1) = 1, \quad f_2(x_2) = f_2(Ax_1) = f_2(Ax_2) = 0.$$

Set $S = x_1 \otimes f_1 + x_2 \otimes f_2$. Then $(A \circ S)^4 = Ax_1 \otimes f_2 A \neq 0$ and $(A \circ S)^5 = 0$. \Box

DEFINITION 2.4. We say that an operator is s-idempotent if it is a scalar multiple of an idempotent operator.

Observe that an operator is s-idempotent if and only if it is a scalar multiple of its square.

LEMMA 2.5. Suppose that X has dimension at least five. Let A be s-idempotent. Then the following are equivalent.

- (1) $rank(A) \ge 2$.
- (2) There exists an operator $S \in B(X)$ such that $A \circ S \in \mathcal{N}(X)$ and the rank of $(A \circ S)^2$ is greater than one.

Proof. Without loss of generality, we may assume that A is idempotent.

(2) \Rightarrow (1). Suppose rank(A) = 1. Write $A = x \otimes f$ with f(x) = 1. Suppose $S \circ x \otimes f \in \mathcal{N}(X)$ for an operator $S \in B(X)$. Then f(Sx) = 0 and $f(S^2x) = 0$ by Lemma 2.1. Consequently, $(S \circ x \otimes f)^2 = Sx \otimes fS$ has rank at most one.

 $(1) \Rightarrow (2)$. We distinguish two cases.

Case 1: $2 \leq \operatorname{rank}(A) \leq 3$. Then we can take x_1, x_2 from the image of A and x_3, x_4 from the image of I - A such that x_1, x_2, x_3, x_4 are linearly independent. Take f_1, f_2, f_3, f_4 from X^* such that $f_i(x_j) = \delta_{ij}, 1 \leq i, j \leq 4$. Set $S = x_2 \otimes f_4(I - A) + C_4$

 $x_4 \otimes f_1A + x_1 \otimes f_3(I - A)$. Then $(A \circ S)^2 = x_4 \otimes f_3(I - A) + x_2 \otimes f_1A$ has rank two and $(A \circ S)^4 = 0$.

Case 2: rank(A) ≥ 4 . Since A is idempotent, we can take vectors x_1, x_2, x_3, x_4 from the range of A and vectors f_1, f_2, f_3, f_4 from the range of A^* such that $f_i(x_j) = \delta_{ij}$ for all $1 \leq i, j \leq 4$. Set $S = x_1 \otimes f_2 + x_2 \otimes f_3 + x_3 \otimes f_4$. Then $(A \circ S)^2 = 4(x_1 \otimes f_3 + x_2 \otimes f_4)$ has rank two and $(A \circ S)^4 = 0$. \Box

Proof of Theorem 1.1. For clarity of exposition, we proceed in steps.

STEP 1. We have $\phi(0) = 0$.

By the surjectivity of ϕ , we can take $A \in B(X)$ such that $\phi(A) = 0$. Then by Eq.(1.1),

$$\phi(0) = \phi(A \circ 0) \sim \phi(A) \circ \phi(0) = 0.$$

So $\phi(0) = 0$.

STEP 2. Let $A, B \in B(X)$.

(1)
$$\phi(2^{2^n-1}A^{2^n}) \sim 2^{2^n-1}\phi(A)^{2^n}$$
 for all $n \in \mathbb{N}$.

- (2) $\phi(2^{2^n-1}(A \circ B)^{2^n}) \sim 2^{2^n-1}(\phi(A) \circ \phi(B))^{2^n}$ for all $n \in \mathbb{N}$.
- (3) $A \in \mathcal{N}(X)$ if and only if $\phi(A) \in \mathcal{N}(X)$.
- (4) $A \circ B \in \mathcal{N}(X)$ if and only if $\phi(A) \circ \phi(B) \in \mathcal{N}(X)$.

It is easy to see that (3) follows from (1), Step 1 and the injectivity of ϕ , and that (4) follows from (2), Step 1 and the injectivity of ϕ .

By Eq.(1.1), we have $\phi(2A^2) \sim 2\phi(A)^2$. Suppose that

$$\phi(2^{2^{n-1}}A^{2^n}) \sim 2^{2^n-1}\phi(A)^{2^n}.$$

Note that if two operators are similar then their squares are similar. Thus

$$(2^{2^{n-1}}\phi(A)^{2^{n}})^{2} \sim (\phi(2^{2^{n-1}}A^{2^{n}}))^{2} \sim \frac{1}{2}\phi(2 \cdot (2^{2^{n-1}}A^{2^{n}})^{2}) = \frac{1}{2}\phi(2^{2^{n+1}-1}A^{2^{n+1}}).$$

So

$$\phi(2^{2^{n+1}-1}A^{2^{n+1}}) \sim 2^{2^{n+1}-1}\phi(A)^{2^{n+1}}.$$

Therefore, by the induction, we prove (1).

Now by (1) and Eq.(1.1), we have

$$\phi(2^{2^{n}-1}(A \circ B)^{2^{n}}) \sim 2^{2^{n}-1}\phi(A \circ B)^{2^{n}} \sim 2^{2^{n}-1}(\phi(A) \circ \phi(B))^{2^{n}}$$

for all $n \in \mathbb{N}$. This proves (2).

STEP 3. $\phi(A) \in \mathbb{C}I$ if and only if $A \in \mathbb{C}I$. It is a consequence of Step 2 and Lemma 2.2. STEP 4. There is a bijective map θ of \mathbb{C} onto itself such that $\phi(zI) = \theta(z)I$ and $\phi(2zA) \sim 2\theta(z)\phi(A)$ for all $z \in \mathbb{C}$ and $A \in B(X)$.

This is an easy consequence of Step 3 and Eq.(1.1).

STEP 5. $\phi(\mathscr{N}_1(X)) = \mathscr{N}_1(X)$.

Apply [5, Theorem 2.1] when X is finite-dimensional and apply Step 2(3) and Lemma 2.3 when X is infinite-dimensional.

STEP 6. Let $A \in B(X)$ be non-nilpotent. Then $\phi(A)$ is s-idempotent if and only if A is s-idempotent. In particular, if A is idempotent, then $\frac{1}{\theta(1)}\phi(A)$ is idempotent.

First suppose that *A* is s-idempotent. Then $A = \lambda P$ for some nonzero scalar λ and some idempotent operator *P*. We can suppose that $P \neq I$; for otherwise, we are done by Step 3. Let $x \otimes f \in \mathcal{N}_1(X)$ be such that $f(\phi(A)x) = 0$. By Step 5, we can take $y \otimes g \in \mathcal{N}_1(X)$ such that $\phi(y \otimes g) = x \otimes f$. Compute

$$(\phi(A) \circ x \otimes f)^2 = f(\phi(A)^2 x) x \otimes f, \qquad (2.1)$$

$$(\phi(A) \circ x \otimes f)^4 = 0. \tag{2.2}$$

By Eq.(2.2) and Step 2(3), $A \circ y \otimes g \in \mathcal{N}(X)$. Then g(Ay) = 0 by Lemma 2.1 and hence $(A \circ y \otimes g)^2 = 0$. This together with Step 2 and Eq.(2.1) leads to $f(\phi(A)^2 x) = 0$ for all $x \otimes f \in \mathcal{N}_1(X)$ with $f(\phi(A)x) = 0$. By [12, Lemma 2.4], there exist scalars $\alpha, \beta \in \mathbb{C}$ such that

$$\phi(A)^2 + \alpha \phi(A) + \beta I = 0.$$

By the surjectivity of ϕ , we can take $S \in B(X)$ such that $\phi(S) = \phi(A) + \alpha I$. Then

$$\phi(A \circ S) \sim \phi(A) \circ \phi(S) = -2\beta I.$$

By Step 3, $A \circ S = \gamma I$ for some scalar γ . Then $\gamma(I-P) = (I-P)(A \circ S)(I-P) = 0$. So $\gamma = 0$ and hence $\beta = 0$. Thus $\phi(A)^2 + \alpha \phi(A) = 0$. This implies that A is s-idempotent.

In a similar way, we can show that if $\phi(A)$ is s-idempotent then *A* is s-idempotent. Now suppose that *A* is idempotent. Then $\phi(A) = \mu Q$, where $\mu \in \mathbb{C}$ and *Q* is an idempotent operator. Then $\phi(2A) = \phi(2A^2) \sim 2\phi(A)^2 = 2\mu^2 Q$. On the other hand, by Step 4, $\phi(2A) \sim 2\theta(1)\phi(A) = 2\mu\theta(1)Q$. We have $2\mu^2 Q \sim 2\mu\theta(1)Q$. This implies that $\mu = \theta(1)$, completing the proof.

STEP 7. Let $A \notin \mathcal{N}(X)$. Then $\phi(A)$ is of rank-one if and only so is A.

If X is finite-dimensional, the result can be concluded from [5, Theorem 2.1]. In the following, we assume that X is infinite-dimensional.

First suppose that A is of rank-one. Then A is s-idempotent and hence so is $\phi(A)$ by Step 6. Suppose $\phi(S) \circ \phi(A) \in \mathcal{N}(X)$ for some $S \in B(X)$. Then $S \circ A \in \mathcal{N}(X)$. By Lemma 2.5, $(S \circ A)^2$ has rank at most one. Then by Step 5, $\phi(2(A \circ S)^2)$ has rank at most one. Since

$$(\phi(S)\circ\phi(A))^2\sim \frac{1}{2}\phi(2(A\circ S)^2),$$

it follows that $(\phi(S) \circ \phi(A))^2$ has rank at most one. By Lemma 2.5, $\phi(A)$ is of rankone.

In a similar way, we can show that if $\phi(A)$ is of rank-one then so is A.

STEP 8. Let *P* be an idempotent and λ be a nonzero scalar. Then $\phi(\lambda P)$ and $\phi(P)$ are linearly dependent.

Let $x \otimes f$ be any rank-one operator. Then by Steps 5 and 7, there is a rank-one operator $y \otimes g$ such that $\phi(y \otimes g) = x \otimes f$. Note that $\phi(\lambda P)$ and $\phi(P)$ are both s-idempotent by Step 6. Then

$$\begin{split} f(\phi(P)x) &= 0 \Leftrightarrow \phi(P) \circ x \otimes f \in \mathscr{N}(X) \Leftrightarrow P \circ y \otimes g \in \mathscr{N}(X) \Leftrightarrow (\lambda P) \circ y \otimes g \in \mathscr{N}(X) \\ \Leftrightarrow \phi(\lambda P) \circ x \otimes f \in \mathscr{N}(X) \Leftrightarrow f(\phi(\lambda P)x) = 0. \end{split}$$

So $f(\phi(P)x) = 0$ if and only if $f(\phi(\lambda P)x) = 0$ for all $x \in X$ and $f \in X^*$. This implies that $\phi(\lambda P)$ and $\phi(P)$ are linearly dependent.

Recall that $\mathscr{P}(X)$ denotes the set of all idempotent operators in B(X). In the following, we let $\psi = \frac{1}{\theta(1)} \phi|_{\mathscr{P}(X)}$, the restriction of $\frac{1}{\theta(1)} \phi$ to $\mathscr{P}(X)$.

STEP 9. The following are true.

- (1) The map ψ is a bijection from $\mathscr{P}(X)$ onto $\mathscr{P}(X)$.
- (2) For $P, Q \in \mathscr{P}(X)$, PQ = QP = 0 if and only if $\psi(P)\psi(Q) = \psi(Q)\psi(P) = 0$.

We only show (1) since (2) is a direct verification.

First we know that the image of ψ is contained in $\mathscr{P}(X)$ by Step 6.

Next we show the surjectivity. Suppose that $\phi(A)$ is idempotent for some $A \in B(X)$. Then *A* is s-idempotent by Step 6. Write $A = \lambda P$ for some scalar $\lambda \in \mathbb{C}$ and some idempotent $P \in \mathscr{P}(X)$. Then by Step 8, there is a scalar $\mu \in \mathbb{C}$ such that

$$\phi(A) = \mu \phi(P) = \mu \theta(1) \psi(P).$$

Since both $\phi(A)$ and $\psi(P)$ are idempotent, we conclude $\mu \theta(1) = 1$ and then $\psi(P) = \phi(A)$.

Finally, we show the injectivity. Let P_1 and P_2 be idempotents and suppose that $\psi(P_1) = \psi(P_2)$. Then $\phi(P_1) = \phi(P_2)$ and hence $P_1 = P_2$ by the injectivity of ϕ .

Now by Step 9, ψ is a bijective map on $\mathscr{P}(X)$ preserving orthogonality in both directions. We can apply [21, Corollary 4.13] when X is finite-dimensional and [22, Corollary 1.4 and Corollary 1.5] when X is infinite-dimensional. Then one of the following holds:

(1) There is a semilinear bijection $T: X \to X$ such that

$$\phi(P) = \theta(1)TPT^{-1}, P \in \mathscr{P}(X).$$

Moreover, if X is infinite-dimensional, then T is bounded and linear or conjugate-linear.

(2) The space X is reflexive and there is a semilinear bijection $T: X^* \to X$ such that

$$\phi(P) = \theta(1)TP^*T^{-1}, P \in \mathscr{P}(X).$$

Moreover, if X is infinite-dimensional, then T is bounded and linear or conjugate-linear.

Without loss of generality, in the rest of proof we assume the first case above holds and show that case 1 in Theorem 1.1 holds. Suppose that *h* is an automorphism of \mathbb{C} such that $T(\lambda x) = h(\lambda)Tx$ for all $\lambda \in \mathbb{C}$ and $x \in X$. Then it is easy to verify that $T^{-1}(h(\lambda)x) = \lambda T^{-1}x$ for all $\lambda \in \mathbb{C}$ and $x \in X$. Therefore $T^{-1}AT \in B(X)$ for all $A \in B(X)$ and hence $T^{-1}\phi(\cdot)T$ is a bijection of B(X) satisfying Eq.(1.1). So we may replace ϕ by $T^{-1}\phi T$ and then we have that

$$\phi(P) = \theta(1)P, P \in \mathscr{P}(X). \tag{2.3}$$

Our aim is to show that $\phi(A) = A$ for all $A \in B(X)$.

STEP 10. There exists a function $\tau : B(X) \to \mathbb{C} \setminus \{0\}$ such that $\phi(A) = \tau(A)A$ for all $A \in B(X)$.

First we suppose that $A^2 = 0$. Then $\phi(A)^2 = 0$ by Step 2. Therefore, for any $x \otimes f \in \mathscr{P}(X)$, by Eq.(2.3) we have

$$\begin{aligned} f(\phi(A)x) &= 0 \Leftrightarrow \theta(1)(\phi(A) \circ x \otimes f) \in \mathscr{N}(X) \Leftrightarrow \phi(A) \circ \phi(x \otimes f) \in \mathscr{N}(X) \\ \Leftrightarrow A \circ x \otimes f \in \mathscr{N}(X) \Leftrightarrow f(Ax) = 0, \end{aligned}$$

and so $\phi(A) = \tau(A)A$ for some nonzero scalar $\tau(A)$ by [3, Lemma 2.16].

We now turn to the general case. Let $A \in B(X)$. By Step 3, we can assume $A \notin \mathbb{C}I$. For $x \in X, f \in X^*$ with f(x) = 0 and f(Ax) = 0, since $A \circ x \otimes f \in \mathcal{N}(X)$, by the preceding result we have $\tau(x \otimes f)(\phi(A) \circ x \otimes f) \in \mathcal{N}(X)$, which implies $f(\phi(A)x) = 0$. It follows from [12, Lemma 2.4] that

$$\phi(A) = \tau(A)A + \mu(A)I \tag{2.4}$$

for some scalars $\tau(A)$ and $\mu(A)$.

It now suffices to show that $\mu(A) = 0$. For this, first we suppose that *A* is of rankone. Then $\phi(A)$ is of rank-one. This together with Eq.(2.4) leads to $\mu(A) = 0$. Next, we suppose that *A* has rank at most two. Then there exists an operator *B* of rank-one such that $A \circ B = 0$. Thus we have $\phi(A) \circ \phi(B) = 0$. By the preceding case, we can write $\phi(B) = \alpha B$ for some scalar α . Then from $(\tau(A)A + \mu(A)I) \circ (\alpha B) = 0$, we get $\mu(A) = 0$.

Finally, we consider the general case. Choose $y \in X$ such that y and Ay are linearly independent. Take $g \in X$ such that g(y) = 1 and g(Ay) = 0. Since $A \circ y \otimes g$ has rank at most two, it follows that $\phi(A \circ y \otimes g) = \beta(A \circ y \otimes g)$ for some scalar β . From

$$\phi(A \circ y \otimes g) \sim \phi(A) \circ \phi(y \otimes g),$$

it follows

$$\theta(1)(\tau(A)A + \mu(A)I)y \otimes g + y \otimes g(\tau(A)A + \mu(A)I)) \sim \beta(A \circ y \otimes g)$$

Then by comparing the trace of the left and the right, we get $\mu(A) = 0$, completing the proof.

STEP 11. There is a scalar $\lambda_0 \in \mathbb{C}$ such that $\tau(x \otimes f) = \lambda_0$ for all $x \otimes f \in \mathcal{N}_1(X)$. It suffices to show $\tau(x_1 \otimes f_1) = \tau(x_2 \otimes f_2)$ for any $x_1 \otimes f_1, x_2 \otimes f_2 \in \mathcal{N}_1(X)$. We distinguish some cases.

Case 1: x_1 and x_2 are linearly independent, and $f_1 = f_2$. Then we can choose $x_0 \in X$ such that $f_1(x_0) = f_2(x_0) = 1$. Notice that x_0, x_1, x_2 are linearly independent. Then we can take f_0 in X^* such that $f_0(x_0) = 0$ and $f_0(x_1) = f_0(x_2) = 1$. It is easy to see that $x_0 \otimes f_0 \in \mathscr{N}_1(X)$ and $x_0 \otimes f_i + x_i \otimes f_0 \in \mathscr{P}(X)$, i = 1, 2. Since

$$x_0 \otimes f_i + x_i \otimes f_0 = (x_0 \otimes f_0) \circ (x_i \otimes f_i), \ i = 1, 2,$$

it follows that

$$\phi(x_0 \otimes f_i + x_i \otimes f_0) \sim \phi(x_0 \otimes f_0) \circ \phi(x_i \otimes f_i), \ i = 1, 2$$

Hence we have

$$\theta(1)(x_0 \otimes f_i + x_i \otimes f_0) \sim \tau(x_i \otimes f_i)\tau(x_0 \otimes f_0)(x_0 \otimes f_i + x_i \otimes f_0), i = 1, 2.$$

From this, we get $\tau(x_i \otimes f_i)\tau(x_0 \otimes f_0) = \theta(1)$, i = 1, 2. So $\tau(x_1 \otimes f_1) = \tau(x_2 \otimes f_2)$. **Case 2:** f_1 and f_2 are linearly independent, and $x_1 = x_2$.

By an argument similar to that in Case 1, we have $\tau(x_1 \otimes f_1) = \tau(x_2 \otimes f_2)$. **Case 3:** $x_1 \otimes f_1$ and $x_2 \otimes f_2$ are linearly dependent, say $x_2 \otimes f_2 = \alpha x_1 \otimes f_1$ for some scalar α . Take $y \in \ker(f_1)$ such that y and x_1 are linearly independent. Then by Case 1, we have $\tau(x_1 \otimes f_1) = \tau(y \otimes f_1) = \tau(\alpha x_1 \otimes f_1) = \tau(x_2 \otimes f_2)$. **Case 4:** $f_1(x_2) = 0$. Then

$$\tau(x_1 \otimes f_1) = \tau(x_2 \otimes f_1) = \tau(x_2 \otimes f_2),$$

where the first equality is due to Cases 1 and 3, the second equality is due to Cases 2 and 3.

Finally, we consider the general case. Take $x_3 \in \ker f_1 \cap \ker f_2$. Then by Case 4, we have $\tau(x_1 \otimes f_1) = \tau(x_3 \otimes f_2) = \tau(x_2 \otimes f_2)$, completing the proof.

STEP 12. We have $\lambda_0^2 = \theta(1)$.

Let $x_1, x_2 \in X$ and $f_1, f_2 \in X^*$ be such that $f_i(x_j) = \delta_{ij}$ for all $1 \leq i, j \leq 2$. Then $x_1 \otimes f_2, x_2 \otimes f_1 \in \mathcal{N}_1(X)$ and $x_1 \otimes f_1 + x_2 \otimes f_2 \in \mathcal{P}(X)$. Since

$$(x_1 \otimes f_2) \circ (x_2 \otimes f_1) = x_1 \otimes f_1 + x_2 \otimes f_2,$$

it follows that

$$\lambda_0^2((x_1 \otimes f_2) \circ (x_2 \otimes f_1)) \sim \theta(1)(x_1 \otimes f_1 + x_2 \otimes f_2).$$

So $\lambda_0^2 = \theta(1)$.

STEP 13. If A is non-zero, non-invertible and non-s-idempotent, then $\tau(A) = \lambda_0$.

First suppose that there is $x_0 \in X$ such that Ax_0 doesn't lie in the linear span of x_0 and A^2x_0 . Then we can find $f_0 \in X^*$ such that $f_0(x_0) = f_0(A^2x_0) = 0$ while $f(Ax_0) = 1$. Then $x_0 \otimes f_0 \in \mathcal{N}_1(X)$ and $A \circ x_0 \otimes f_0 \in \mathscr{P}(X)$. Therefore, we have

$$\theta(1)(A \circ x_0 \otimes f_0) \sim \tau(A)\lambda_0(A \circ x_0 \otimes f_0).$$

So $\tau(A)\lambda_0 = \theta(1)$ and hence $\tau(A) = \lambda_0$ since $\lambda_0^2 = \theta(1)$.

Suppose now that $Ax \in \text{span}\{x, A^2x\}$ for all $x \in X$. Then by [12, Lemma 2.4], there are scalars α and β such that $\alpha A^2 + A + \beta I = 0$. Since A is non-invertible, we get $\beta = 0$. Thus we have $\alpha A^2 + A = 0$. This implies that A = 0 or A is s-idempotent, a contradiction.

Step 14. $\lambda_0 = \theta(1) = 1$.

Take linearly independent vectors $x_1, x_2 \in X$ and $f_1, f_2 \in X^*$ such that $f_1(x_1) = 0$ and $f_1(x_2) = f_2(x_1) = f_2(x_2) = 1$. It is not difficult to verify that $x_1 \otimes f_2 + x_2 \otimes f_1$ is non-invertible and non-s-idempotent. Note that $x_1 \otimes f_1 \in \mathcal{N}_1(X)$, $x_2 \otimes f_2 \in \mathcal{P}(X)$ and

$$x_1 \otimes f_2 + x_2 \otimes f_1 = (x_1 \otimes f_1) \circ (x_2 \otimes f_2).$$

It follows from Step 13 that

$$\lambda_0(x_1 \otimes f_2 + x_2 \otimes f_1) \sim \lambda_0 \theta(1)(x_1 \otimes f_2 + x_2 \otimes f_1).$$

Comparing the trace, we get $\theta(1) = 1$.

Take linearly independent vectors $y_1, y_2 \in X$ and $g_1, g_2 \in X^*$ such that $g_i(y_j) = 1$, i, j = 1, 2. It is not difficult to verify that $y_1 \otimes g_2 + y_2 \otimes g_1$ is non-invertible and non-s-idempotent. Note that $y_1 \otimes g_1, y_2 \otimes g_2 \in \mathscr{P}(X)$ and

$$y_1 \otimes g_2 + y_2 \otimes g_1 = (y_1 \otimes g_1) \circ (y_2 \otimes g_2).$$

It follows

$$\lambda_0(y_1 \otimes g_2 + y_2 \otimes g_1) \sim \theta(1)^2(y_1 \otimes g_2 + y_2 \otimes g_1) = y_1 \otimes g_2 + y_2 \otimes g_1.$$

Comparing the trace, we get $\lambda_0 = 1$.

STEP 15. $\phi(A) = A$ for all $A \in B(X)$.

First we suppose $A \notin \mathbb{C}I$. Then there are $x \in X$ and $f \in X^*$ such that f(x) = 0 and f(Ax) = 1. It is not difficult to verify that $A \circ x \otimes f$ is non-invertible and either idempotent or non-s-idempotent. Then from Step 13 and the relation

$$\phi(A) \circ \phi(x \otimes f) \sim \phi(A \circ x \otimes f),$$

we have

$$\tau(A)(A \circ x \otimes f) \sim A \circ x \otimes f.$$

Comparing the trace, we get $\tau(A) = 1$.

Finally, let $\mu \in \mathbb{C}$, and let *P* be an idempotent of rank-one. Then from the proceeding result, Step 14 and the relation

$$\phi(2\mu P) \sim \phi(\mu I) \circ \phi(P),$$

we get that $2\mu P \sim 2\theta(\mu)P$. So $\theta(\mu) = \mu$ and then $\phi(\mu I) = \mu I$ for all $\mu \in \mathbb{C}$. \Box

Acknowledgement.

The research was supported by the National Natural Science Foundation of China (Grant No. 11571247). The authors would like to thank the referee for leading our attention to paper [5], the very thorough reading and many helpful comments, which improves our manuscrpit.

REFERENCES

- R. AN AND J. HOU, Additivity of Jordan multiplicative maps on Jordan operator algebras, Taiwanese J. Math. 10 (2006) 45–64.
- [2] Z. BAI AND S. DU, Characterization of sum automorphisms and Jordan triple automorphisms of quantum probabilistic maps, J. Phys. A 43 (2010), 165210 (9 pp.).
- [3] M. DOBOVIĚK, B. KUZMA, G. LEŠNJAK, C. K. LI AND T. PETEK, Mappings that preserve pairs of operators with zero triple Jordan product, Linear Algebra Appl. 426 (2007), 255–279.
- [4] S. DU AND J. HOU, Nonlinear maps preserving similarity on B(X), Linear Algebra Appl. 420 (2007), 506–516.
- [5] A. E. GUTERMAN AND B. KUZMA, Preserving zeros of a polynomial, Communications in Algebra, 37 (2009), 4038–4064.
- [6] F. HIAI, Similarity preserving linear maps on matrices, Linear Algebra Appl. 97 (1987), 127–139.
- [7] J. HOU AND X. ZHANG, Additive maps preserving similarity of operator on Banach spaces, Act Math.Sin.(Engl.Ser.) 22 (2006), 179–186.
- [8] G. JI, Similarity-preserving linear maps on B(H), Linear Algebra Appl. 368 (2003), 249–257.
- [9] SANG OG KIM AND C. PARK, Additivity of Jordan triple product homomorphisms on generalized matrix algebras, Bull. Korean Math. Soc. 50 (2013), 2027–2034.
- [10] B. KUZMA, Jordan triple product homomorphisms, Monatsh. Math. 149 (2006), 119-128.
- [11] G. LEŠNJAK AND N.-S. SZE, On injective Jordan semi-triple maps of M_n, Linear Algebra Appl. 414 (2006), 383–388.
- [12] C. K. LI, P. ŠEMRL AND N.-S. SZE, Maps preserving the nilpotency of products of operators, Linear Algebra Appl. 424 (2007), 222–239.
- [13] M. LIM, A note on similarity preserving linear maps on matrices, Linear Algebra Appl. 190 (1993), 229–233.
- [14] F. LU, Additivity of Jordan maps on standard operator algebras, Linear Algebra Appl. 357 (2002), 123–131.
- [15] F. LU AND C. PENG, Similarity-preserving linear maps on B(X), Studia Math. 209 (2012), 1–10.
- [16] L. MOLNÁR, Non-linear Jordan triple automorphisms of sets of self-adjoint matrices and operators, Studia Math. 173 (2006), 39–48.
- [17] T. PETEK, Linear mappings preserving similarity on B(H), Studia Math. 161 (2004), 177–186.
- [18] T. PETEK, A note on unitary similarity preserving linear mappings on B(H), Linear Algebra Appl. 394 (2005), 217–224.
- [19] T. PETEK, Unitary similarity preserving linear Maps on B(H), Integral Equations Operator Theory 82 (2015), 51–60.
- [20] Z. QIN AND F. LU, Involution similarity preserving linear maps, Studia Math. (to appear)
- [21] P. ŠEMRL, Maps on idempotent matrices over division rings, J. Algebra 298 (2006), 142–187.
- [22] P. ŠEMRL, Maps on idempotents, Studia Math. 169 (2005), 21-44.
- [23] P. ŠEMRL, Similarity preserving linear maps, J. Operator Theory 60 (2008), 71-83.

- [24] Z. YANG AND F. LU, Surjective Jordan maps and Jordan triple maps, Linear Algebra Appl. 535 (2017), 1–11.
- [25] L. ZHAO AND J. HOU, Jordan zero-product preserving additive maps on operator algebras, J. Math. Anal. Appl. 314 (2006), 689–700.

(Received May 22, 2018)

Zijie Qin Department of Mathematics Soochow University Suzhou 215006, China e-mail: 20154207009@stu.suda.edu.cn

> Fangyan Lu Department of Mathematics Soochow University Suzhou 215006, China e-mail: fylu@suda.edu.cn

Operators and Matrices www.ele-math.com oam@ele-math.com