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SIMILARITY JORDAN MULTIPLICATIVE MAPS

Z1TE QIN AND FANGYAN LU

(Communicated by P. Semrl)

Abstract. 'We characterize bijections ¢ : B(X) — B(X) satisfying that ¢ (AB+BA) and ¢ (A)¢(B) +
¢(B)¢(A) are similar for all A,B € B(X).

1. Introduction

Let X be a complex Banach space. By B(X) and X* we denote the algebra of
all bounded linear operators on X and the topological dual of X, respectively. For
A € B(X), A" is its adjoint. Two operators A, B in B(X) are called similar, denoted by
A ~ B, if there exists an invertible operator S in B(X) such that A = SBS~!.

Our main result reads as follows. Recall thatamap 7 : X — X is called semilinear
if it is additive and there is an automorphism % : C — C such that T(Ax) = h(A)x for
all x€ X and A € C. Given two operators A, B, their Jordan product is defined by
AoB=AB+BA.

THEOREM 1.1. Let X be a complex Banach space of dimension >3 and ¢ :
B(X) — B(X) a bijective map satisfying

¢(AoB)~ ¢(A)od(B) (1.1)
forall A,B € B(X). Then one of the following holds.
(1) There is a semilinear bijection T : X — X such that
¢(A) = TAT', AcB(X).

Moreover, if X is infinite-dimensional, then T is bounded and linear or conjugate-
linear.

(2) The space X is reflexive and there is a semilinear bijection T : X* — X such that
0(A)=TA*T"! AeB(X).

Moreover, if X is infinite-dimensional, then T is bounded and linear or conjugate-
linear.

Mathematics subject classification (2010): 47A30, 47B49.
Keywords and phrases: Jordan product, Jordan multiplicative map, similarity.

© depay, Zagreb 395
Paper OaM-13-29


http://dx.doi.org/10.7153/oam-2019-13-29

396 Z.QINAND F. LU

There are two distinct motivations. First is the works on Jordan multiplicative map.
A map ¢ : B(X) — B(X) is called Jordan multiplicative if $(AoB) = ¢(A)o ¢(B) for
all A,B € B(X). In [14], the second author showed that a bijective Jordan mutiplicative
map of B(X) is additive. Various generalizations are available. For example, papers
[11, 24, 25] weakened the bijectivity assumption; papers [1, 2, 9, 10, 16] altered the
underlying algebra. In the present paper, we weaken the equality into the “approximate”
equality.

The second motivation for our study is the works on simility-preserving maps. A
map ¢ : B(X) — B(X) is said to be similarity-preserving if ¢(A) ~ ¢(B) whenever
A ~ B. Hiai [6] and Lim [13] characterized similarity-preserving linear map on the ma-
trix algebra. Various generalizations are available. For example, papers [8, 15, 23, 17]
studied infinite-dimensional space case; papers [4, 7] weakened the linearity; papers
[18, 19, 20] considered other type of similarity. In the present paper, we consider non-
linear similarity-preserving maps concerning the Jordan product.

2. Proofs

This section is due to proving Theorem 1.1. Throughout this section, X is a com-
plex Banach space with dimension at least 3, ¢ is a surjection of B(X) satisfying
Eq.(1.1). An operator A is called nilpotent if there is a positive integer n € N such
that A" =0. By .4 (X) we denote the set of all nilpotent operators in B(X). For
non-zero vectors x € X and f € X*, the rank-one operator x® f is defined as the map:
y+— f(y)x, y € X. Then the symbol .41 (X) stands for the set of all rank-one operators
in A4 (X).

We begin with an easy an useful observation.

LEMMA 2.1. Let A and x® f be in B(X). Then the following are equivalent:
(1) Aox®fe N (X).
(2) f(Ax) =0 and f(x)f(A%x) =0.
(3) (Aox® f)*=0.
Proof. That (2) = (3) is an easy computation and that (3) = (1) is obvious.
To show that (1) = (2), we suppose that Aox® f € A4(X). Then its trace is zero

and therefore f(Ax) = 0. Thus (Aox® f)? = f(x)Ax® fA+ f(A’x)x® f and hence
f(x)f(A%x) = 0 since it is nilpotent. [

LEMMA 2.2. Let A € B(X). Then A € CI if and only if AoN € A (X) for all
N e ¥ (X).

Proof. The necessity is obvious. To verify the sufficiency, let x® f € A1 (X).
Then Aox® f € A (X) and hence f(Ax) =0 forall x® f € .4](X) by Lemma 2.1.
This implies A CI. O



SIMILARITY JORDAN MULTIPLICATIVE MAPS 397

LEMMA 2.3. Suppose that X has dimension at least five. Let A € B(X) be such
that A> = 0. Then the following are equivalent:

(1) rank(A) > 2.

(2) There exists an operator S € B(X) such that AoS € A (X) but (AoS)*#0.

Proof. (2) = (1). Suppose on the contrary that rank(A) < 1. Then for any S €
B(X), if Ao is nilpotent, then (Ao S)* =0 by Lemma 2.1, a contradiction.

(1) = (2). We distinguish two cases.

Case 1: rank(A) = 2. Write A = x| ® f3 +x, ® f4, where x,x; € X are linearly
independent, f3,fs € X* are linearly independent, fj(x;) =0 forall i=1,2 and j =
3,4. Since X is has dimension at least 5, we can find x3,x4,x5s € X and fi, f2, f5 such
that fi(x;) = &; forall 1 <i,j<5. Nowset S=x3® f5s+x4® fi +x5® f». Then
(AoS)*=x,® f3#0 and (AoS)°> =0.

Case 2: rank(A) > 3. Then there exist vectors x;,xp,x3 in X such that Ax;,Axy,Ax;
are linearly independent. Hence since A2 = 0, the vectors x|, X2, x3,Ax],Axy,Ax3 are
linearly independent. Take fi, f>» € X* such that

fi(Axz) =1, filx1) = fi(x2) = fi(Ax;) =0;
f(Ax3) = foa(x1) =1, f2(x2) = f2(Ax1) = f2(Ax2) = 0.

Set S=x;®fi +x2® f>. Then (AoS)* =Ax; @ HA#0 and (AoS)’=0. [

DEFINITION 2.4. We say that an operator is s-idempotent if it is a scalar multiple
of an idempotent operator.

Observe that an operator is s-idempotent if and only if it is a scalar multiple of its
square.

LEMMA 2.5. Suppose that X has dimension at least five. Let A be s-idempotent.
Then the following are equivalent.

(1) rank(A) > 2.

(2) There exists an operator S € B(X) such that AoS € A (X) and the rank of
(AoS)? is greater than one.

Proof. Without loss of generality, we may assume that A is idempotent.

(2) = (1). Suppose rank(A) = 1. Write A = x® f with f(x) = 1. Suppose
Sox® f € A (X) for an operator S € B(X). Then f(Sx) =0 and f(5°x) =0 by
Lemma 2.1. Consequently, (Sox® f)? = Sx® f£S has rank at most one.

(1) = (2). We distinguish two cases.

Case 1: 2 < rank(A) < 3. Then we can take xj,x, from the image of A and
x3,Xx4 from the image of I — A such that xj,x>,x3,x4 are linearly independent. Take
fi.fo, /3, fa from X* such that fi(x;) = &;, 1 <i,j<4. Set S=x,® fu(l —A) +
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x4 ® fiA+x1® f3(I—A). Then (AoS)?> = x4 ® f5(I — A) +x2 ® fiA has rank two and
(AoS)*=0.

Case 2: rank(A) > 4. Since A is idempotent, we can take vectors xj,x;,X3,xs
from the range of A and vectors fi, f>, f3, f4 from the range of A* such that fi(x;) = §;;
forall 1 <i,j<4.SetS=x@fH+x@f3+x3®f;. Then (AoS)? =4(x; @ f3+
X2 ® f3) has rank two and (Ao §)*=0. O

Proof of Theorem 1.1. For clarity of exposition, we proceed in steps.

STEP 1. We have ¢(0) =0.
By the surjectivity of ¢, we can take A € B(X) such that ¢(A) = 0. Then by

Eq.(1.1),
$(0) = ¢(A00) ~ ¢(A)0(0) =0.

So ¢(0) =0.
STEP 2. Let A,B € B(X).
(1) ¢(2%"~1A%") ~ 22" 1¢p(A)* forall nEN.
(2) 027" 1(AoB)?) ~ 2% 1(¢(A)od(B))* forall n € N.
(3) Ae ¥ (X) ifand only if ¢(A) € A (X).
(4) AoBec .4 (X) if and only if ¢(A)od(B) € A (X).

It is easy to see that (3) follows from (1), Step | and the injectivity of ¢, and that
(4) follows from (2), Step 1 and the injectivity of ¢ .
By Eq.(1.1), we have ¢(24%) ~2¢(A)?. Suppose that

¢(22"—1A2") ~ 22"—1¢(A)2" .

Note that if two operators are similar then their squares are similar. Thus
m_q b ND) M1 (2N\N\2 l o1 (2N\D 1 2n+1_1 2)1+l
(2770(A)7 )"~ (9(27 A7) ~ 0(2- (27 AT)T) = 5027 AT ).

So

2n+1 —1 2)H~l

027" 1A 27 1p(a)

Therefore, by the induction, we prove (1).
Now by (1) and Eq.(1.1), we have

0(2" '(AoB)*) ~ 2 9(A0B) ~ 27N (9(A) 0 9(B))
for all n € N. This proves (2).

STEP 3. ¢(A) € CI if and only if A € CI.
It is a consequence of Step 2 and Lemma 2.2.
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STEP 4. There is a bijective map 6 of C onto itself such that ¢ (z/) = 6(z)I and
0(2zA) ~26(z)9(A) forall z€ C and A € B(X).
This is an easy consequence of Step 3 and Eq.(1.1).

STEP 5. §(A (X)) = M(X).
Apply [5, Theorem 2.1] when X is finite-dimensional and apply Step 2(3) and
Lemma 2.3 when X is infinite-dimensional.

STEP 6. Let A € B(X) be non-nilpotent. Then ¢(A) is s-idempotent if and only
if A is s-idempotent. In particular, if A is idempotent, then ﬁ(b(A) is idempotent.

First suppose that A is s-idempotent. Then A = AP for some nonzero scalar 4
and some idempotent operator P. We can suppose that P # I; for otherwise, we are
done by Step 3. Let x® f € A41(X) be such that f(¢(A)x) =0. By Step 5, we can take
y®ge M(X) such that ¢(y®@g) =x® f. Compute

(0(A)ox® f)* = f(9(A)x)x® £, (2.1)
(p(A)ox® f)* =0. (2.2)

By Eq.(2.2) and Step 2(3), Aocy®g € A (X). Then g(Ay) =0 by Lemma 2.1 and
hence (Aoy® g)? = 0. This together with Step 2 and Eq.(2.1) leads to f(¢(A)%>x) =0
for all x® f € A1(X) with f(¢(A)x) =0. By [12, Lemma 2.4], there exist scalars
o, 3 € C such that

O(A)> + ag(A)+BI=0.
By the surjectivity of ¢, we can take S € B(X) such that ¢(S) = ¢(A)+ . Then

¢(AoS) ~(A)od(S) = —2B1.

By Step 3, AoS = yI for some scalar y. Then y(I—P)= (I—P)(AoS)(I—P)=0. So
y=0 and hence 8 =0. Thus ¢(A)?>+ ¢ (A) = 0. This implies that A is s-idempotent.
In a similar way, we can show that if ¢(A) is s-idempotent then A is s-idempotent.
Now suppose that A is idempotent. Then ¢(A) = uQ, where p € C and Q is an
idempotent operator. Then ¢ (2A) = ¢(2A4%) ~ 2¢(A)? = 2u>Q. On the other hand, by
Step 4, ¢(2A) ~20(1)¢(A) =2u6(1)Q. We have 2u>Q ~ 2u6(1)Q. This implies
that 4 = 0(1), completing the proof.

STEP 7. Let A ¢ A (X). Then ¢(A) is of rank-one if and only so is A.

If X is finite-dimensional, the result can be concluded from [5, Theorem 2.1]. In
the following, we assume that X is infinite-dimensional.

First suppose that A is of rank-one. Then A is s-idempotent and hence so is ¢ (A)
by Step 6. Suppose ¢(S)o¢(A) € A (X) for some S € B(X). Then SoA € A (X).
By Lemma 2.5, (SoA)? has rank at most one. Then by Step 5, ¢(2(A o S)?) has rank
at most one. Since

(0(5)06(4) ~ 30(2(455)?)

it follows that (¢(S) o ¢(A))? has rank at most one. By Lemma 2.5, ¢(A) is of rank-
one.
In a similar way, we can show that if ¢(A) is of rank-one then so is A.
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STEP 8. Let P be an idempotent and A be a nonzero scalar. Then ¢(AP) and
¢ (P) are linearly dependent.

Let x® f be any rank-one operator. Then by Steps 5 and 7, there is a rank-one
operator y ® g such that ¢(y®g) = x® f. Note that ¢(AP) and ¢(P) are both s-
idempotent by Step 6. Then
f(@(P)x) =0 ¢(P)ox®feN(X) & Poyge N (X) & (AP)oy@ge A (X)

< ¢(AP)ox® fe N (X) < f(¢(AP)x) =0.
So f(¢(P)x) =0 if and only if f(¢(AP)x) =0 forall x € X and f € X*. This implies
that ¢(AP) and ¢(P) are linearly dependent.

Recall that &?(X) denotes the set of all idempotent operators in B(X). In the
following, we let y = ﬁ(ﬂy(x), the restriction of ﬁq& to Z(X).

STEP 9. The following are true.
(1) The map v is a bijection from Z(X) onto Z(X).
(2) For P,Q € #(X), PQ = QP =0 if and only if w(P)y(Q) = y(Q)y(P)=0.

We only show (1) since (2) is a direct verification.

First we know that the image of v is contained in £?(X) by Step 6.

Next we show the surjectivity. Suppose that ¢(A) is idempotent for some A €
B(X). Then A is s-idempotent by Step 6. Write A = AP for some scalar A € C and
some idempotent P € &?(X). Then by Step 8, there is a scalar u € C such that

$(A) = puo(P) = ub(1)y(P).
Since both ¢(A) and y(P) are idempotent, we conclude p6(1) =1 and then y(P) =
¢(A).

Finally, we show the injectivity. Let P; and P> be idempotents and suppose that
y(P) = y(P,). Then ¢(P;) = ¢(P>) and hence P, = P, by the injectivity of ¢.

Now by Step 9, v is a bijective map on &?(X) preserving orthogonality in both
directions. We can apply [21, Corollary 4.13] when X is finite-dimensional and [22,
Corollary 1.4 and Corollary 1.5] when X is infinite-dimensional. Then one of the fol-
lowing holds:

(1) There is a semilinear bijection 7 : X — X such that
o(P)=0()TPT™ ', Pc 2(X).

Moreover, if X is infinite-dimensional, then T is bounded and linear or conjugate-
linear.

(2) The space X is reflexive and there is a semilinear bijection T : X* — X such that
o(P)=0(TP'T™!, Pc 2(X).

Moreover, if X is infinite-dimensional, then T is bounded and linear or conjugate-
linear.
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Without loss of generality, in the rest of proof we assume the first case above holds
and show that case 1 in Theorem 1.1 holds. Suppose that % is an automorphism of C
such that T(Ax) = h(A)Tx for all A € C and x € X. Then it is easy to verify that
T~ (h(A)x) = AT !x for all A € C and x € X. Therefore T~'AT € B(X) for all
A € B(X) and hence T~'¢(-)T is a bijection of B(X) satisfying Eq.(1.1). So we may
replace ¢ by T~ '¢T and then we have that

¢(P)=0(1)P, P 2(X). (2.3)
Our aim is to show that ¢(A) = A forall A € B(X).

STEP 10. There exists a function 7: B(X) — C\ {0} such that ¢(A) = 7(A)A for
all A € B(X).

First we suppose that A> = 0. Then ¢(A)?> = 0 by Step 2. Therefore, for any
x® fe Z(X),byEq.(2.3) we have

f(9(A)x) =0 0(1)(¢(A)ox® f) € N (X) & ¢(A) 0 p(x® f) € A (X)
SAox®feN(X) & f(Ax) =0,

and so ¢(A) = 7(A)A for some nonzero scalar 7(A) by [3, Lemma 2.16].

We now turn to the general case. Let A € B(X). By Step 3, we can assume A ¢ CI.
For x € X,f € X* with f(x) =0 and f(Ax) =0, since Aox® f € A (X), by the
preceding result we have T(x® f)(¢(A)ox® f) € A (X), which implies f(¢(A)x) =0.
It follows from [12, Lemma 2.4] that

¢(A) = T(A)A+u(A)l 2.4)

for some scalars 7(A) and u(A).

It now suffices to show that u(A) = 0. For this, first we suppose that A is of rank-
one. Then ¢(A) is of rank-one. This together with Eq.(2.4) leads to p(A) = 0. Next,
we suppose that A has rank at most two. Then there exists an operator B of rank-one
such that Ao B = 0. Thus we have ¢(A) o ¢(B) = 0. By the preceding case, we can
write ¢(B) = aB for some scalar o . Then from (7(A)A+ w(A)I)o (aB) =0, we get
u(A)=0.

Finally, we consider the general case. Choose y € X such that y and Ay are
linearly independent. Take g € X such that g(y) =1 and g(Ay) =0. Since Aoy®g
has rank at most two, it follows that ¢(Aoy®g) = B(Aoy® g) for some scalar 3.
From

¢p(Aoy®@g)~¢(A)od(y®g),

it follows
O(1)(t(A)A+p(A))y®g+y@g(T(A)A+u(A))) ~ B(Aoy®g).

Then by comparing the trace of the left and the right, we get tt(A) =0, completing the
proof.
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STEP 11. Thereis ascalar Ay € C such that T(x® f) = A forall x® f € A4 (X).
It suffices to show T(x; ® f1) = T(x2 ® f») forany x; @ f1,x Q fo € A1 (X). We
distinguish some cases.
Case 1: x| and x; are linearly independent, and f; = f>. Then we can choose xg € X
such that fj (xo) = f>(x0) = 1. Notice that xo,x;,x, are linearly independent. Then we
can take fp in X* such that fo(xo) =0 and fy(x1) = fo(x2) = L. It is easy to see that
Xo® fo€ MX) and xo® fi+x;® fo € P(X), i=1,2. Since

Y@ fi+txi®fo=x®fo)o(xi®fi), i=1,2,
it follows that
O @fi+xi®fo) ~P(xo® fo)od(xi® fi), i=1,2.
Hence we have
0(1)(x0® fi +xi® fo) ~ T(x;i @ fi)T(x0 @ fo) (X0 @ fi +xi ® fo),i = 1,2.

From this, we get T(x; ® fi)T(xo® fo) =0(1), i=1,2. So t(x1 ®@ f1) = T(x2 @ f3).
Case 2: f| and f; are linearly independent, and x; = x;.

By an argument similar to that in Case 1, we have T(x; ® f1) = T(x, ® f2).
Case 3: x; ® f1 and x, ® f» are linearly dependent, say x> ® f>» = ox; ® f1 for some
scalar o. Take y € ker(f}) such that y and x; are linearly independent. Then by Case
1, we have 7(x; ® f1) = 1(y ® f1) = (a1 ® fi) = T(02 @ f2).
Case4: fi(x;) =0. Then

(1 ®f1) =12 @ fi) = 1(2® f),

where the first equality is due to Cases 1 and 3, the second equality is due to Cases 2
and 3.

Finally, we consider the general case. Take x3 € ker f; Nker f. Then by Case 4,
we have 7(x; ® f1) = 1(x3® f2) = T(x2 ® f»), completing the proof.

STEP 12. We have A3 = 0(1).
Let x1,x2 € X and fi, fo € X* be such that fj(x;) = §;; forall 1 <i,j<2. Then
QxR fi € MX)and 1@ fl+x R fr € Z(X). Since

(X1® f2)0 (2@ f1) =x1 @ fi+x2@ fa,
it follows that
25((1® f2) 0 (0@ f1) ~0(1)(x1 ® fi+ X2 @ fo).

So Ag =6(1).

STEP 13. If A is non-zero, non-invertible and non-s-idempotent, then T(A) = Ay.
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First suppose that there is xo € X such that Axp doesn’t lie in the linear span
of xo and A%xg. Then we can find fy € X* such that fy(xo) = fo(A%xg) = 0 while
f(Axp) =1. Then xp ® fo € A(X) and Aoxy® foy € P (X). Therefore, we have

0(1)(Aoxy® fo) ~ T(A)Ap(Aoxy® fo).

So 7(A)Ao = 6(1) and hence T(A) = A since A? = 6(1).

Suppose now that Ax € span{x,A%x} for all x € X. Then by [12, Lemma 2.4],
there are scalars o and f3 such that «A% +A+ BI = 0. Since A is non-invertible, we
get B =0. Thus we have ¢A? +A = 0. This implies that A = 0 or A is s-idempotent,
a contradiction.

STEP 14. 2 =6(1)=1.

Take linearly independent vectors x1,x, € X and f1, f> € X* such that fi(x;) =0
and f1(x2) = fo(x1) = fa(x2) = 1. It is not difficult to verify that x; ® fo +x, @ f] is
non-invertible and non-s-idempotent. Note that x| ® f; € (X)), », ® f» € Z(X) and

X®Hh+0®fi=0®f)o(n®f)
It follows from Step 13 that
M(x1 @ fr+x3 f1) ~A0(1)(x1 ® L +x fi).

Comparing the trace, we get 6(1) = 1.

Take linearly independent vectors y,y> € X and g1,g> € X* such that g;(y;) =1,
i,j=1,2. Itis not difficult to verify that y; ® go +y» ® g1 is non-invertible and non-s-
idempotent. Note that y; ® g1,y2 ® g2 € & (X) and

VI®gE+y®g1=(1®g1)o(2®82).

It follows

2@ +yn®g) ~0(1) VR +n®g)=y1®8n+n®gl.

Comparing the trace, we get Ag = 1.

STEP 15. ¢(A) =A forall A € B(X).

First we suppose A ¢ CI. Then there are x € X and f € X* such that f(x) =0
and f(Ax) = 1. It is not difficult to verify that Aox® f is non-invertible and either
idempotent or non-s-idempotent. Then from Step 13 and the relation

$(A)odp(x@ f) ~ d(Aox® f),

we have
T(A)(Aox® f) ~Aox® f.

Comparing the trace, we get T(A) = 1.
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Finally, let u € C, and let P be an idempotent of rank-one. Then from the pro-

ceeding result, Step 14 and the relation

¢(2uP) ~ o(ul)od(P),

we get that 2uP ~20(u)P. So 6(u) = p and then ¢(ul) =pul forall p € C. O
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