ON THE MATRIX WHICH IS THE SUM OF A TRIPOTENT AND A QUASINILPOTENT MATRICES

Huanyin Chen and Marjan Sheibani Abdolyousefi*

(Communicated by H. Radjavi)

Abstract. We investigate Hirano polar matrices over a local ring, and completely determine when a 2×2 matrix over a local ring is the sum of a tripotent and a quasinilpotent matrix.

1. Introduction

Let R be an associative ring with an identity. The commutant of $a \in R$ is defined by $\operatorname{comm}(a)=\{x \in R \mid x a=a x\}$. The double commutant of $a \in R$ is defined by $\operatorname{comm}^{2}(a)=\{x \in R \mid x y=y x$ for all $y \in \operatorname{comm}(a)\}$. An element $a \in R$ is quasinilpotent if $1-a x \in U(R)$ for any $x \in \operatorname{comm}(a)$. We use $R^{\text {qnil }}$ to denote the set of all quasinilpotents in R. That is, $R^{\text {qnil }}=\{a \in R \mid 1-a x \in U(R)$ for every $x \in \operatorname{comm}(a)\}$. Clearly, every nilpotent and element in the Jacobson radical of a ring is quasinilpotent. Following Wang, an element a in a ring R has s-Drazin inverse if there exists $b \in \operatorname{comm}^{2}(a)$ such that $b=b^{2} a, a-a b \in N(R)$ (see [13]). As is well known, an element $a \in R$ has s-Drazin inverse if and only if it is strongly nil-clean, i.e., it is the sum of an idempotent and a nilpotent that commute (see $[1,11]$). Replace $N(R)$ of nilpotents by $R^{\text {qnil }}$ the set of quasinilpotents, Gurgun introduced gs-Drazin inverse of an element in a ring. It was proved that an element $a \in R$ has gs-Drazin inverse if and only if there exists $e^{2}=e \in \operatorname{comm}^{2}(a)$ such that $a-e \in R^{\text {qnil (see [8, Theorem 3.2]). }}$

An element p in a ring R is a tripotent if $p^{3}=p$. It is readily seen that idempotents and negative of idempotents are tripotents and among units only the order 2 units (also called square roots of 1) are tripotents. In [2], the authors investigated the structure of rings in which every element is the sum of a tripotent and a nilpotent that commute. The motivation of this paper is to determine when a 2×2 matrix over a local ring is the sum of a tripotent and a quasinilpotent matrix that commutate. An element a in a ring R is quasipolar if there exists an idempotent $e \in \operatorname{comm}^{2}(a)$ such that $a+e \in U(R)$ and $a e \in R^{\text {quil }}$. Quasipolar elements in a ring were studied by many authors from different view of points, e.g., [4, 5] and [6]. We call an element $a \in R$ is Hirano polar if there exists a tripotent $p \in \operatorname{comm}^{2}(a)$ such that $a-p \in R^{\text {qnil }}$. In Section 2 we investigate

[^0]Hirano polar elements in a ring and prove that every Hirano polar element in a ring is quasipolar.

Let $a \in R . \quad l_{a}: R \rightarrow R$ and $r_{a}: R \rightarrow R$ denote, respectively, the abelian group endomorphisms given by $l_{a}(r)=a r$ and $r_{a}(r)=r a$ for all $r \in R$. Thus, $l_{a}-r_{b}$ is an abelian group endomorphism such that $\left(l_{a}-r_{b}\right)(r)=a r-r b$ for any $r \in R$. In Section 3, we are concerned on Hirano polar matrices over local rings. Let R be a local ring, and let $A \in M_{2}(R)$. We prove that A is Hirano polar if and only if $A \in M_{2}(R)^{\text {qnil }}$, or $A=U+W, U \in \operatorname{comm}^{2}(A), U^{2}=I_{2}, W \in M_{2}(R)^{q n i l}$, or A is similar to $\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$, where $l_{\alpha}-r_{\beta}, l_{\beta}-r_{\alpha}$ are injective and $\alpha \in \pm 1+J(R), \beta \in J(R)$.

A ring R is bleached provided that for any $a \in U(R), b \in J(R), l_{a}-r_{b}$ and $l_{b}-r_{a}$ are both surjective. A ring R is cobleached provided that for any $a \in J(R), b \in U(R)$, $l_{a}-r_{b}$ and $r_{b}-r_{a}$ are both injective. For instance, every commutative local ring is cobleached. Finally, in the last section, we further characterize Hirano J-polar $2 \times$ 2 matrices over a cobleached local ring in terms of solvability of their characteristic equations. Let R be a cobleached local ring, and let $A \in M_{2}(R)$. We prove that A is Hirano polar if and only if $A \in M_{2}(R)^{\text {qnil }}$, or $A=U+W, U \in \operatorname{comm}^{2}(A), U^{2}=$ $I_{2}, W \in M_{2}(R)^{\text {qnil }}$, or A is similar to $\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$, where $\lambda \in J(R), \mu \in U(R)$, the equation $x^{2}-x \mu-\lambda=0$ has a root in $\pm 1+J(R)$ and a root in $J(R)$.

Throughout the paper, all rings are associative with an identity. We use $J(R), N(R)$ and $U(R)$ to denote the Jacobson radical and the set of nilpotents of R and units in R, respectively. $G L_{2}(R)$ denotes the sets of all 2×2 invertible matrices over $R . \mathbb{N}$ stands for the set of all natural numbers.

2. Hirano polar elements

Following Cui and Chen, an element $a \in R$ is J-quasipolar if there exists an idempotent $e \in \operatorname{comm}^{2}(a)$ such that $a+e \in J(R)$ (see [5]). We begin with

Example 2.1. Every J-quasipolar element in a ring is Hirano polar.

Proof. Let $a \in R$ be a J-quasipolar, then there exists some idempotent $e \in R$ such that $a+e \in J(R)$. It is obvious that $-e \in R$ is tripotent and $a-(-e) \in J(R) \subseteq$ $R^{\text {qnil }}$.

Example 2.2. Let $A=\left(\begin{array}{cc}-1 & 0 \\ 1 & 0\end{array}\right) \in M_{2}\left(\mathbb{Z}_{3}\right)$. Then A is Hirano polar, but it is not J-quasipolar.

Proof. Clearly, $A^{3}=A$, and so A is Hirano polar. Since $A-A^{2}=\left(\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right) \notin$ $J\left(M_{2}\left(\mathbb{Z}_{3}\right)\right)$. Therefore A is not J -quasipolar.

Lemma 2.3. Let $a \in R^{\text {qnil }}$ and $e^{2}=e \in \operatorname{comm}^{2}(a)$. Then $a e \in R^{\text {qnil }}$.

Proof. Let $x \in \operatorname{comm}(a e)$. Then $x a e=a e x$, and so $(e x e) a=e x(a e)=e a e x=$ $a e x=a($ exe $)$, i.e., exe $\in \operatorname{comm}(a)$. Hence, $1-a($ exe $) \in U(R)$, and so $1-(a e) x \in U(R)$ which implies that $a e \in R^{q n i l}$.

THEOREM 2.4. Every Hirano polar element in a ring is quasipolar.

Proof. Let $a \in R$, then there there exists $p^{3}=p \in \operatorname{comm}^{2}(a)$ such that $a-p \in$ $R^{\text {qnil }}$. It is clear that $\left(1-p^{2}\right)^{2}=1-p^{2}$. Let $a-p=w$ so $a+1-p^{2}=w+1-p^{2}+p$, as $\left(1+p^{2}-p\right)^{2}=1$, we can write $1-p^{2}+p+w=\left(1-p^{2}+p\right)\left(1+\left(1-p^{2}+p\right) w\right) \in$ $U(R)$, since $w \in R^{\text {qnil }}$. Then $a+\left(1-p^{2}\right) \in U(R)$. As $a-p=w, a\left(1-p^{2}\right)=w\left(1-p^{2}\right)$ that is in $R^{\text {qnil }}$ by applying Lemma 2.4, because $w \in R^{\text {qnil }}$ and $p \in \operatorname{comm}^{2}(a)$ also $1-p^{2}$ is an idempotent.

Example 2.5. Let $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right) \in M_{2}\left(\mathbb{Z}_{2}\right)$. Then A is quasipolar, but it is not Hirano polar.

Proof. As $M_{2}\left(\mathbb{Z}_{2}\right)$ is a finite ring so it is strongly π-regular and then quasipolar. Now let A is a Hirano polar ring, then there exists a triptent E such that $A=E+W$ for some $W \in R^{\text {qnil }}$, clearly $W^{2}=0$ as $M_{2}\left(\mathbb{Z}_{2}\right)$ is of bounded index 2 and so $\left(A-A^{3}\right)^{2}=0$ that is a contradiction as $\left(A-A^{3}\right)^{2}=A \neq 0$.

THEOREM 2.6. Let R be a ring, and let $a \in R$. If $\frac{1}{2} \in R$, then the following are equivalent:
(1) a is Hirano polar.
(2) There exist two idempotents $e, f \in \operatorname{comm}^{2}(a)$ and $a w \in R^{\text {qnil }}$ such that $a=$ $e-f+w$.

Proof. (1) \Rightarrow (2) Let $a \in R$, then there exists some tripotent $p \in R$ such that $a-p \in R^{\text {qnil }}$. Let $e=\frac{1}{2}\left(p^{2}-p\right)$ and $f=\frac{1}{2}\left(p^{2}+p\right)$. By computing $e^{2}-e$ and $f^{2}-f$ it is obvious that $e^{2}=e$ and $f^{2}=f$, also $p=f-e$. Then $a-e+f \in R^{\text {qnil }}$.
$(2) \Rightarrow(1)$ By hypothesis there exist two idempotents $e, f \in R$ and some $w \in R^{\text {qnil }}$ such that $a=e-f+w$. Let $p=e-f$, it is obvious that $p^{3}=p$ and $a-p=w \in$ $R^{q n i l}$.

Corollary 2.7. Let A be a Banach algebra, and let $a \in A$. Then the following are equivalent:
(1) a is Hirano polar.
(2) There exist two idempotents $e, f \in \operatorname{comm}^{2}(a)$ such that

$$
\lim _{n \rightarrow \infty}\left\|(a-(e-f))^{n}\right\|^{\frac{1}{n}}=0
$$

Proof. \Rightarrow Let $a \in A$ be a Hirano polar element, as $2 \in A$ is invertible, then by Theorem 2.6, there exist two idempotents e, f such that $a=f-e+w$ for some $w \in$ $A^{\text {qnil }}$, which implies that $a-(e-f) \in A^{\text {qnil }}$, in view of [9, page 251] we deduce that

$$
\lim _{n \rightarrow \infty}\left\|(a-(e-f))^{n}\right\|^{\frac{1}{n}}=0
$$

\Leftarrow Let $a \in A$ and there exist two idempotents $e, f \in \operatorname{comm}^{2}(a)$ such that

$$
\lim _{n \rightarrow \infty}\left\|(a-(e-f))^{n}\right\|^{\frac{1}{n}}=0
$$

In view of [9, page 251] $a-(e-f) \in A^{\text {qnil }}$ and so a is Hirano polar.

3. Hirano polar matrices

The goal of this section is to characterize when a 2×2 matrix over local rings is Hirao polar in terms of diagonal reduction. The following lemma is crucial.

Lemma 3.1. Let R be a ring, and let $a \in R$ and $u \in U(R)$. Then $a \in R$ is Hirano polar if and only if $u^{-1} a u \in R$ is Hirano polar.

Proof. \Longrightarrow By hypothesis, there exists $p^{3}=p \in \operatorname{comm}^{2}(a)$ such that $w:=a+$ $p \in R^{q n i l}$. Then $u^{-1} p u=\left(u^{-1} p u\right)^{3}, u^{-1} a u+u^{-1} p u=u^{-1} w u$. Let $x \in \operatorname{comm}\left(u^{-1} a u\right)$. Then $u^{-1} a u x=x u^{-1} a u$; hence, $a u x u^{-1}=u x u^{-1} a$. Then $u x u^{-1} \in \operatorname{comm}(a)$, and so $u x u^{-1} p=p u x u^{-1}$. This shows $x u^{-1} p u=u^{-1} p u x$, and therefore $u^{-1} p u \in$
$\operatorname{comm}^{2}\left(u^{-1} a u\right)$. Let $y \in \operatorname{comm}\left(u^{-1} w u\right)$. Then $u y u^{-1} \in \operatorname{comm}(w)$; hence, $1-w\left(u y u^{-1}\right)$ $\in U(R)$. By using Jacobson's Lemma, $1-\left(u^{-1} w u\right) y \in U(R)$. Therefore $u^{-1} w u \in$ $R^{\text {qnil }}$, as needed.
\Longleftarrow This is symmetric.
Lemma 3.2. ([7, Lemma 3.3]) Let R be a local ring, and let $A \in M_{2}(R)$. Then
(1) $A \in G L_{2}(R)$; or
(2) $A^{2} \in M_{2}(J(R))$; or
(3) A is similar to $\left(\begin{array}{ll}0 & \lambda \\ 1 & \mu\end{array}\right)$, where $\lambda \in J(R), \mu \in U(R)$.

We come now to the demonstration for which this section has been developed.
Theorem 3.3. Let R be a local ring, and let $A \in M_{2}(R)$. Then A is Hirano polar if and only if
(1) $A \in M_{2}(R)^{\text {qnil }}$, or $A=U+W, U \in \operatorname{comm}^{2}(A), U^{2}=I_{2}, W \in M_{2}(R)^{\text {qnil }}$, or
(2) A is similar to $\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$, where $l_{\alpha}-r_{\beta}, l_{\beta}-r_{\alpha}$ are injective and $\alpha \in \pm 1+$ $J(R), \beta \in J(R)$.

Proof. \Longrightarrow In view of Theorem 2.4, A is pseudopolar. By virtue of [7, Theorem 3.5], we have three cases.

Case 1. $A \in G L_{2}(R)$. Since A is Hirano polar, there exists $V^{3}=V \in \operatorname{comm}^{2}(A)$ such that $Z:=A+V$ with $Z \in M_{2}(R)^{q n i l}$. Then $V=Z-A \in G L_{2}(R)$; hence, $V^{2}=I_{2}$. Set $U=-V$. Then $A=U+Z, U \in \operatorname{comm}^{2}(A)$ and $U^{2}=I_{2}$.

Case 2. $A^{2} \in M_{2}(J(R))$. For any $X \in \operatorname{comm}(A)$, we see that $I_{2}-A^{2} X^{2} \in G L_{2}(R)$, and so $I_{1}-A X \in G L_{2}(R)$. This shows that $A \in M_{2}(R)^{\text {qnil }}$.

Case 3. A is similar to $\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$, where $l_{\alpha}-r_{\beta}, l_{\beta}-r_{\alpha}$ are injective and $\alpha \in$ $U(R), \beta \in J(R)$. Since A is Hirano polar, we easily check that $B:=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$ is Hirano polar. Then we can find some $E^{3}=E \in \operatorname{comm}^{2}(B)$ such that $W=B+E, W \in$ $M_{2}(R)^{q n i l}$. Set $E=\left(e_{i j}\right)$. Then

$$
\left(\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right)\left(\begin{array}{ll}
e_{11} & e_{12} \\
e_{21} & e_{22}
\end{array}\right)=\left(\begin{array}{ll}
e_{11} & e_{12} \\
e_{21} & e_{22}
\end{array}\right)\left(\begin{array}{ll}
\alpha & 0 \\
0 & \beta
\end{array}\right)
$$

hence, we have

$$
\alpha e_{12}-e_{12} \beta=0, \beta e_{21}-e_{21} \alpha=0
$$

This implies that $e_{12}=e_{21}=0$. Hence, $E=\left(\begin{array}{cc}e_{11} & 0 \\ 0 & e_{22}\end{array}\right)$. Set $W=\left(w_{i j}\right)$. Then $w_{12}=$ $w_{21}=0, w_{11}^{2}, w_{22}^{2} \in J(R)$. Since R is local, $w_{11}, w_{22} \in J(R)$.

Clearly, $e_{11} \in U(R)$, we see that $e_{11}^{2}=1$, and so $\left(e_{11}-1\right)\left(e_{11}+1\right)=0$. Since every element in R is invertible or in $J(R)$, we have $e_{11} \in \pm 1+J(R)$. Hence, $\alpha \in$ $\pm 1+J(R)$. Also we see that $e_{22} \in J(R)$ and $e_{22}^{3}=e_{22}$, and so $e_{22}\left(1-e_{22}^{2}\right)=0$. Hence $e_{22}=0$; hence, $\beta \in J(R)$, as desired.
\Longleftarrow Case 1. $A \in M_{2}(R)^{\text {qnil }}$. Then $A+0=A$ with $A \in M_{2}(R)^{\text {qnil }}$.
Case 2. $A=U+W, U \in \operatorname{comm}^{2}(A), U^{2}=I_{2}, N \in N\left(M_{2}(R)\right), W \in M_{2}(R)^{\text {qnil }}$. Set $V=-U$. Then $A+U=W$ where $U^{3}=U, U \in \operatorname{comm}^{2}(A), W \in M_{2}(R)^{q n i l}$.

Case 3. It will suffice to check $\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$ is Hirano polar, where $l_{\alpha}-r_{\beta}, l_{\beta}-r_{\alpha}$ are injective and $\alpha \in \pm 1+J(R), \beta \in J(R)$. We observe that

$$
\left(\begin{array}{ll}
\alpha & 0 \\
0 & \beta
\end{array}\right) \pm\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
\alpha \pm 1 & 0 \\
0 & \beta
\end{array}\right)
$$

Let $X=\left(x_{i j}\right) \in \operatorname{comm}\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$. Then

$$
\alpha x_{12}=x_{12} \beta, \beta x_{21}=x_{21} \alpha
$$

As $l_{\alpha}-r_{\beta}, l_{\beta}-r_{\alpha}$ are injective, we get $x_{12}=x_{21}=0$. Hence $X \in \operatorname{comm}\left(\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\right)$, and so

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \in \operatorname{comm}^{2}\left(\begin{array}{ll}
\alpha & 0 \\
0 & \beta
\end{array}\right) .
$$

Therefore $\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$ is Hirano polar, as required.
Corollary 3.4. Let R be a cobleached local ring, and let $A \in M_{2}(R)$. Then A is Hirano polar if and only if
(1) $A \in M_{2}(R)^{\text {qnil }}$, or $A=U+W, U \in \operatorname{comm}^{2}(A), U^{2}=I_{2}, W \in M_{2}(R)^{q n i l}$, or
(2) There exists $E^{2}=E \in \operatorname{comm}(A)$ such that $A \pm E \in M_{2}(J(R))$.

Proof. \Longrightarrow By Theorem 3.3, we may assume that A is isomorphic to $\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$, where $l_{\alpha}-r_{\beta}, l_{\beta}-r_{\alpha}$ are injective and $\alpha \in \pm 1+J(R), \beta \in J(R)$. As in the proof of Theorem 3.3, we see that

$$
\left(\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right) \pm\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \in M_{2}(J(R))
$$

with $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \in \operatorname{comm}^{2}\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$. Clearly, $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \in M_{2}(R)$ is an idempotent, as required.
\Longleftarrow We may assume that $A \pm E \in M_{2}(J(R))$ with $E^{2}=E \in \operatorname{comm}(A)$. By virtue of [6, Lemma 2.3], $E \cong 0, I_{2}$ or E is similar to $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.

Clearly, $0, I_{2} \in \operatorname{comm}^{2}(A)$. We may assume that

$$
U^{-1} E U=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

Hence,

$$
U^{-1} A U \pm U^{-1} E U=U^{-1} W U \in M_{2}(J(R))
$$

Since $E \in \operatorname{comm}(A)$, we see that

$$
U^{-1} A U \in \operatorname{comm}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

Write $U^{-1} A U=\left(\begin{array}{cc}x & y \\ s & t\end{array}\right)$. Then

$$
\left(\begin{array}{ll}
x & y \\
s & t
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
x & y \\
s & t
\end{array}\right)
$$

and so $y=s=0$.
Clearly,

$$
\left(\begin{array}{cc}
1+x & 0 \\
0 & t
\end{array}\right)=\left(\begin{array}{ll}
x & y \\
s & t
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \in M_{2}(J(R))
$$

Then $1+x, t \in J(R)$.
For any $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{comm}\left(\begin{array}{ll}x & 0 \\ 0 & t\end{array}\right)$, we have

$$
x b-b t=0, t c-c x=0
$$

Since R is cobleached, $b=c=0$; hence,

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{comm}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

Thus,

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \in \operatorname{comm}^{2}\left(\begin{array}{ll}
x & y \\
s & t
\end{array}\right),
$$

and so $U^{-1} E U \in \operatorname{comm}^{2}\left(U^{-1} A U\right)$. Therefore $E \in \operatorname{comm}^{2}(A)$, as desired.
Corollary 3.5. Let R be a commutative local ring, and let $A \in M_{2}(R)$. Then A is Hirano polar if and only if
(1) $A=N+W$, or $A=I_{2}+N+W$ where $N^{2}=0, W \in M_{2}(J(R))$, or
(2) there exists $E^{2}=E \in \operatorname{comm}(A)$ such that $A \pm E \in M_{2}(J(R))$.

Proof. Since R is commutative, we obtain the result by Corollary 3.4 and [7, Lemma 3.2].

It is convenient at this stage to characterize Hirano polar matrices over a division ring.

THEOREM 3.6. Let D be a division ring, and let $A \in M_{2}(D)$. Then the following are equivalent:
(1) A is Hirano polar.
(2) $A=E-F+N$, where $E^{2}=E, F^{2}=F \in \operatorname{comm}^{2}(A)$ and $N^{2}=0$.
(3) $A-A^{3}$ is nilpotent.

Proof. (1) \Rightarrow (2) In light of Theorem 3.3, $A \in M_{2}(D)^{\text {qnil }}$, or $A=U+W, U \in$ $\operatorname{comm}^{2}(A), U^{2}=I_{2}, W \in M_{2}(D)^{q n i l}$, or A is similar to $\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$, where $l_{\alpha}-r_{\beta}, l_{\beta}-r_{\alpha}$ are injective and $\alpha \in \pm 1+J(D), \beta \in J(D)$.

Let $X \in M_{2}(D)^{\text {qnil }}$. Then $X \notin G L_{2}(R)$. Since there exists $V \in G L_{2}(D)$ such that $V^{-1} X V=\left(\begin{array}{cc}x_{11} & x_{12} \\ 0 & x_{22}\end{array}\right)$, we may assume that $x_{22}=0$. If $x_{12}=0$, then $x_{11}=0$. If $x_{12} \neq 0$ and $x_{11} \neq 0$, then $\left(\begin{array}{cc}x_{11}^{-1} & 0 \\ 0 & x_{12}^{-1}\end{array} x_{11}^{-1} x_{12}\right) \in \operatorname{comm}\left(V^{-1} X V\right)$. Hence,

$$
I_{2}-\left(\begin{array}{cc}
x_{11} & x_{12} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
x_{11}^{-1} & 0 \\
0 & x_{12}^{-1} x_{11}^{-1} x_{12}
\end{array}\right) \in G L_{2}(D)
$$

an absurd. Therefore $x_{11}=0$, and so $X^{2}=0$. This implies that $M_{2}(D)^{\text {qnil }}=\{X \in$ $\left.M_{2}(D) \mid X^{2}=0\right\}$, and so we have three cases.

Case 1. $A \in M_{2}(D)^{\text {qnil }}$. Then $A^{2}=0$.
Case 2. $A=U+W, U \in \operatorname{comm}^{2}(A), U^{2}=I_{2}$ and $W^{2}=0$. If $2 \neq 0$, then $A=\frac{I_{2}+U}{2}-\frac{I_{2}-U}{2}+W$. One easily checks that

$$
\left(\frac{I_{2}+U}{2}\right)^{2}=\frac{I_{2}+U}{2},\left(\frac{I_{2}-U}{2}\right)^{2}=\frac{I_{2}-U}{2}
$$

If $2=0$, then $A=I_{2}+\left(U-I_{2}\right)+W$, where $\left(U-I_{2}\right)^{2}=0$, and so $\left(U-I_{2}\right)+W \in M_{2}(R)$ is nilpotent.

Case 3. As $J(D)=0$, we see that $\alpha= \pm 1$ and $\beta=0$. Then A is similar to $\left(\begin{array}{rr} \pm 1 & 0 \\ 0 & 0\end{array}\right)$. Therefore A or $-A$ is an idempotent, as desired.
$(2) \Rightarrow(3)$ Since $E, F \in \operatorname{comm}^{2}(A)$, we see that $E F=F E$ and $(E-F) N=N(E-$ $F)$, and so $(E-F)^{3}=E-F$. Moreover, $A-A^{3}=(E-F)+N-(E-F)^{3}-3(E-$ $F)^{2} N=\left(I_{2}-3(E-F)^{2}\right) N \in M_{2}(R)$ is nilpotent, as desired.
$(3) \Rightarrow(1)$ Case $1.2 \neq 0$. Then $2 \in U(D)$. Let $B=\frac{A^{2}+A}{2}, C=\frac{A^{2}-A}{2}$. Then $A=B-C$. We easily check that

$$
B^{2}-B=\frac{\left(A-A^{3}\right)\left(A+2 I_{2}\right)}{4}, C^{2}-C=\frac{\left(A-A^{3}\right)\left(A-2 I_{2}\right)}{4}
$$

Hence $B^{2}-B, C^{2}-C \in N\left(M_{2}(R)\right)$. In light of [15, Lemma 3.5], there exists idempotents $E, F \in \mathbb{Z}[A]$ such that $B-E, C-F \in N\left(M_{2}(D)\right)$. Therefore $A=E-F+$ $(B-E)-(C-F)$, where $(E-F)^{3}=E-F \in \mathbb{Z}[A] \subseteq \operatorname{comm}^{2}(A),(B-E)-(C-F) \in$ $N\left(M_{2}(D)\right)$.

Case 2. $2=0$. Since $A^{2}-A^{4} \in M_{2}(D)$ is nilpotent, we can find an idempotent $E \in \mathbb{Z}\left[A^{2}\right]$ such that $W:=A^{2}-E \in M_{2}(D)$ is nilpotent. Hence, $A=E+\left(A-A^{2}\right)+W$. But $\left(A-A^{2}\right)^{2}=A^{2}-A^{4}$, and so $A-A^{2}$ is nilpotent. As $\left(A-A^{2}\right) W=W\left(A-A^{2}\right)$, we see that $\left(A-A^{2}\right)+W \in M_{2}(R)$ is nilpotent.

Therefore A is Hirano polar, as asserted.
Corollary 3.7. Let D be a division ring, and let $A \in M_{2}(D)$. Then the following are equivalent:
(1) A is Hirano polar.
(2) A is the sum of a tripotent and a nilpotent that commute.
(3) $A^{2}+A^{6}=2 A^{4}$.

Proof. (1) $\Rightarrow(2)$ This is obvious, as $M_{2}(D)^{\text {qnil }}=\left\{X \in M_{2}(D) \mid X^{2}=0\right\}$.
(2) \Rightarrow (3) Write $A=E+W, E^{3}=E \in \operatorname{comm}(A)$ and $W \in N\left(M_{2}(D)\right)$. Then $A-A^{3} \in M_{2}(D)$ is nilpotent. As $M_{2}(D)$ is of bounded index 2, we have $\left(A-A^{3}\right)^{2}=0$. Therefore $A^{2}+A^{6}=2 A^{4}$, as desired.
$(3) \Rightarrow(1)$ Clearly, $\left(A-A^{3}\right)^{2}=0$. This completes the proof, by Theorem 3.6.

4. Solvability of quadratic equations

We now investigate Hirano polar matrices over a cobleached local ring by means of the solvability of quadratic equations.

THEOREM 4.1. Let R be a cobleached local ring, and let $A \in M_{2}(R)$. Then A is Hirano polar if and only if
(1) $A \in M_{2}(R)^{\text {qnil }}$, or $A=U+W, U \in \operatorname{comm}^{2}(A), U^{2}=I_{2}, W \in M_{2}(R)^{\text {qnil }}$, or
(2) A is similar to $\left(\begin{array}{ll}0 & \lambda \\ 1 & \mu\end{array}\right)$, where $\lambda \in J(R), \mu \in U(R)$, the equation $x^{2}-x \mu-\lambda=$ 0 has a root in $\pm 1+J(R)$ and a root in $J(R)$.

Proof. \Longrightarrow As in the proof of Theorem 3.3, we may assume

$$
U^{-1}\left(\begin{array}{ll}
0 & \lambda \\
1 & \mu
\end{array}\right) U=\left(\begin{array}{ll}
\alpha & 0 \\
0 & \beta
\end{array}\right)
$$

for some $U \in G L_{2}(R)$. Write $U^{-1}=\left(\begin{array}{cc}x & y \\ s & t\end{array}\right)$. Then we have

$$
\begin{aligned}
& y=\alpha x \\
& x \lambda+y \mu=\alpha y \\
& t=\beta s \\
& s \lambda+\mu=\beta t
\end{aligned}
$$

Thus we see that $t \in J(R), y, s, x \in U(R)$.
Let $\delta=y^{-1} \alpha y$ and $\gamma=t^{-1} \beta t^{-1} t$. Then $\delta \in \pm 1+J(R), \gamma \in J(R)$. We easily check that $\delta^{2}-\delta \mu=\lambda$; whence, $\delta^{2}-\delta \mu-\lambda=0$. Similarly, we have $\gamma^{2}-\gamma \mu=\lambda$. Therefore the equation $x^{2}-\mu x-\lambda=0$ has a root $\delta \in \pm 1+J(R)$ and a root $\gamma \in J(R)$, as desired.
\Longleftarrow Suppose that the equation $x^{2}-x \mu-\lambda=0$ has a root $\alpha \in \pm 1+J(R)$ and a $\operatorname{root} \beta \in J(R)$. Then $\alpha^{2}=\alpha \mu+\lambda ; \beta^{2}=\beta \mu+\lambda$. Hence,

$$
\left(\begin{array}{ll}
1 & \alpha \\
1 & \beta
\end{array}\right)\left(\begin{array}{ll}
0 & \lambda \\
1 & \mu
\end{array}\right)=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right)\left(\begin{array}{ll}
1 & \alpha \\
1 & \beta
\end{array}\right)
$$

where

$$
\left(\begin{array}{ll}
1 & \alpha \\
1 & \beta
\end{array}\right)=\left(\begin{array}{lc}
1 & 0 \\
1 & \beta-\alpha
\end{array}\right)\left(\begin{array}{ll}
1 & \alpha \\
0 & 1
\end{array}\right) \in G L_{2}(R)
$$

Therefore $\left(\begin{array}{ll}0 & \lambda \\ 1 & \mu\end{array}\right)$ is similar to $\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$, where $\alpha \in \pm 1+J(R)$ and $\beta \in J(R)$. By virtue of Theorem 3.3, we complete the proof.

Corollary 4.2. Let R be a commutative local ring, and let $A \in M_{2}(R)$. Then A is Hirano polar if and only if
(1) $A=N+W$, or $A=U+N+W, U \in \operatorname{comm}^{2}(A), U^{2}=I_{2}, N^{2}=0$ and $W \in$ $M_{2}(J(R))$, or
(2) $x^{2}-\operatorname{tr}(A) x+\operatorname{det}(A)$ has a root $\alpha \in \pm 1+J(R)$ and a root $\beta \in J(R)$.

Proof. \Longrightarrow By virtue of Theorem 4.1, we may assume that A is isomorphic to $\left(\begin{array}{ll}0 & \lambda \\ 1 & \mu\end{array}\right)$, where $\lambda \in J(R), \mu \in U(R)$ and the equation $x^{2}-\mu x-\lambda=0$ has a root in $\pm 1+J(R)$ and a root in $J(R)$. Hence $\lambda=-\operatorname{det}(A)$ and $\mu=\operatorname{tr}(A)$, as desired.
\Longleftarrow Case 1. A is Hirano polar.
Case 2. Since $\operatorname{det}(A)=\alpha \beta \in J(R)$, we see that $A \notin G L_{2}(R)$. As $\operatorname{tr}(A)=\alpha+\beta \in$ $1+J(R)$, we have $\operatorname{det}\left(I_{2}-A\right)=1-\operatorname{tr}(A)+\operatorname{det}(A) \in J(R)$; hence, $I_{2}-A \notin G L_{2}(R)$. In view of [12, Lemma 2.4], A is similar to $\left(\begin{array}{ll}0 & \lambda \\ 1 & \mu\end{array}\right)$, where $\lambda \in J(R), \mu \in U(R)$. Thus $\lambda=-\operatorname{det}(A)$ and $\operatorname{tr}(A)=u$, and so the equation $x^{2}-\mu x-\lambda=0$ has a root in $\pm 1+J(R)$ and a root in $J(R)$. Therefore A is Hirano polar by Theorem 4.1.

We note that $\pm 1+J(R)$ can not be replaced by $U(R)$ in the preceding corollary, as the following shows.

Example 4.3. Let $R=\left\{\left.\frac{f}{g} \right\rvert\, f, g \in \mathbb{Z}_{2}[t], g \neq 0\right\}$. Then R is a field with $J(R)=0$. Let $A=\left(\begin{array}{ll}1 & 1+t \\ 1 & 1+t\end{array}\right) \in M_{2}(R)$. Then $\operatorname{det}(A)=0$ and $\operatorname{tr}(A)=t \in U(R)$. Hence, $x^{2}-$ $\operatorname{tr}(A) x+\operatorname{det}(A)$ has a root $\operatorname{tr}(A) \in U(R)$ and a root $0 \in J(R)$. But $\operatorname{tr}(A) \notin \pm 1+J(R)$.

If $A^{2} \in M_{2}(J(R))$, then A is nilpotent, an absurd. If $A=U+W, U \in \operatorname{comm}^{2}(A), U^{2}$ $=I_{2}, W^{2} \in M_{2}(J(R))$, then $\left(I_{2}-A^{2}\right)^{2}=0$. But $I_{2}-A^{2}=\left(\begin{array}{cc}1+t & t+t^{2} \\ t & 1+t+t^{2}\end{array}\right)$, an absurd. Therefore A is not Hirano polar, by Corollary 4.2.

Let R be a commutative local ring, and let $A \in M_{2}(R)$. If A is Hirano polar, it follows from [6, Lemma 4.1] that $\left(A-A^{3}\right)^{2} \in M_{2}(J(R))$. But we have

Example 4.4. Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right) \in M_{2}\left(\mathbb{Z}_{(2)}\right)$. Then A is not Hirano polar, but $\left(A-A^{3}\right)^{2} \in M_{2}(J(R))$.

Proof. Clearly, $J\left(\mathbb{Z}_{(2)}\right)=2 \mathbb{Z}_{(2)}, A^{2}=\left(\begin{array}{cc}7 & 10 \\ 15 & 22\end{array}\right),\left(I_{2}-A^{2}\right)^{2}=\left(\begin{array}{cc}-6 & -10 \\ -15 & -21\end{array}\right)$. Thus the condition (1) in Corollary 4.2 does not satisfied. Moreover, $\operatorname{tr}(A)=5$ and $\operatorname{det}(A)=$ -2 . Since $p(x)=x^{2}-5 x-2$ is irreducible in $\mathbb{Q}[x]$, we see that $x^{2}-\operatorname{tr}(A) x+\operatorname{det}(A)=$ 0 is no solvable in $\mathbb{Z}_{(2)}$, and so the condition (2) is Corollary 4.2 does not satisfied. Therefore A is not Hirano polar. But $A-A^{3}=\left(\begin{array}{cc}-36 & -52 \\ -78 & -114\end{array}\right) \in M_{2}(J(R))$, as required.

Evidently, Hirano polar matrices over a cobleached local ring R can be characterized by left roots of a polynomial over R. But a left root of polynomials in a ring need not be a right root. We now derive

THEOREM 4.5. Let R be a cobleached local ring, and let $A \in M_{2}(R)$. Then A is Hirano polar if and only if
(1) $A \in M_{2}(R)^{\text {qnil }}$, or $A=U+W, U \in \operatorname{comm}^{2}(A), U^{2}=I_{2}, W \in M_{2}(R)^{\text {qnil }}$, or
(2) A is similar to $\left(\begin{array}{ll}0 & \lambda \\ 1 & \mu\end{array}\right)$, where $\lambda \in J(R), \mu \in U(R)$, the equation $x^{2}-\mu x-\lambda=$ 0 has a root in $\pm 1+J(R)$ and a root in $J(R)$.

Proof. \Longrightarrow In view of Lemma 3.2, we have three cases. Case 1. $A=U+W$ where $U^{2}=I_{2}, U \in \operatorname{comm}^{2}(A), W^{2} \in M_{2}(J(R))$. Case 2. $A^{2} \in M_{2}(J(R))$. Case 3, A is similar to $\left(\begin{array}{ll}0 & \lambda \\ 1 & \mu\end{array}\right)$, where $\lambda \in J(R), \mu \in U(R)$. It suffices to consider Case 3. In view of Theorem 3.3, there exists $U \in G L_{2}(R)$ such that

$$
U^{-1}\left(\begin{array}{ll}
0 & \lambda \\
1 & \mu
\end{array}\right) U=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right)
$$

where $\alpha \in \pm 1+J(R), \beta \in J(R)$. Let $\delta=s \alpha s^{-1}$ and $\gamma=t \beta t^{-1}$ Then $\delta \in \pm 1+$ $J(R), \gamma \in J(R)$. We easily check that $\delta^{2}-\mu \delta=\lambda$ hence, $\delta^{2}-\mu \delta-\lambda=0$. Likewise, $\gamma^{2}-\mu \gamma-\lambda=0$. Therefore the equation $x^{2}-\mu x-\lambda=0$ has a root $\delta \in \pm 1+J(R)$ and a root $\gamma \in J(R)$, as desired.
\Longleftarrow Suppose that the equation $x^{2}-\mu x-\lambda=0$ has a root $\alpha \in \pm 1+J(R)$ and a root $\beta \in J(R)$. As in the proof of Theorem 4.1, we prove that $\left(\begin{array}{ll}0 & \lambda \\ 1 & \mu\end{array}\right)$ is similar to $\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$, where $\alpha \in \pm 1+J(R)$ and a root $\beta \in J(R)$. In light of Theorem 3.3, we complete the proof.

With this information we can now extend the main results in [5] to a general local ring which may be not commutative (see [5, Theorem 4.9]).

Corollary 4.6. Let R be a cobleached local ring, and let $A \in M_{2}(R)$. Then A is J-quasipolar if and only if
(1) $A \in M_{2}(J(R))$, or $I_{2}+A \in M_{2}(J(R))$, or
(2) A is similar to $\left(\begin{array}{ll}0 & \lambda \\ 1 & \mu\end{array}\right)$, where $\lambda \in J(R), \mu \in U(R)$, the equation $x^{2}-x \mu-\lambda=$ 0 has a root in $-1+J(R)$ and a root in $J(R)$.

Proof. \Longrightarrow By hypothesis, there exists $E^{2}=E \in \operatorname{comm}^{2}(A)$ such that $A+E \in$ $M_{2}(J(R))$. In view of Example 2.1, A is Hirano polar. By virtue of Theorem 4.5, we have three cases.

Case I. $A \in M_{2}(R)^{\text {qnil }}$. Then $\left(A+I_{2}\right)-\left(I_{2}-E\right) \in M_{2}(J(R))$, and so $I_{2}-E=I_{2}$. Hence $E=0$, and so $A \in M_{2}(J(R))$.

Case II. $A=U+W, U \in \operatorname{comm}^{2}(A), U^{2}=I_{2}, W \in M_{2}(R)^{\text {qnil }}$. Then $A \in G L_{2}(R)$, and so $E=I_{2}$. This shows that $I_{2}+A \in M_{2}(J(R))$.

Case III. A is similar to $\left(\begin{array}{ll}0 & \lambda \\ 1 & \mu\end{array}\right)$, where $\lambda \in J(R), \mu \in U(R)$, the equation $x^{2}-$ $x \mu-\lambda=0$ has a root in $\pm 1+J(R)$ and a root in $J(R)$. If $x^{2}-x \mu-\lambda=0$ has a root in $\alpha \in 1+J(R)$ and a root in $\beta \in J(R)$. As in the proof of Theorem 3.3, we see that $\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$ is J-quasipolar. Hence, $\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)+\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \in M_{2}(J(R))$, and so $2 \in J(R)$. This implies that $\alpha \in-1+J(R)$, as desired.
\Longleftarrow If $A \in M_{2}(J(R))$, or $I_{2}+A \in M_{2}(J(R))$, then A is J-quasipolar. Suppose that A is similar to $\left(\begin{array}{ll}0 & \lambda \\ 1 & \mu\end{array}\right)$, where $\lambda \in J(R), \mu \in U(R)$, the equation $x^{2}-x \mu-\lambda=0$ has a root in $-1+J(R)$ and a root in $J(R)$ Analogously to Theorem 3.3, we check that A is J-quasipolar, as asserted.

Acknowledgement. The work of the first author was supported by the Natural Science Foundation of Zhejiang Province, China (NO. LY17A010018).

REFERENCES

[1] H. CHEN, On strongly nil clean matrices, Comm. Algebra, 41(2013), 1074-1086.
[2] H. Chen and M. Sheibani, Strongly 2-nil-clean rings, J. Algebra Appl., 16(2017) 1750178 (12 pages), DOI: 10.1142/S021949881750178X.
[3] J. Chen, X. Yang and Y. Zhou, When is the 2×2 matrix ring over a commutative local ring strongly clean?, J. Algebra, 301(2006), 280-293.
[4] J. CUI AND J. CHEN, When is a 2×2 matrix ring over a commutative local ring quasipolar? Comm. Algebra, 39(2011), 3212-3221.
[5] J. Cui and J. Chen, A class of quasipolar rings, Comm. Algebra, 40(2012), 4471-4482.
[6] J. Cui and J. Chen, Quasipolar matrix rings over local rings, Bull. Korean Math. Soc., 51(2014), 813-822.
[7] J. Cui and J. Chen, Pseudopolar matrix rings over local rings, J. Algebra Appl., 13(2014), 1350109 [12 pages], DOI: 10.1142/S0219498813501090.
[8] O. GURGUN, Properties of generalized strongly Drazin invertible elements in general rings, J. Algebra Appl., 16, 1750207 (2017) [13 pages], DOI: 10.1142/S0219498817502073.
[9] R. HARTE, Invertibility and singularity for bounded linear operators, Monographs and Textbooks in Pure and Applied Mathematics, 109, Marcel Dekker, Inc., New York, 1988.
[10] A. Karimi-Mansoub, T. Kosan and Y. Zhou, Rings in which every unit is a sum of a nilpotent and an idempotent, arXiv: 1710.025557v1, [math.RA] 6 Oct 2017.
[11] M. T. Kosan, Z. WANG and Y. Zhou, Nil-clean and strongly nil-clean rings, J. Pure Appl. Algebra (2015), http://dx.doi.org/10.1016/j.jpaa.2015.07. 009.
[12] B. Li, Strongly clean matrix rings over noncommutative local rings, Bull. Korean Math. Soc., 46(2009), 71-78.
[13] Z. WANG, A class of Drazin inverses in rings, Filomat, 31(2017), 1781-1789.
[14] X. Yang and Y. Zhou, Strong cleanness of the 2×2 matrix ring over a general local ring, J. Algebra, 320(2008), 2280-2290.
[15] Z. L. Ying, T. Kosan and Y. Zhou, Rings in which every element is a sum of two tripotents, Canad. Math. Bull., http://dx.doi.org/10.4153/CMB-2016-009-0.
(Received June 11, 2018)
Huanyin Chen
Department of Mathematics
Hangzhou Normal University
Hangzhou, China
e-mail: huanyinchen@aliyun.com
Marjan Sheibani Abdolyousefi
Women's University of Semnan (Farzanegan)
Semnan, Iran
e-mail: sheibani@fgusem.ac.ir

[^0]: Mathematics subject classification (2010): 15A09, 32A65, 16E50.
 Keywords and phrases: Tripotent, quasinilpotent, Jacobson radical, 2×2 matrix, local ring.

 * Corresponding author.

