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(Communicated by D. R. Farenick)

Abstract. We explore the norm attainment set and the minimum norm attainment set of a bounded
linear operator between Hilbert spaces and Banach spaces. Indeed, we obtain a complete char-
acterization of both the sets, separately for operators between Hilbert spaces and Banach spaces.
We also study the interconnection between these two sets and prove that for operators between
Hilbert spaces, these two sets are either equal or mutually orthogonal, provided both of them are
non-empty. We also obtain separate complete characterizations of reflexive Banach spaces and
Euclidean spaces in terms of the norm (minimum norm) attainment set, in order to illustrate the
importance of our study.

1. Introduction

The purpose of the present paper is to explore the norm attainment set and the
minimum norm attainment set of a bounded linear operator between Hilbert (Banach)
spaces. We would like to remark that such a study was initiated by Carvajal and Neves
[2, 3], for bounded linear operators between complex Hilbert spaces. However, our
study has little intersection with theirs, and, moreover, we also explore the two prob-
lems for bounded linear operators between Banach spaces. Without further ado, let us
discuss the notations and the terminologies relevant to our study.

Let X, Y be normed spaces over the field K , real or complex. We reserve the sym-
bol H for Hilbert spaces. Finite-dimensional real Hilbert spaces are called Euclidean
spaces. Let BX = {x∈X : ‖x‖� 1} and SX = {x∈X : ‖x‖= 1} be the unit ball and the
unit sphere of X , respectively. Let X∗ denote the dual space of X . For any f ∈ X∗ , let
ker f denote the null space of f . Given any x∈ SX , a functional ψx ∈ SX∗ is said to be a
support functional at x if ‖ψx‖= 1 = ψx(x). It is easy to observe that the Hahn-Banach
theorem guarantees the existence of at least one support functional at each point of SX.
We say that X is smooth if given any x ∈ SX , there exists a unique support functional
at x . X is said to be strictly convex if for any x,y ∈ X, ‖x+ y‖ = ‖x‖+ ‖y‖ implies
that y = kx, for some k � 0. Next, we give the definition of semi-inner-products [4, 8]
in normed spaces.
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DEFINITION 1.1. Let X be a normed space. A function [ , ]: X×X→K(= C,R)
is a semi-inner-product if and only if for any λ ∈ K and for any x,y,z ∈ X , it satisfies
the following properties:

(i) [x+ y,z] = [x,z]+ [y,z] ,

(ii) [λx,y] = λ [x,y] ,

(iii) [x,x] > 0, whenever x �= 0,

(iv) |[x,y]|2 � [x,x][y,y] ,

(v) [x,λy] = λ [x,y] .

Let L(X,Y) denote the normed space of all bounded linear operators from X to
Y , endowed with the usual operator norm. We write L(X,Y) = L(X) if X = Y .

For any two elements x,y ∈ X , x is said to be Birkhoff-James orthogonal to y [1],
written as x ⊥B y , if ‖x+λy‖� ‖x‖ for all λ ∈ K(= C,R). For any subset S ⊂X , we
say that x ⊥B S if x ⊥B s for all s ∈ S.

A subspace H of X is said to be a hyperspace if H is a subspace of co-dimension
1.

For a bounded linear operator T defined on a normed space X , let MT denote the
norm attainment set of T , i.e., MT is the collection of all unit vectors in X at which T
attains norm. To be more precise,

MT = {x ∈ SX : ‖Tx‖ = ‖T‖}.
Following similar motivations, we define the minimum norm attainment set mT ,

for a bounded linear operator T defined on a normed space X, in the following way:

mT = {x ∈ SX : ‖Tx‖ = m(T )},
where, m(T ) = in f{‖Tx‖ : ‖x‖ = 1}.

For any two elements x,y in a real normed space X, following [10] we say that
y ∈ x+ if ‖x+ λy‖ � ‖x‖ for all λ � 0. Similarly, we say that y ∈ x− if ‖x+ λy‖ �
‖x‖ for all λ � 0. Let x⊥ = {y ∈ X : x ⊥B y}. These notions have been extended to
complex normed linear spaces by Paul et.al. [9] in the following way: Let x ∈ X and
U = {α ∈ C : |α| = 1, argα ∈ [0,π)}. For α ∈U define

x+
α = {y ∈ X : ‖x+ λy‖� ‖x‖ f or all λ = tα,t � 0},

x−α = {y ∈ X : ‖x+ λy‖� ‖x‖ f or all λ = tα,t � 0},
x⊥α = {y ∈ X : ‖x+ λy‖� ‖x‖ f or all λ = tα,t ∈ R}.

If β = eiπα then we define x+
β = x−α , x−β = x+

α , x⊥β = x⊥α . If y ∈ x⊥α then we write

x⊥αy. The notions of x+ , x− and x⊥ [9] are also defined in a complex Banach space
in the following way:

x+ =
⋂
{x+

α : α ∈U},x− =
⋂
{x−α : α ∈U},x⊥ =

⋂
{x⊥α : α ∈U}.
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The norm attainment set plays a very crucial role in determining the geometry
of the space of bounded linear operators [11, 12, 14]. Recently, Sain [13] obtained a
complete characterization of the norm attainment set of a bounded linear operator be-
tween real normed spaces, by applying the concept of semi-inner-products in normed
spaces. In this paper, we extend the result for bounded linear operators on real or com-
plex normed spaces. We also explore the minimum norm attainment set of a bounded
linear operator T between Hilbert spaces and Banach spaces. First, we obtain a com-
plete characterization of mT , for T ∈ L(H1,H2), where H1,H2 are Hilbert spaces.
We further explore the geometric structure of mT for T ∈ L(H1,H2), and obtain some
interesting properties of mT which are analogous to the properties of MT . We observe
that mT must be the unit sphere of some subspace of H1, provided mT is non-empty.
We next obtain a complete characterization of the minimum norm attainment set of a
bounded linear operator between real or complex normed spaces, analogous to the cor-
responding characterization of the operator norm attainment set. For T ∈ L(H1,H2),
we further study the relative position of MT and mT . In particular, we prove that if
both MT and mT are non-empty, then either MT = mT = SH1 or MT and mT are the
unit spheres of two subspaces of H1, which are mutually orthogonal. We would like to
remark that in the first case, T is a scalar multiple of an isometry. On the other hand,
as we will see later, the second condition is typical of bounded linear operators, which
are not scalar multiples of some isometry, between Hilbert spaces. We prove that for a
rank one bounded linear operator T on a strictly convex reflexive Banach space X, it
is possible to describe MT and mT in a particularly convenient way. As an application
of this observation, we obtain a complete characterization of reflexive Banach spaces in
terms of the norm attainment sets and the minimum norm attainment sets of rank one
bounded linear operators on the space. We end this paper with a characterization of Eu-
clidean spaces among all finite-dimensional real Banach spaces, that further illustrates
the importance of the study of the operator norm (minimum norm) attainment set. Let
us further remark that for the two-dimensional case, we require the additional condition
of strict convexity.

We would like to remark that unless otherwise stated explicitly, we consider the
Banach spaces and the Hilbert spaces to be either real or complex.

2. Norm attainment set and minimal norm attainment set

In this section, we first obtain a complete characterization of the norm attainment
set for a bounded linear operator T between normed linear spaces X and Y. We would
like to remark that our result holds for both real and complex normed spaces and im-
proves on [13, Th. 2.3]. In order to obtain the desired characterization, we need the
following lemma, which again improves on [13, Lemma 2.2] in an elegant way.

LEMMA 2.1. Let X,Y be normed linear spaces and T ∈ L(X,Y) . Let x ∈ MT

and y = Tx. Then there exist hyperspaces Hx,Hy in X and Y respectively such that
x ⊥B Hx and y ⊥B Hy with T (Hx) ⊆ Hy .
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Proof. If T is the zero operator then we have nothing to prove. Suppose T is
nonzero. Since Birkhoff-James orthogonality is homogeneous, and T is nonzero, with-
out any loss of generality we may assume that ‖T‖ = 1. Let x ∈ MT . For y(= Tx) ,
there exists a linear functional g ∈ SY∗ such that g(Tx) = ‖Tx‖ = 1. Let ker g = Hy .
Then by Theorem 2.1 of [6], we have, Tx ⊥B Hy . Now, g ◦ T : X → K is a linear
functional with g ◦ T (x) = ‖Tx‖ = 1 = ‖x‖ and ‖g ◦ T‖ � ‖g‖‖T‖ = ‖T‖ = 1. Let
Hx = ker (g ◦T) . Again, by Theorem 2.1 of [6], we have, x ⊥B Hx . Let h ∈ Hx . Then
g ◦ T (h) = 0 ⇒ g(Th) = 0 ⇒ Th ∈ Hy . Since this is true for all h ∈ Hx, we have,
T (Hx) ⊆ Hy . This completes the proof of the lemma. �

REMARK 2.1. The above result may not hold for all hyperspaces, i.e., given T ∈
L(X,Y) and x ∈ MT , there may exist a hyperspace H in X such that x ⊥B H but
Tx �⊥B T (H) . Let us illustrate the scenario by furnishing the following example.
Consider T : �2

∞(R) → �2
∞(R) defined by

T (1,1) = (0,1), T (−1,1) = (−1,0).

Then MT = {±(1,1),±(−1,1)} . Here, we have, (1,1) ∈ MT and (1,1) ⊥B (0,1) but
T (1,1) = (0,1) �⊥B T (0,1) = (− 1

2 , 1
2 ) . Therefore, taking x = (1,1) and H to be the

one-dimensional subspace spanned by (0,1) , we see that x ⊥B H but Tx �⊥B T (H) .
Now, if we replace R by C in this example, then MT =

⋃
θ∈[0,2π) e

iθ{±(1,1),±(−1,1)} .
Once again, we have, (1,1)∈MT and (1,1)⊥B (0,1) but T (1,1)= (0,1) �⊥B T (0,1) =
(− 1

2 , 1
2 ) . Therefore, with the same choice of x and H, it follows that x ⊥B H but

Tx �⊥B T (H) .

Let us now apply Lemma 2.1 towards obtaining a complete characterization of the
norm attainment set of a bounded linear operator between normed spaces.

THEOREM 2.1. Let X,Y be normed linear spaces and T ∈ L(X,Y) . Let x ∈ SX .
Then x ∈ MT if and only if there exist two semi-inner-products [ , ]X and [ , ]Y on X

and Y respectively such that for any z ∈ X ,

[Tz,Tx]Y = ‖T‖2[z,x]X.

Proof. If T is the zero operator, then the theorem holds trivially. Without loss
of generality we may assume that ‖T‖ = 1. Let us first prove the sufficient part of the
theorem. Let x∈ SX be such that for any z∈X , [Tz,Tx]Y = ‖T‖2[z,x]X. Taking z = x ,
we obtain, [Tx,Tx]Y = ‖T‖2 , i.e., ‖Tx‖ = ‖T‖ . This proves that x ∈ MT .
Next we prove the necessary part. Let x ∈ MT and y = Tx. Then from Lemma 2.1,
it follows that there exist hyperspaces Hx,Hy in X and Y respectively such that x ⊥B

Hx and Tx ⊥B Hy with T (Hx) ⊆ Hy . Since x ⊥B Hx , there exists a linear functional
ψx : X → K such that ψx(x) = ‖x‖ and ker ψx = Hx . Since T is nonzero and x ∈ MT ,
we must have Tx is nonzero in Y . Therefore, there exists a linear functional ψy on
Y such that ψy(y) = ‖y‖ = ‖Tx‖ = 1 and ker ψy = Hy . It follows from the Hahn-
Banach theorem that for each u ∈ SX and v ∈ SY there exist at least one fu ∈ SX∗ such
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that fu(u) = 1 and at least one gv ∈ SY∗ such that gv(v) = 1. Let us now define two
semi-inner-products on X and Y in the following way:

For each z,u ∈ X, we define [z,u]X = fu(z) , with the additional restriction that if
u = x then we take fu = ψx. Moreover, for any λ ∈ K, we choose fλu = λ fu.

For each w,v ∈ Y, we define [w,v]Y = gv(w), with the additional restriction that

if v = y then we take gv = ψy. Moreover, for any λ ∈ K, we choose gλ v = λgv.

Then following [4], it is easy to check that [ , ]X and [ , ]Y are indeed semi-inner-
products on X and Y respectively. Let z ∈ X be arbitrary. Clearly z can be written as
z = αx+h , for some α ∈ K and h ∈ Hx . Moreover, we have,

[z,x]X = [αx+h,x]X = α[x,x]X +[h,x]X = α‖x‖2 = α.

Also,

[Tz,Tx]Y = [αTx+Th,x]Y = α[Tx,Tx]Y +[Th,Tx]Y = α‖Tx‖2 = ‖T‖2[z,x]X.

Since the above relation holds for all z ∈ X, this completes the proof of the theo-
rem. �

Let us now prove an easy but useful necessary condition for the minimum norm
attainment of a nonzero bounded operator on a Banach space, at a particular point of
the unit sphere.

THEOREM 2.2. Let X and Y be Banach spaces. Let T ∈ L(X,Y) be non-zero
and x ∈ mT . Then

(i) T (x+) ⊆ (Tx)+ ,

(ii) T (x−) ⊆ (Tx)− ,

(iii) T (x⊥) ⊆ (Tx)⊥.

Proof. (i) Let us assume that both X and Y are complex Banach spaces. Let
y ∈ x+. Then y ∈ x+

α for each α ∈U. Then ‖x+ λy‖� ‖x‖ = 1 for all λ = tα, t � 0.
Since x ∈ mT , it follows that for any t � 0, we must have, ‖Tx‖ � ‖T ( x+tαy

‖x+tαy‖ )‖ =
‖Tx+tαTy‖
‖x+tαy‖ � ‖Tx+ tαTy‖. This implies that Ty ∈ (Tx)+α and so T (x+

α ) ⊆ (Tx)+α . This

holds for each α ∈U and so T (x+) ⊆ (Tx)+.
For real Banach spaces the result follows by noting that x+ = x+

α with α = 1.
(ii) and (iii) can be proved similarly. �

REMARK 2.2. It is interesting to observe that in Theorem 2.2 (iii), if we assume
that x ∈MT instead of assuming x∈mT , then to prove the same result, we additionally
require smoothness of x and Tx , which follows from Theorem 2.3 of [11]. Moreover,
the example given in Remark 2.1 shows that smoothness is necessary in case x ∈ MT .
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COROLLARY 2.2.1. Let X be a finite-dimensional Banach space and T ∈ L(X).
Then there exists x ∈ SX such that T preserves Birkhoff-James orthogonality at x , i.e.,
x ⊥B y ⇒ Tx ⊥B Ty.

Proof. Since X is a finite-dimensional Banach space, there exists a unit vector
x0 such that ‖Tx0‖= m(T ) , where m(T ) = in f{‖Tx‖ : ‖x‖= 1}. Therefore, x0 ∈mT .
Now, by Theorem 2.2, for any y∈X , x0 ⊥B y⇒ Tx0 ⊥B Ty , i.e., T preserves Birkhoff-
James orthogonality at x0 . �

An easy application of Theorem 2.2 yields the following result.

COROLLARY 2.2.2. Let X,Y be normed linear spaces and T ∈ L(X,Y) . If x ∈
mT then for any hyperspace Hx in X, with x ⊥B Hx, there exists a hyperspace Hy in
Y such that y(= Tx) ⊥B Hy with T (Hx) ⊆ Hy .

Proof. Follows from Theorem 2.2(iii). �
As another application of Theorem 2.2, it is possible to slightly improve Theorem

2.8 of [11]. Let |MT | denote the cardinality of MT . It was proved in [11, Th. 2.8]
that if T ∈ L(�2

p(R) , where p ∈ N \ {1} , is not a scalar multiple of an isometry then
|MT | � 2(8p− 5) . Combining Theorem 2.2 of the present paper with this result, we
obtain the following theorem.

THEOREM 2.3. Let X = �2
p(R), p ∈ N\ {1} and let T ∈ L(X) be such that T is

not a scalar multiple of an isometry. Then |MT | � 4(4p−3) .

Proof. It follows from the arguments in the proof of [11, Th. 2.8] that T can
preserve Birkhoff-James orthogonality at not more than 2(8p− 5) number of points.
Since T is not a scalar multiple of an isometry, MT

⋂
mT = φ . Furthermore, we have

mT �= φ , as X is finite dimensional. Since mT must contains at least 2 elements,
we must have, |MT | � 2(8p− 5)− 2 = 4(4p− 3) . This completes the proof of the
theorem. �

Let us now obtain a complete characterization of the minimum norm attainment
set of a bounded linear operator between Hilbert spaces. We would like to remark that
the analogous characterization of the norm attainment set of a bounded linear operator
between Hilbert spaces has been obtained in [12].

THEOREM 2.4. Let H1,H2 be Hilbert spaces and T ∈ L(H1,H2). Given any
x ∈ SH1 , the following are equivalent:

(i) x ∈ mT .

(ii) (a) Given any y ∈ H1, 〈x,y〉 = 0 implies that 〈Tx,Ty〉 = 0 ,

(b) inf {‖Ty‖ : ‖y‖ = 1,〈x,y〉 = 0} � ‖Tx‖ .

(iii) 〈Tx,Ty〉 = m2(T )〈x,y〉, for every y ∈ H1 .
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Proof. First, we prove (i) ⇒ (ii) . Suppose x ∈ mT . Let y ∈ H1 and 〈x,y〉 = 0.
Then from Theorem 2.2 it follows that 〈Tx,Ty〉 = 0. Thus (a) holds. Again from the
definition of m(T ) , it follows that inf {‖Ty‖ : ‖y‖ = 1,〈x,y〉 = 0} � m(T ) = ‖Tx‖.
Therefore, (b) holds. Next, we prove (ii) ⇒ (iii) . Let y ∈ H1. Then y = αx + h for

some scalar α and h ∈ H1 such that 〈x,h〉 = 0. Then 〈Tx,Th〉 = 0 and 〈Tx,Ty〉 =
〈Tx,αTx+Th〉 = α〈Tx,Tx〉 = m2(T )〈x,αx〉 = m2(T )〈x,y〉. Finally we prove (iii) ⇒
(i) . Let x ∈ SH1 be such that 〈Tx,Ty〉 = m2(T )〈x,y〉 for every y ∈ H1. Taking y = x ,
we get, ‖Tx‖2 = m2(T ), which implies that x ∈mT . This establishes the theorem. �

REMARK 2.3. It follows from Theorem 2.2 of [14] that for a bounded linear oper-
ator T between Hilbert spaces, if MT is non-empty then MT is always the unit sphere
of some subspace of the domain space. Applying the parallelogram equality, it is easy
to see that the same fact holds for mT . In other words, mT is also the unit sphere of
some subspace of the domain space, provided it is non-empty. For, if x,y ∈ mT , then

αx±β y
‖αx±β y‖ ∈mT , which follows from 2(|α|2 + |β |2)m2(T ) = 2(‖T (αx)‖2+‖T (βy)‖2) =
‖T (αx+ βy)‖2 +‖T(αx−βy)‖2 � m2(T )(‖(αx+ βy)‖2 +‖(αx−βy)‖2) = 2m2(T )
(‖αx‖2 +‖βy‖2) = 2(|α|2 + |β |2)m2(T ), and so ‖T (αx±βy)‖ = m(T )‖αx±βy‖.

In Theorem 2.4, we proved that for a bounded linear operator T on a Hilbert
space H1 , x ∈ mT if and only if 〈Tx,Ty〉 = m2(T )〈x,y〉, for every y ∈ H1 . Since mT

is always the unit sphere of some subspace of H1 , using this characterization of mT ,
we have the following theorem.

THEOREM 2.5. Let H1,H2 be Hilbert spaces and T ∈L(H1,H2). The dimension
of the subspace, whose unit sphere is mT , is equal to the geometric multiplicity of the
least eigen value (which is equal to m2(T )) of T ∗T.

Proof. The proof of the theorem can be easily completed by following the same
line of arguments, as used in [12, Th. 2.2] for MT . �

We next obtain a complete characterization of the minimum norm attainment set
of a bounded linear operator between any two normed linear spaces. Let us mention
that the following result is analogous to Theorem 2.1.

THEOREM 2.6. Let X,Y be normed linear spaces and T ∈ L(X,Y) . Let x ∈ SX .
Then x ∈ mT if and only if there exist two semi-inner-products [ , ]X and [ , ]Y on X

and Y respectively such that for any y ∈ X ,

[Ty,Tx]Y = m2(T )[y,x]X.

Proof. Let us first prove the sufficient part. Let x ∈ SX such that for any y ∈ X ,
[Ty,Tx]Y = m2(T )[y,x]X. Taking y = x , we obtain, [Tx,Tx]Y = m2(T ) , i.e., ‖Tx‖ =
m(T ) . However, this is clearly equivalent to the fact that x ∈ mT .
Let us now prove the necessary part. If T is the zero operator, then it is clear that the
theorem holds true. Suppose that T is nonzero. Let x ∈ mT . Let y ∈ X be arbitrary.
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If m(T ) = 0 then ‖Tx‖ = 0 ⇒ Tx = 0, and therefore, the theorem holds true. Suppose
m(T ) > 0. Then applying Corollary 2.2.2, we can complete the proof of the theorem
by using similar arguments, as done in the proof of Theorem 2.1. �

3. Relation between MT and mT

In this section we focus on studying the relation between MT and mT , both for
bounded linear operators between Hilbert spaces as well as Banach spaces. We begin
the study with a bounded linear operator T between Hilbert spaces H1 and H2. We
note that in this case, both MT and mT are unit spheres of some subspaces of H1,
provided they are non-empty. Indeed, our next theorem implies that these two subspaces
are either identical or orthogonal to each other. We note that if T ∈L(H1,H2) is a scalar
multiple of an isometry, then MT = mT = SX.

THEOREM 3.1. Let H1,H2 be Hilbert spaces and let T ∈L(H1,H2) be such that
T is not a scalar multiple of an isometry. Then mT ⊆ (MT )⊥, provided both MT and
mT are non-empty.

Proof. Let us observe that since T is not a scalar multiple of an isometry, we
must have, ‖T‖ > m(T ). Let y ∈ mT be arbitrary. Choose x ∈ MT , which is chosen
arbitrarily but is kept fixed after choice. Since every Hilbert space is smooth, there
exists a unique hyperspace Hx such that x⊥B Hx . It is easy to see that y can be written
as y = αx+h , where h∈Hx and α is a scalar. If α = 0 then clearly y = h∈ (MT )⊥ . If
possible, suppose that α �= 0. Now, 1 = ‖y‖2 = 〈αx+h,αx+h〉= |α|2 +‖h‖2, since
〈x,h〉 = 0. Moreover, from Lemma 2.1, it follows that 〈Tx,Th〉 = 0. Now, we have,

‖Ty‖2 = 〈αTx+Th,αTx+Th〉 = |α|2‖Tx‖2 +‖Th‖2 = |α|2‖T‖2 +‖h‖2‖T (
h

‖h‖)‖2

> |α|2m2(T )+‖h‖2m2(T ) = (|α|2 +‖h‖2)m2(T ) = m2(T ).

However, this clearly contradicts that y ∈ mT . Therefore, we must have α = 0.
Thus, for each x ∈ MT , we get 〈y,x〉 = 0 and so y ∈ (MT )⊥. As y ∈ mT was chosen
arbitrarily, this completes the proof of the theorem. �

In particular, for a linear operator T on a finite-dimensional Hilbert space H, we
have that either MT = mT = SH or MT ⊥B mT and mT ⊥B MT . However, this is not
true in general for a bounded linear operator between Banach spaces. Let us furnish the
following two examples to illustrate the scenario.

EXAMPLE 3.1.1. Consider (R2,‖‖), whose unit sphere is given by the regular

hexagon with vertices at ±(1,0),±( 1
2 ,

√
3

2 ),±(− 1
2 ,

√
3

2 ).
It is quite straightforward to observe that Birkhoff-James orthogonality is symmetric
for this Banach space, though it is not an inner product space.

Consider the linear operator T =
(

1 0
0 0

)
on this space.
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It follows immediately that ‖T‖= 1 and m(T )= 0. It also follows that MT = {±(1,0)}
and mT = {±(0,

√
3

2 )}. In this case, we indeed have, MT ⊥B mT and mT ⊥B MT .

EXAMPLE 3.1.2. Consider the same Banach space, as given in the previous ex-
ample.

Let T =

(
3
4 −

√
3

4√
3

4
3
4

)
.

It follows immediately that ‖T‖ = 1 and m(T ) = 3
4 . It is also easy to check that

±(1,0),±( 1
2 ,

√
3

2 ),±(− 1
2 ,

√
3

2 )∈MT and ±( 3
4 ,

√
3

4 ),±(0,
√

3
2 ),±(− 3

4 ,
√

3
4 )∈mT . There-

fore, in this case, MT �⊥B mT .

In the next theorem, we study the norm (minimum norm) attainment set of a rank
one linear operator on a (strictly convex) reflexive Banach space. As we will observe,
this will lead us to an interesting characterization of reflexivity, in terms of these two
sets.

THEOREM 3.2. Let X be a reflexive real Banach space and Y be a real Banach
space. Let T ∈ L(X,Y) be a rank one linear operator. Then x ∈ MT for some x ∈ SX

and mT = Hx
⋂

SX , where Hx is a hyperspace of X such that x ⊥B Hx . In addition, if
X is strictly convex, then MT = {±x}.

Proof. Without loss of generality, we may and do assume that ‖T‖ = 1. Because
T is a rank one operator on a reflexive space, T attains its norm at some element
x ∈ SX. Let y = Tx. Then by Lemma 2.1, there exist hyperspaces Hx and Hy in X

and Y respectively such that x⊥BHx,Tx⊥BHy and T (Hx) ⊂ Hy. We further note that
Tx �= 0. We claim that Tz = 0 for all z ∈ Hx. If not, then as Tx⊥BTz, we must have,
{Tx,Tz} is linearly independent in Y. However, this implies that the rank of T is
more than one, a contradiction to our hypothesis. Thus, Tz = 0 for all z ∈ Hx and so
Hx ∩ SX ⊂ mT . Next, let z ∈ mT . Then z = αx + h for some scalar α and h ∈ Hx .
Clearly, 0 = Tz = αTx+Th = αTx, so that α = 0 and hence z = h ∈ Hx ∩SX. Thus,
mT ⊂ Hx ∩SX. This proves that mT = Hx

⋂
SX, and completes the proof of the fist part

of the theorem. Next, assume that X is strictly convex. We show that MT = {±x} .

Clearly, w ∈ SX can be written as w = αx + h, for some scalar α and some h ∈ Hx.
Since X is strictly convex and x⊥B h , we have, 1 = ‖w‖= ‖αx+h‖� |α| and |α|= 1
if and only if h = 0. Now, ‖Tw‖ = ‖T (αx + h)‖ = |α|‖Tx‖ = |α| � 1 and equality
holds if and only if h = 0. Therefore, we must have MT = {±x} . This completes the
proof of the theorem. �

Now, the promised characterization of reflexive Banach spaces:

THEOREM 3.3. Let X be a real Banach space. Then X is reflexive if and only if
for any closed hyperspace H of X , there exists a rank one linear operator T ∈ L(X)
such that:

(i) x ∈ MT , for some x ∈ SX,
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(ii) mT = H
⋂

SX.

Proof. We first prove the necessary part. Since X is reflexive, it follows from
[7] that for any closed hyperspace H of X, there exists a unit vector x ∈ X such that
x⊥B H. Clearly, any element z∈ X can be written as z = αx+h , where α ∈R, h∈H.
Define T : X −→ Y as T (αx + h) = αy, where y ∈ SX is fixed. Clearly, T is well-
defined and T is a rank one linear operator. Since x ⊥B H , it is easy to check that
is T bounded and x ∈ MT . So from Theorem 3.2 it follows that mT = H

⋂
SX. This

completes the proof of the necessary part. We next prove the sufficient part. Let H be
a closed hyperspace of X. According to our hypothesis, there exists a rank one linear
operator T ∈ L(X) such that:

(i) x ∈ MT , for some x ∈ SX,

(ii) mT = H
⋂

SX.

Since rank of T is one, it is immediate that m(T ) = 0. Since mT = H
⋂

SX, it follows
that Th = 0 for all h ∈ H. In particular, we have that x ∈ MT and Tx ⊥B Th for all
h ∈ H. Applying Proposition 2.1 of [11], it now follows that x ⊥B h for all h ∈ H, i.e.,
x⊥B H. Thus, for each closed hyperspace H of X, there exists an element x∈ SX such
that x⊥BH. Therefore, it follows from [7] that X is reflexive. This completes the proof
of the sufficient part and establishes the theorem in its entirety. �

In addition, if we assume that the space X is strictly convex, then we have the
following theorem, the proof of which follows trivially from the previous theorem and
the last part of Theorem 3.2.

THEOREM 3.4. Let X be a strictly convex real Banach space and Y be a real
Banach space. Then X is reflexive if and only if for any closed hyperspace H of X ,
there exists a rank one linear operator T ∈ L(X,Y) such that:

(i) MT = {±x} , for some x ∈ SX ,

(ii) mT = H
⋂

SX .

Our next objective is to characterize Euclidean spaces among finite-dimensional
real Banach spaces, in terms of the norm attainment set and the minimum norm attain-
ment set of bounded linear operators on them. We first prove the following result for
two-dimensional strictly convex Banach spaces.

THEOREM 3.5. A two-dimensional strictly convex real Banach space X is an in-
ner product space if and only if for any T ∈ L(X) , either (a) or (b) holds:

(a) MT = mT = SX ,

(b) MT ⊥B mT and mT ⊥B MT .
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Proof. Let us first prove the necessary part. Let X be the two-dimensional Eu-
clidean space. Let T ∈ L(X). If T is a scalar multiple of an isometry then MT = mT =
SX . On the other hand, if T is not a scalar multiple of an isometry then it follows
from Theorem 3.1 that MT ⊥B mT and mT ⊥B MT . This completes the proof of the
necessary part of the theorem. Let us now prove the sufficient part. We first claim
that for any T ∈ L(X), MT = ±D , where D is a connected subset of SX. If (a) holds,
i.e., MT = SX, then our claim is trivially true. Next, suppose (b) holds. We show
that T attains norm at only one pair of points. If possible, suppose that x , y ∈ MT ,
where x �= ±y. Let z ∈ mT . Clearly, z �= ±x, ± y, as T is not a scalar multiple of
an isometry. Therefore, z can be written as z = αx + βy , where α,β are non-zero
scalars. We have, x ⊥B z and y ⊥B z . Since X is a two-dimensional strictly convex
Banach space, it follows from [5] that Birkhoff-James orthogonality is left additive in
X. Therefore, applying the homogeneity property of Birkhoff-James orthogonality, it
follows that αx + βy ⊥B z , i.e., z ⊥B z , which is possible only if z = 0. However,
this clearly contradicts that z ∈ mT ⊂ SX. This completes the proof of the fact that if
(b) holds then T must attain norm only at one pair of points. Therefore, in any case,
MT = ±D , where D is a connected subset of SX. It now follows from [14, Th. 2.2]
that X is an inner product space. This completes the proof of the sufficient part of the
theorem and thereby establishes the theorem. �

REMARK 3.1. Let X be a two-dimensional real Banach space which is not strictly
convex. Then the unit sphere of SX contains a line segment L (say). Let x∈ L. It is easy
to see that there exists y ∈ SX such that every point of L is Birkhoff-James orthogonal
to y. Let us define a linear operator T on X in the following way: Tx = x,Ty = 0. It
follows trivially that MT = ±L and mT = {±y}. It is also immediate that MT ⊥B mT

but mT may not be always Birkhoff-James orthogonal to MT . In particular, if we
further assume X to be smooth, then it follows that X is not an inner product space.

As for example, consider the linear operator T defined on �2
∞(R) as T (1,0) =

(1,0) and T (0,1) = (0,0). Then it easy to check that MT = {(a,b) : | a |= 1, | b |� 1}
and mT = {±(0,1)}. Clearly, MT⊥BmT but mT �⊥B MT .

If the dimension of X is strictly greater than 2, then we have the following char-
acterization of Euclidean spaces.

THEOREM 3.6. Let X be a finite-dimensional real Banach space having dimen-
sion strictly greater than 2. Then X is an Euclidean space if and only if for any
T ∈ L(X) , either (a) or (b) holds:

(a) MT = mT = SX ,

(b) MT ⊥B mT and mT ⊥B MT .

Proof. We note that the proof of the necessary part of the theorem follows simi-
larly as that of the necessary part of Theorem 3.5. Let us prove the sufficient part. We
claim that Birkhoff-James orthogonality is symmetric in X. Let x,y ∈ SX be such that
x ⊥B y . Then there exists a hyperplane H containing y such that x ⊥B H . Clearly,
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any element z ∈ X can be written as z = αx+h , where α ∈ R, h ∈ H. Define a linear
operator T on X as follows:

T (αx+h) = αx, for each α ∈ R and for each h ∈ H.

Clearly, T is well-defined, linear and bounded. Since x ⊥B H , it is easy to check that
x ∈ MT and y ∈ mT . Clearly, MT �= SX . Therefore, (b) holds. So, we have, y ⊥B x .
Since x,y ∈ SX such that x ⊥B y was chosen arbitrarily, it follows from the homo-
geneity property of Birkhoff- James orthogonality that Birkhoff- James orthogonality
is symmetric in X. Since the dimension of X is strictly greater than 2, it follows from
[5] that X is an inner product space. This establishes the theorem. �
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