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A NOTE ON MORE INEQUALITIES FOR SECTOR MATRICES

JUNJIAN YANG, LINZHANG LU ∗ AND ZHEN CHEN

(Communicated by F. Kittaneh)

Abstract. In this note, we correct an inequality and a proof of another result due to Liu and Wang
[Bull. Iranian Math. Soc. 2018; 44: 1059-1066].

1. Introduction

Let x = (x1,x2, . . . ,xn), y = (y1,y2, . . . ,yn) ∈ Rn, whose components have been
rearranged in decreasing order. If

k

∑
i=1

xi �
k

∑
i=1

yi, k = 1,2, . . . ,n,

then we say that x is weakly majorized by y and denote x≺w y . If x≺w y and
n

∑
i=1

xi =

n

∑
i=1

yi , then we say that x is majorized by y and denote x ≺ y (see [12, p. 56]). We

denote by Mn the set of n×n complex matrices. For A ∈ Mn , the conjugate transpose
of A is denoted by A∗ , and the matrices RA = 1

2 (A + A∗) and IA = 1
2i (A−A∗) are

called the real part and imaginary part of A , respectively (e.g., [2, p. 6]). Recall that a
norm ‖ · ‖ on Mn is unitarily invariant if ‖UAV‖ = ‖A‖ for any A ∈ Mn and unitarily
matrices U,V ∈ Mn . If the eigenvalues of a square matrix A ∈ Mn are all real, then
we denote λ j(A) the j th largest eigenvalue of A. The singular values of a complex

matrix A ∈ Mn are the eigenvalues of |A| := (A∗A)
1
2 , and we denote σ j(A) := λ j(|A|)

the j th largest singular value of A . A positive semidefinite matrix A will be expressed
as A � 0. Likewise, we write A > 0 to refer that A is a positive definite matrix.

The numerical range of A ∈ Mn is defined by

W (A) = {x∗Ax|x ∈ C
n,x∗x = 1}.
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For α ∈ [0,π/2), let

Sα = {z ∈ C|ℜz � 0, |ℑz| � (ℜz) tan(α)}

be a sector region on the complex plane. A matrix whose numerical range is contained
in a sector region Sα is called a sector matrix [5, 6, 7, 10, 13].

If A,B∈Mn are both positive definite matrices, then the geometric mean of A and
B is defined by

A�B = A
1
2 (A− 1

2 BA− 1
2 )

1
2 A

1
2 .

For more information about matrix geometric mean, we refer to [2, p. 105].
Generalizing this, Drury [3] defined the geometric mean for two sector matrices

A,B ∈ Mn via the formula

A�B =
(

2
π

∫ ∞

0
(tA+ t−1B)−1 dt

t

)−1

, (1)

where we continue to use the standard notation A�B for the geometric mean. This
new geometric mean possesses a lot of similar properties compared to the geometric
mean for positive definite matrices. For example, A�B = B�A, (A�B)−1 = A−1�B−1.
Moreover, if W (A) ⊂ Sα and W (B) ⊂ Sα , then W (A�B) ⊂ Sα . We refer to [3] for
more details.

Let A,B ∈ Mn be positive definite matrices. The following noncommutative AM-
GM-HM inequalities are known (e.g. [2, p. 107]):

(
A−1 +B−1

2

)−1

� A�B � A+B
2

. (2)

Lin [8, Theorem 3] extended the AM-GM inequality to sector matrices as follows.

THEOREM 1.1. Let A,B ∈ Mn be such that W (A),W (B) ⊂ Sα . Then

R(A�B) � sec2(α)R
(

A+B
2

)
.

Similarly, Liu and Wang [11, Theorem 1.2] generalized the GM-HM inequality to
sector matrices and gave an assertion as follows.

ASSERTION 1.2. Let A,B ∈ Mn be such that W (A),W (B) ⊂ Sα . Then

R

(
A−1 +B−1

2

)−1

� sec2(α)R(A�B). (3)



A NOTE ON MORE INEQUALITIES FOR SECTOR MATRICES 473

The result (3) is true, but the authors’ proof of it is invalid because they used the
statement

sec2(α)((R(A−1))−1�(R(B−1))−1) � sec2(α)(R(A)�R(B)). (4)

This inequality (4) is refuted by the example

α =
π
4

, A =
(

1 i
i 1

)
, B =

(
2 i
i 2

)
.

Then, we will prove the above assertion 1.2 by other means in next section.
Let A ∈ Mn be partitioned as a 2×2 block matrix

A =
[

A11 A12

A21 A22

]
, where A11 and A22 are square. (5)

Zhang [14, Theorem 1] proved the following majorization inequality.

THEOREM 1.3. Let A ∈ Mn be partitioned as given in (5) and let A be positive
definite. Then for any complex number z with |z| = 1 ,

λ (A) ≺ 1
2λ ([A11 +A22 + i(zA21− zA12)]⊕O)+ 1

2λ ([A11 +A22 + i(zA12− zA21)]⊕O).

Using Theorem 1.3 and the triangle inequality, Liu and Wang [11, Corollary 4.2]
got the unitarily invariant norm inequality for partitioned positive definite matrices

‖A‖ � ‖A11 +A22‖+‖A12− z2A21‖. (6)

Moreover, the authors [11, Theorem 4.3] tried to extend the result (6) to sector matrices
as follows.

ASSERTION 1.4. Let A ∈ Mn be partitioned as given in (5) and let W (A) ⊂ Sα
for some α ∈ [0, π

2 ). Then for any complex number z with |z| = 1, we have

‖A‖ � sec(α)(‖A11 +A22‖+‖A12− z2A21‖). (7)

Nevertheless, there is a gap in their proof. The authors of [11] get

R

(
A11 A12

A21 A22

)
=

(
RA11 RA12

RA21 RA22

)
,

and

RA12− z2RA21 = R(A12− z2A21),

for any complex number z with |z| = 1 based on that A ∈ Mn is a partitioned sector
matrix as given in (5). However, such two equalities do not hold. Therefore, the proof
of assertion 1.4 is invalid.

In this paper, we will first provide two different proofs of assertion 1.2 and then
present our result in place of (7) by the correct equalities.
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2. Main results

We begin this section with some lemmas which are useful to establish and prove
our main results. The first one is due to Fan and Hoffman.

LEMMA 2.1. (see [1, p. 73]) If A ∈ Mn . Then

λ j(RA) � σ j(A), j = 1, . . . ,n.

Consequently,

‖RA‖ � ‖A‖. (8)

LEMMA 2.2. (see [4, Theorem 3.1]) If A ∈ Mn with W (A) ⊂ Sα , then

(RA)−1 � sec2(α)R(A−1). (9)

LEMMA 2.3. (see [8, Lemma 2]) If A ∈ Mn has a positive definite real part, then

R(A−1) � (RA)−1. (10)

LEMMA 2.4. (see [9, Theorem 1.1]) If A,B ∈ Mn with W (A),W (B) ⊂ Sα , then

R(A)�R(B) � R(A�B). (11)

LEMMA 2.5. (see [13, Theorem 3.1]) If A ∈ Mn with W (A) ⊂ Sα . Then

‖A‖ � sec(α)‖RA‖. (12)

For the above preparation, we first show two kinds of new proofs of assertion 1.2
(i.e., [11, Theorem 1.2]).

Proof of assertion 1.2.

R

(
A−1 +B−1

2

)−1

� 2
(
R

(
A−1 +B−1))−1

(by (10))

= 2(R(A−1)+R(B−1))−1

� (R(A−1)�R(B−1))−1 (by (2))

= (R(A−1))−1�(R(B−1))−1

� (sec2(α)RA)�(sec2(α)RB) (by (9) and Monotonicity)

= sec2(α)(RA�RB)

� sec2(α)R(A�B) (by (11)). �

Also, we give an alternative proof by the formula (1) defined by Drury [3].
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Proof.

R(A�B) = R((A−1�B−1)−1)

= R

(
2
π

∫ ∞

0
(tA−1 + t−1B−1)−1 dt

t

)

=
2
π

∫ ∞

0
R(tA−1 + t−1B−1)−1 dt

t

� 2
π

∫ ∞

0
cos2(α)(R(tA−1 + t−1B−1))−1 dt

t
(by (9))

=
2
π

∫ ∞

0
cos2(α)(R(tA−1)+R(t−1B−1))−1 dt

t

= cos2(α)(RA−1�RB−1)−1

� cos2(α)
(

RA−1 +RB−1)
2

)−1

(by (2))

= cos2(α)
(

R

(
A−1 +B−1

2

))−1

� cos2(α)R
(

A−1 +B−1

2

)−1

(by (10)). �

Now we correct the result (7) of assertion 1.4 by the following theorem.

THEOREM 2.6. Let A∈ Mn be partitioned as given in (5) and let W (A) ⊂ Sα for
some α ∈ [0, π

2 ) . Then for any complex number z with |z| = 1 , we have

‖A‖ � sec(α)
(
‖A11 +A22‖+

∥∥∥∥A12 +A∗
21

2
− z2 A21 +A∗

12

2

∥∥∥∥
)

.

Proof. Compute

‖A‖ � sec(α)‖RA‖ (by (12))

= sec(α)

∥∥∥∥∥∥∥

⎛
⎜⎝ RA11

A12 +A∗
21

2
A21 +A∗

12

2
RA22

⎞
⎟⎠

∥∥∥∥∥∥∥
� sec(α)

(
‖RA11 +RA22‖+

∥∥∥∥A12 +A∗
21

2
− z2 A21 +A∗

12

2

∥∥∥∥
)

(by (6))

� sec(α)
(
‖A11 +A22‖+

∥∥∥∥A12 +A∗
21

2
− z2 A21 +A∗

12

2

∥∥∥∥
)

(by (8)). �

This immediately yields by z2 = 1:

COROLLARY 2.7. Let A ∈ Mn be partitioned as given in (5) and let W (A) ⊂ Sα
for some α ∈ [0, π

2 ) . If, in addition, A12 = A21 , then we have

‖A‖ � sec(α)‖A11 +A22‖. (13)
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