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WEIGHTED DIFFERENTIATION COMPOSITION OPERATORS FROM

THE α−BLOCH SPACE TO THE α−BLOCH–ORLICZ SPACE

HANG ZHOU AND ZE-HUA ZHOU ∗

(Communicated by S. McCullough)

Abstract. The boundedness and the compactness of the weighted differentiation composition
operators from the α−Bloch space Bα to the α−Bloch-Orlicz space Bϕ

α with α > 0 are
investigated respectively in this paper.

1. Introduction

Let S(D) be the collection of all analytic self-maps of the unit disk D of the
complex plane C . The composition operator Cφ induced by φ ∈ S(D) is defined
as Cφ f = f ◦ φ for each f ∈ H(D) , where H(D) is the collection of all holomor-
phic functions on the unit disk. The n -th iterates of an analytic self-map φ ∈ S(D)
are denoted by φn , where n = 1,2, · · · . Specially, φ0 stands for the identity self-
map. For a given ψ ∈ H(D) , the pointwise multiplication operator can be defined
by Mψ( f ) = ψ · f , where f ∈ H(D) . By combining the composition operator Cφ and
the multiplication operator Mψ , the weighted composition operator ψCφ is defined
by ψCφ f (z) = ψ(z) f (φ(z)), where f ∈ H(D) . An extensive study on the theory of
composition operators and the weighted composition operators has been established
during the past several decades on various settings. We refer to some excellent pa-
pers [14][15][17][19][22] and the famous book [3] for properties on different classical
spaces of holomorphic functions.

Let n ∈ N be a positive integer. The n -th differentiation operator Dn on H(D) is
defined by

Dn f (z) = f (n)(z),z ∈ D.

It deduces into the well-known differentiation operator Df (z) = f ′(z),z ∈ D when
n = 1. As a product of the multiplication operator, the composition operator and the
n -th differentiation operator, the weighted differentiation composition operator was in-
troduced by Zhu in [21], which is defined by

Dn
φ ,ψ f = ψ f (n) ◦φ , f ∈ H(D).
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The one-to-one analytic self-maps that map D onto itself, are called the Möbius
transformation with the form λ ϕa , where a ∈ D , |λ | = 1 and ϕa(z) = a−z

1−az ,z ∈ D.
We next recall that the Bloch space is a Banach space of analytic functions on the

unit disk, which is defined as

B = { f ∈ H(D) : ‖ f‖B = sup
z∈D

(1−|z|2)| f ′(z)| < ∞}.

The Bloch space B is maximal among all Möbius-invariant Banach spaces of analytic
functions on D , which means that ‖ f ◦ϕ‖B = ‖ f‖B holds for all f ∈ B and ϕ ∈
Aut(D) with the seminorm ‖‖B . It is well-known that B is a Banach space endowed
with the norm ‖ f‖1 = | f (0)|+‖ f‖B .

For 0 < α < ∞ , the α−Bloch space is defined by

Bα = { f ∈ H(D) : ‖ f‖Bα = sup
z∈D

(1−|z|2)α | f ′(z)| < ∞}.

It is a Banach space endowed with the norm ‖ f‖α = | f (0)|+‖ f‖Bα .
The μ−Bloch space Bμ is defined by

Bμ = { f ∈ H(D) : ‖ f‖Bμ = sup
z∈D

μ(z)| f ′(z)| < ∞}.

Also it is well-known that Bμ is a Banach space endowed with the norm ‖ f‖μ =
| f (0)|+‖ f‖Bμ .

Specifically, the α−Bloch space and the μ−Bloch space generalize the Bloch
space in a natural way. In the past decades, basic questions including the bounded-
ness and compactness of the composition operators on various spaces of holomorphic
functions were studied by many authors (see, e.g., [5], [13], [16] and the references
therein).

A function ϕ : [0,∞) → [0,∞) is called the Young’s function if ϕ is a strictly in-
creasing convex function satisfying ϕ(0) = 0 and limt→∞ ϕ(t) = ∞ . Using the Young’s
function, the study of the Bloch-Orlicz space Bϕ in the recent years is motivated by
the development of the Hardy-Orlicz space and the Bergman-Orlicz space (see, e.g.,
[2, 10, 12] and [6, 9, 11], respectively). The Bloch-Orlicz space is a generalization of
the classical Bloch space on the unit disk, which was firstly defined by Julio C. Ramos
Fern ández in [4] as

Bϕ = { f ∈ H(D) : sup
z∈D

(1−|z|2)ϕ(λ | f ′(z)|) < ∞},

where λ is a positive number depending of f and ϕ is the Young’s function. On
the one hand, we can further assume without loss of generality that ϕ−1 is differen-
tiable. If ϕ−1 is not differentiable, by considering the function Ψ(t) =

∫ t
0

ϕ(x)
x dx for

t � 0, then we can obtain that Ψ and Ψ−1 are both differentiable on [0,∞) . Since
ϕ(t)

t increases on [0,∞) , a direct calculation ϕ(t) � Ψ(t) �
∫ t

t
2

ϕ(x)
x dx � ϕ( t

2 ) shows

that Bϕ = BΨ . On the other hand, since ϕ is convex on [0,∞) , the Minkowski’s

functional ‖ f‖ϕ = inf{k > 0 : Sϕ( f ′
k ) � 1} defines a semi-norm, where Sϕ( f ) :=
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supz∈D(1−|z|2)ϕ(| f (z)|). Moreover, Bϕ is a Banach space with the norm ‖ f‖Bϕ :=
| f (0)|+‖ f‖ϕ .

Furthermore, motivated by the same spirit, for 0 < α < ∞ , the α−Bloch-Orlicz
space Bϕ

α on the unit disk was considered by Liang in [7] (also see [8]), which is
defined by

B
ϕ
α = { f ∈ H(D) : sup

z∈D

(1−|z|2)α ϕ(λ | f ′(z)|) < ∞}

for some λ > 0 depending of f , where ϕ also denotes the Young’s function. On the
one hand, we can further assume without loss of generality that ϕ−1 is differentiable
by the same arguments discussed above. On the other hand, the Minkowski’s functional
‖ f‖ϕ,α = inf{k > 0 : Sϕ,α( f ′

k ) � 1} defines a semi-norm for B
ϕ
α , where Sϕ,α( f ) :=

supz∈D(1− |z|2)α ϕ(| f (z)|). To this end, Bϕ
α becomes a Banach space with the norm

‖ f‖B
ϕ
α

:= | f (0)|+‖ f‖ϕ,α .
The properties of the composition operators on the Bloch-Orlicz space were ini-

tiated by Julio C. Ramos Fern ández in [4], where the boundedness and compactness
of the composition operators on the Bloch-Orlicz space were investigated. In [7] Liang
investigated the boundedness and compactness of the Volterra-type operators from the
weighted Bergman-Orlicz space to the β−Zygmund-Orlicz and the
γ−Bloch-Orlicz spaces, respectively. However, the boundedness and compactness
of the weighted differentiation composition operators from the α -Bloch space to the
α−Bloch-Orlicz space have not been studied yet.

We use the notation A � B for quantities A and B to mean that A � CB for some
constant C since variables indicating the dependency of constants throughout this paper
will not be necessarily specified.

2. Auxiliary

In this section, we show some basic results on the α−Bloch-Orlicz space Bϕ
α

with α > 0 to be used later. Most of them are direct statements from [7] and hence we
omit the details.

PROPOSITION 2.1. [7] For α > 0 ,

Sϕ,α(
f ′

‖ f‖B
ϕ
α

) � Sϕ,α(
f ′

‖ f‖ϕ,α
) � 1

holds for each f ∈ Bϕ
α .

Proof. The proof is similar with Lemma 2 in [4]. �

REMARK 2.2. Observe that for each α > 0,

| f ′(z)| � ϕ−1(
1

(1−|z|2)α )‖ f‖ϕ,α (2.1)
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holds for all f ∈ Bϕ
α and z ∈ D by Proposition 2.1. In fact, a simple estimation shows

that

| f (z)| � | f (0)|+
∫

[0,s]
| f ′(s)||ds| � (1+ |z|ϕ−1(

1
(1−|z|2)α ))‖ f‖B

ϕ
α

(2.2)

since |s| � |z| for all s ∈ [0,z] and ϕ−1 is an increasing function on [0,+∞) , which
also implies that the evaluation functional defined by ez( f ) = f (z) is continuous on
B

ϕ
α , where z ∈ D is fixed.

For α > 0, the proposition below shows that the α−Bloch-Orlicz space is isometrically
equal to a special μ−Bloch space.

PROPOSITION 2.3. ([7],Lemma 1.3) For α > 0 , the α−Bloch-Orlicz space is
isometrically equal to a μα−Bloch space, where

μα(z) =
1

ϕ−1( 1
(1−|z|2)α )

.

In other words,
‖ f‖B

ϕ
α

= | f (0)|+ sup
z∈D

μα(z)| f ′(z)|

holds for each f ∈ B
ϕ
α .

REMARK 2.4. From Proposition 2.3, it follows that for α > 0, the α−Bloch-
Orlicz space Bϕ

α coincides with the α
p−Bloch space if ϕ(t) = t p , p > 1.

The equivalent condition below is first appeared in [7]. However, there was a little
mistake and hence it is modified as follows.

COROLLARY 2.5. For α > 0 , the equivalent condition

Sϕ,α( f ) � 1 ⇔‖ f‖ϕ,α � 1

holds for each f ∈ Bϕ
α .

3. The boundedness of the weighted differentiation composition operator from
Bα to Bϕ

α with α > 0

In this section we investigate the boundedness of the weighted differentiation
composition operators from the α−Bloch space to the α−Bloch-Orlicz space, where
α > 0. The method used in the proof of the boundedness is standard (see, e.g., [1]).

We first introduce a well-known result of the α−Bloch space with α > 0 (see,
e.g., [23]).
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LEMMA 3.1. For α > 0 and f ∈ Bα , there exists a constant Ck dependent of
k ∈ N such that

| f (k)(z)| � Ck‖ f‖α

(1−|z|2)α+k−1 .

THEOREM 3.2. For α > 0 , the differentiation weighted composition operator
Dn

φ ,ψ is bounded from Bα to Bϕ
α if and only if

An := sup
z∈D

μα(z)|ψ ′(z)|
(1−|φ(z)|2)α+n−1 < ∞

and

Bn := sup
z∈D

μα(z)|ψ(z)φ ′(z)|
(1−|φ(z)|2)α+n < ∞.

Proof. Suppose that An < ∞ and Bn < ∞ . For each f ∈ Bα \ {0} ,

sup
z∈D

μα(z)|(Dn
φ ,ψ f )′(z)|

�sup
z∈D

μα(z)(|ψ ′(z) f (n)(φ(z))|+ |ψ(z) f (n+1)(φ(z))φ ′(z)|)

�sup
z∈D

μα(z)(|ψ ′(z)| Cn‖ f‖α
(1−|φ(z)|2)α+n−1 + |ψ(z)φ ′(z)| Cn+1‖ f‖α

(1−|φ(z)|2)α+n )

�AnCn‖ f‖α +BnCn+1‖ f‖α � C̃(An +Bn)‖ f‖α ,

where C̃ is chosen in accordance with Cn +Cn+1 � C̃ and the second inequality is
calculated by Lemma 3.1. Then the boundedness of the weighted differentiation com-
position operator Dn

φ ,ψ on B
ϕ
α is guaranteed by

‖Dn
φ ,ψ f‖ϕ,α = ‖Dn

φ ,ψ f‖μα � ‖ f‖α

and
|Dn

φ ,ψ f (0)| � ‖ f‖α .

Conversely, if Dn
φ ,ψ : Bα → Bϕ

α is bounded, then there exists a constant C � 0
such that ‖Dn

φ ,ψ f‖ϕ,α � C‖ f‖Bα for each 0 
= f ∈ Bα .

Taking hn(z) = zn
n! ∈ Bα , it follows by the boundedness of Dn

φ ,ψ that

sup
z∈D

μα(z)|ψ ′(z)| = sup
z∈D

μα(z)|(Dn
φ ,ψ hn)′(z)| � C‖hn‖α . (3.1)

Further taking hn+1(z) = zn+1

(n+1)! ∈ Bα , it follows by the boundedness of Dn
φ ,ψ

again that

sup
z∈D

μα(z)|ψ ′(z)φ(z)+ ψ(z)φ ′(z)| = sup
z∈D

μα(z)|(Dn
φ ,ψhn+1)′(z)| � C‖hn+1‖α .
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Then we have that by (3.1)

sup
z∈D

μα(z)|ψ(z)φ ′(z)| � C‖hn+1‖α . (3.2)

Consider the function

fa,k(z) =
(1−|a|2)k+1

(1−az)α+k
,

where a ∈ D , z ∈ D and k ∈ N . A simple calculation shows that

f ′a,k(z) =
(α + k)a(1−|a|2)k+1

(1−az)α+k+1

and hence

sup
a∈D

sup
z∈D

(1−|z|2)α | f ′a,k(z)| = (α + k) sup
a∈D

sup
z∈D

(1−|z|2)α |a|(1−|a|2)k+1

|1−az|α+k+1

�(α + k) sup
a∈D

sup
z∈D

(1−|z|2)α

(1−|z|)α
(1−|a|2)k+1

(1−|a|)k+1 � (α + k)2α+k+1.

It follows that
sup
a∈D

‖ fa,k‖Bα < ∞,

which yields to fa,k ∈ Bα .
On the one hand, for each a ∈ D , we define

F(z) =
(α +n+2)α!

(α +n)!
fφ(a),1(z)−

(α +1)!
(α +n)!

fφ(a),2(z),z ∈ D.

Obviously, F ∈ Bα . A simple calculation shows that

F (n)(z) = (α +n+2)
(1−|φ(a)|2)2φ(a)

n

(1−φ(a)z)α+n+1
− (α +n+1)

(1−|φ(a)|2)3φ(a)
n

(1−φ(a)z)α+n+2

and

F (n+1)(z) =(α +n+1)(α +n+2)
(1−|φ(a)|2)2φ(a)

n+1

(1−φ(a)z)α+n+2

− (α +n+1)(α +n+2)
(1−|φ(a)|2)3φ(a)

n+1

(1−φ(a)z)α+n+3
.

Thus we have that F(n)(φ(a)) = φ(a)
n

(1−|φ(a)|2)α+n−1 and F (n+1)(φ(a)) = 0. Note that for

each z ∈ D ,

μα(z)|ψ ′(z)||φ(z)|n
(1−|φ(z)|2)α+n−1 = μα(z)|(Dn

φ ,ψF)′(z)| � C‖F‖α ,
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which yields to

sup
z∈D

μα(z)|ψ ′(z)||φ(z)|n
(1−|φ(z)|2)α+n−1 � ‖F‖α .

Hence,

sup
|φ(z)|> 1

2

μα(z)|ψ ′(z)|
(1−|φ(z)|2)n−1 � sup

|φ(z)|> 1
2

μα(z)|ψ ′(z)||2φ(z)|n
(1−|φ(z)|2)α+n−1 � 2n‖F‖α < ∞.

Furthermore, observe that by (3.1)

sup
|φ(z)|� 1

2

μα(z)|ψ ′(z)|
(1−|φ(z)|2)n−1 � sup

|φ(z)|� 1
2

μα(z)|ψ ′(z)| < ∞.

Then we conclude that

An = sup
z∈D

μα(z)|ψ ′(z)|
(1−|φ(z)|2)α+n−1 < ∞.

On the other hand, for each a ∈ D , we define

G(z) = − α!
(α +n)!

fφ(a),1(z)+
(α +1)!

(α +n+1)!
fφ(a),2(z),z ∈ D.

Obviously, G ∈ Bα . A simple calculation shows that

G(n)(z) = − (1−|φ(a)|2)2φ(a)
n

(1−φ(a)z)α+n+1
+

(1−|φ(a)|2)3φ(a)
n

(1−φ(a)z)α+n+2

and

G(n+1)(z) = (α +n+2)
(1−|φ(a)|2)2φ(a)

n+1

(1−φ(a)z)α+n+2
− (α +n+1)

(1−|φ(a)|2)3φ(a)
n+1

(1−φ(a)z)α+n+3
.

Thus we have that G(n+1)(φ(a)) = φ(a)
n+1

(1−|φ(a)|2)α+n and G(n)(φ(a)) = 0. Note that for

each z ∈ D ,

μα(z)|ψ(z)||φ ′(z)||φ(z)|n+1

(1−|φ(z)|2)α+n = μα(z)|(Dn
φ ,ψG)′(z)| � C‖G‖α ,

which yields to

sup
z∈D

μα(z)|ψ(z)||φ ′(z)||φ(z)|n+1

(1−|φ(z)|2)α+n � C‖G‖α .

Hence,

sup
|φ(z)|> 1

2

μα(z)|ψ(z)||φ ′(z)|
(1−|φ(z)|2)α+n � sup

|φ(z)|> 1
2

μα(z)|ψ(z)||φ ′(z)||2φ(z)|n+1

(1−|φ(z)|2)α+n � 2n+1C‖G‖α < ∞.
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Furthermore, observe that by (3.2) and the fact ‖φ‖∞ � 1,

sup
|φ(z)|� 1

2

μα(z)|ψ(z)||φ ′(z)|
(1−|φ(z)|2)α+n � sup

|φ(z)|� 1
2

μα(z)|ψ(z)||φ ′(z)| < ∞.

Then we conclude that

Bn = sup
z∈D

μα(z)|ψ(z)||φ ′(z)|
(1−|φ(z)|2)α+n < ∞.

This completes the proof. �

4. The compactness of the weighted differentiation composition operator from
Bα to Bϕ

α with α > 0

In this section we investigate the compactness of the weighted differentiation com-
position operators from the α−Bloch space to the α−Bloch-Orlicz space with α > 0,
where the method we used in the proof is also standard (see, e.g., [1]).

THEOREM 4.1. For α > 0 , the weighted differentiation composition operator
Dn

φ ,ψ is compact from Bα to Bϕ
α if and only if ψ ∈ Bϕ

α ,

J := sup
z∈D

μα(z)|ψ(z)φ ′(z)| < ∞, (4.1)

lim
|φ(z)|→1−

μα(z)|ψ ′(z)|
(1−|φ(z)|2)α+n−1 = 0 (4.2)

and

lim
|φ(z)|→1−

μα(z)|ψ(z)φ ′(z)|
(1−|φ(z)|2)α+n = 0. (4.3)

Proof. Suppose that ψ ∈ B
ϕ
α , (4.1), (4.2) and (4.3) hold. We firstly prove that

Dn
φ ,ψ : Bα → Bϕ

α is bounded. For every ε > 0, there exists a 0 < r < 1 such that for
|φ(z)| > r ,

μα(z)|ψ ′(z)|
(1−|φ(z)|2)α+n−1 <

ε
2

and
μα(z)|ψ(z)φ ′(z)|
(1−|φ(z)|2)α+n <

ε
2

hold. It follows that by the conditions ψ ∈ B
ϕ
α and (4.1),

An = sup
z∈D

μα(z)|ψ ′(z)|
(1−|φ(z)|2)α+n−1 � ε

2
+

‖ψ‖B
ϕ
α

(1− r2)α+n−1
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and

Bn = sup
z∈D

μα(z)|ψ(z)φ ′(z)|
(1−|φ(z)|2)α+n � ε

2
+

J
(1− r2)α+n−1 .

Then we conclude that Dn
φ ,ψ : Bα → Bϕ

α is bounded.
For a chosen sequence { f j} j ⊂ Bα which satisfies that sup j∈N ‖ f j‖Bα � K and

{ f j} converges to zero uniformly on any compact subsets of the unit disk as j → ∞ ,
where K is a fixed constant, we are only supposed to check that limn→∞ ‖Dn

φ ,ψ f j‖B
ϕ
α

=
0 to establish the compactness of Dn

φ ,ψ . Note that lim j→∞ f j(0) = 0 implies that

lim j→∞ f (k)
j (0) = 0 for each k ∈ N uniformly on any compact subsets of the unit disk.

It follows by Proposition 2.3 that

‖Dn
φ ,ψ f j‖B

ϕ
α

= ‖Dn
φ ,ψ f j‖μα

�|Dn
φ ,ψ f j(0)|+ sup

z∈D

μα(z)(|ψ ′(z) f (n)
j (φ(z))|+ |ψ(z)φ ′(z) f (n+1)

j (φ(z))|)

�|Dn
φ ,ψ f j(0)|+ sup

{z∈D:|φ(z)|�r}
μα(z)(|ψ ′(z) f (n)

j (φ(z))|+ |ψ(z)φ ′(z) f (n+1)
j (φ(z))|)

+ sup
{z∈D:|φ(z)|>r}

μα(z)(|ψ ′(z) f (n)
j (φ(z))|+ |ψ(z)φ ′(z) f (n+1)

j (φ(z))|)

�|Dn
φ ,ψ f j(0)|+‖ψ‖B

ϕ
α

sup
{z∈D:|z|�r}

| f (n)
j (z)|+ J sup

{z∈D:|z|�r}
| f (n+1)

j (z)|

+ sup
{z∈D:|φ(z)|>r}

μα(z)|ψ ′(z) f (n)
j (φ(z))|+ sup

{z∈D:|φ(z)|>r}
μα(z)|ψ(z)φ ′(z) f (n+1)

j (φ(z))|

�|Dn
φ ,ψ f j(0)|+‖ψ‖B

ϕ
α

sup
{z∈D:|z|�r}

| f (n)
j (z)|+ J sup

{z∈D:|z|�r}
| f (n+1)

j (z)|

+ sup
{z∈D:|φ(z)|>r}

μα(z)|ψ ′(z)| Cn‖ f j‖α

(1−|φ(z)|2)α+n−1

+ sup
{z∈D:|φ(z)|>r}

μα(z)|ψ(z)φ ′(z)| Cn+1‖ f j‖α

(1−|φ(z)|2)α+n

�|Dn
φ ,ψ f j(0)|+‖ψ‖B

ϕ
α

sup
{z∈D:|z|�r}

| f (n)
j (z)|+ J sup

{z∈D:|z|�r}
| f (n+1)

j (z)|+KC̃ε,

where C̃ is chosen in accordance with Cn +Cn+1 � C̃ and the third inequality from the
bottom is calculated by Lemma 3.1. It follows that lim j→∞ ‖Dn

φ ,ψ f j‖B
ϕ
α

= 0. Then we

conclude that Dn
φ ,ψ : Bα → Bϕ

α is compact.

Conversely, suppose that Dn
φ ,ψ : Bα → Bϕ

α is compact and hence Dn
φ ,ψ : Bα →

Bϕ
α is bounded. By (3.1) and (3.2), ψ ∈Bϕ

α and J < ∞ hold. We prove (4.2) and (4.3)
hold as follows. Set {z j} j be a sequence in the unit disk satisfying lim j→∞ |φ(z j)| = 1.
If such sequence does not exist, then the proof is completed.

On the one hand, we define the function

Fφ(z j)(z) =
(α +n+2)α!

(α +n)!
(1−|φ(z j)|2)2

(1−φ(z j)z)α+1
− (α +1)!

(α +n)!
(1−|φ(z j)|2)3

(1−φ(z j)z)α+2
,
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where j ∈ N and z ∈ D . Obviously, Fφ(z j) ∈ Bα and Fφ(z j) → 0 uniformly on any
compact subset of the unit disk as j → ∞ . By the compactness of Dn

φ ,ψ , it follows that

lim
j→∞

‖Dn
φ ,ψFφ(z j)‖μα = lim

j→∞
‖Dn

φ ,ψFφ(z j)‖B
ϕ
α

= 0.

Note that F(n)
φ(z j)

(φ(z j)) = φ(z j)
n

(1−|φ(z j)|2)α+n−1 and F(n+1)
φ(z j)

(0) = 0. Thus we have

lim
j→∞

μα(z j)|ψ ′(z j)|
(1−|φ(z j)|2)α+n−1 = 0,

which yields to

lim
|φ(z)|→1−

μα(z)|ψ ′(z)|
(1−|φ(z)|2)α+n−1 = 0.

On the other hand, we define the function

Gφ(z j)(z) = − α!
(α +n)!

(1−|φ(z j)|2)2

(1−φ(z j)z)α+1
− (α +1)!

(α +n+1)!
(1−|φ(z j)|2)3

(1−φ(z j)z)α+2
,

where j ∈ N and z ∈ D . Obviously, Fφ(z j) ∈ Bα and Fφ(z j) → 0 uniformly on any
compact subset of the unit disk as j → ∞ . By the compactness of Dn

φ ,ψ , it follows that

lim
j→∞

‖Dn
φ ,ψFφ(z j)‖μα = lim

j→∞
‖Dn

φ ,ψFφ(z j)‖B
ϕ
α

= 0.

Note that G(n+1)
φ(z j)

(φ(z j)) = φ(z j)
n

(1−|φ(z j)|2)α+n and G(n)
φ(z j)

(0) = 0. Thus we have

lim
j→∞

μα(z j)|ψ(z j)||φ ′(z j)|
(1−|φ(z j)|2)α+n = 0,

which yields to

lim
|φ(z)|→1−

μα(z)|ψ(z)φ ′(z)|
(1−|φ(z)|2)α+n = 0.

This completes the proof. �
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