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WEIGHTED DIFFERENTIATION COMPOSITION OPERATORS FROM
THE o—BLOCH SPACE TO THE a—BLOCH-ORLICZ SPACE

HANG ZHOU AND ZE-HUA ZHOU *

(Communicated by S. McCullough)

Abstract. The boundedness and the compactness of the weighted differentiation composition
operators from the o.— Bloch space %, to the a— Bloch-Orlicz space Zg with o > 0 are
investigated respectively in this paper.

1. Introduction

Let S(D) be the collection of all analytic self-maps of the unit disk D of the
complex plane C. The composition operator Cy induced by ¢ € S(ID) is defined
as Cof = fo¢ for each f € H(D), where H(DD) is the collection of all holomor-
phic functions on the unit disk. The n-th iterates of an analytic self-map ¢ € S(D)
are denoted by ¢,, where n = 1,2,---. Specially, ¢y stands for the identity self-
map. For a given y € H(D), the pointwise multiplication operator can be defined
by My(f) =y - f, where f € H(DD). By combining the composition operator Cy and
the multiplication operator My, the weighted composition operator yCy is defined
by wCyf(z) = w(z)f(¢(z)), where f € H(D). An extensive study on the theory of
composition operators and the weighted composition operators has been established
during the past several decades on various settings. We refer to some excellent pa-
pers [14][15][17][19][22] and the famous book [3] for properties on different classical
spaces of holomorphic functions.

Let n € N be a positive integer. The n-th differentiation operator D" on H(D) is
defined by

D'f(z) = f"(2),z € D.

It deduces into the well-known differentiation operator Df(z) = f'(z),z € D when
n = 1. As a product of the multiplication operator, the composition operator and the
n-th differentiation operator, the weighted differentiation composition operator was in-
troduced by Zhu in [21], which is defined by

Dy f=wf"Moo.feHD).
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The one-to-one analytic self-maps that map D onto itself, are called the M 6 bius
transformation with the form A¢,, where a € D, |A| =1 and @4(z) = {==,z € D.
We next recall that the Bloch space is a Banach space of analytic functions on the

unit disk, which is defined as

B={feHD):|fllz= Sgﬂg(l —[zP)If (2)] < e}

The Bloch space # is maximal among all M 6 bius-invariant Banach spaces of analytic
functions on D, which means that ||f o ¢||% = ||f]|# holds for all f € # and ¢ €
Aut(D) with the seminorm || || . It is well-known that 2 is a Banach space endowed
with the norm [| f][y = [£(0)[ + |||

For 0 < o < oo, the ae— Bloch space is defined by

Bo={f €HD): | fllz, = Sgﬂl;(l — )1 (@)] < o}

It is a Banach space endowed with the norm || || = | £(0)| + || || 2, -
The u—Bloch space %, is defined by

Py ={f€HD):|f

2, = SupU(2)|f' (2)| < oo}
z€eD

Also it is well-known that %, is a Banach space endowed with the norm || f||, =
O+ 1],

Specifically, the o—Bloch space and the pt—Bloch space generalize the Bloch
space in a natural way. In the past decades, basic questions including the bounded-
ness and compactness of the composition operators on various spaces of holomorphic
functions were studied by many authors (see, e.g., [5], [13], [16] and the references
therein).

A function ¢ : [0,0) — [0,0) is called the Young’s function if ¢ is a strictly in-
creasing convex function satisfying ¢(0) =0 and lim;_,.. ¢(¢) = oo. Using the Young’s
function, the study of the Bloch-Orlicz space % in the recent years is motivated by
the development of the Hardy-Orlicz space and the Bergman-Orlicz space (see, e.g.,
[2, 10, 12] and [6, 9, 11], respectively). The Bloch-Orlicz space is a generalization of
the classical Bloch space on the unit disk, which was firstly defined by Julio C. Ramos
Ferndndez in [4] as

#? ={f€HD): Slelg(l ~2P)e(A1f @)) <=},

where A is a positive number depending of f and ¢ is the Young’s function. On
the one hand, we can further assume without loss of generality that ¢! is differen-
tiable. If ¢! is not differentiable, by considering the function W(r) = é @dx for
t > 0, then we can obtain that ¥ and ¥~! are both differentiable on [0,%0). Since
@ increases on [0,0), a direct calculation @(¢) > ¥(r) > f; 20 gy > @(%) shows

X

that 29 = Y. On the other hand, since ¢ is convex on [0,00), the Minkowski’s
functional || f|ly = inf{k > 0 : S(p(%) < 1} defines a semi-norm, where So(f) :=
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sup,ep (1 —12[*)@(|f(z)]). Moreover, %% is a Banach space with the norm || f| %o :=

LFO+1f]le-

Furthermore, motivated by the same spirit, for 0 < ¢ < oo, the ot— Bloch-Orlicz
space Z¢ on the unit disk was considered by Liang in [7] (also see [8]), which is
defined by

By ={f €H(D): Slelg(l — )% @(Alf (2)]) < e}

for some A > 0 depending of f, where ¢ also denotes the Young’s function. On the
one hand, we can further assume without loss of generality that ¢! is differentiable
by the same arguments discussed above. On the other hand, the Minkowski’s functional
1 fll g, =inf{k >0: Sqm(%) < 1} defines a semi-norm for Zg, where Sg o(f) :=
sup.cp(1 — [212)%@(|f(z)]). To this end, ¢ becomes a Banach space with the norm
11 = 17 O) + 1 lg.a-

The properties of the composition operators on the Bloch-Orlicz space were ini-
tiated by Julio C. Ramos Ferndndez in [4], where the boundedness and compactness
of the composition operators on the Bloch-Orlicz space were investigated. In [7] Liang
investigated the boundedness and compactness of the Volterra-type operators from the
weighted Bergman-Orlicz space to the f—Zygmund-Orlicz and the
Y—Bloch-Orlicz spaces, respectively. However, the boundedness and compactness
of the weighted differentiation composition operators from the o -Bloch space to the
a—Bloch-Orlicz space have not been studied yet.

We use the notation A < B for quantities A and B to mean that A < CB for some
constant C since variables indicating the dependency of constants throughout this paper
will not be necessarily specified.

2. Auxiliary

In this section, we show some basic results on the o—Bloch-Orlicz space %’2
with o > 0 to be used later. Most of them are direct statements from [7] and hence we
omit the details.

PROPOSITION 2.1. [7] For o > 0,

f f

Spa(—) < Spal
e’ S Tl

)<1

holds for each f € A%.

Proof. The proof is similar with Lemma 2 in [4]. [

REMARK 2.2. Observe that for each o > 0,

1

) .
D<o (m)”ﬂ\(p,a 2.1
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holds for all f € Z¢ and z € D by Proposition 2.1. In fact, a simple estimation shows
that

1

FOI< YOI+ [ 17 6las < (4o (o W lag - @2)

since |s| < |z| for all s € [0,z] and @~ ! is an increasing function on [0, +co), which
also implies that the evaluation functional defined by e;(f) = f(z) is continuous on
933, where z € D is fixed.

For o > 0, the proposition below shows that the ae— Bloch-Orlicz space is isometrically
equal to a special u— Bloch space.

PROPOSITION 2.3. ([7],Lemma 1.3) For o > 0, the o— Bloch-Orlicz space is
isometrically equal to a [l — Bloch space, where

1
Ho(2) = ———-
¢~ ()

In other words,
/1 g = 1£(0)] +Sugua(2)|f’(1)|
z€

holds for each f € B .

REMARK 2.4. From Proposition 2.3, it follows that for ¢ > 0, the o—Bloch-
Orlicz space #¢ coincides with the %—Bloch space if (t) =17, p>1.

The equivalent condition below is first appeared in [7]. However, there was a little
mistake and hence it is modified as follows.

COROLLARY 2.5. For o > 0, the equivalent condition
Spa(f) <1 |floa<1

holds for each f € BE.

3. The boundedness of the weighted differentiation composition operator from
By to BE with o >0

In this section we investigate the boundedness of the weighted differentiation
composition operators from the ot— Bloch space to the az— Bloch-Orlicz space, where
o > 0. The method used in the proof of the boundedness is standard (see, e.g., [1]).

We first introduce a well-known result of the a— Bloch space with o > 0 (see,

e.g., [23]).
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LEMMA 3.1. For a >0 and f € By, there exists a constant Cy dependent of
k € N such that
Cellfle

(k) < kllJ e
NARICIIES (1— [oP)orkT1
THEOREM 3.2. For o > 0, the differentiation weighted composition operator
Dy, is bounded from By, to BE if and only if

/
p sy MOV

zeb (1= (z)[2)r !

and

) 1= sup

P a—lep)e =%

B - o (2)|w(2)9' (2)]
' 9(2)|

Proof. Suppose that A, < e and B, < . For each f € %, \ {0},

Sup to (Z)I(D'é,l,,f)’(Z)I

zeD
<suptta (Y (" O]+ W@ (69’ @)

Gl £l i Gustllfle
<§‘€1£.ua( 2V () D= ly(2)¢ (Z)I—(1 -~ ‘;(Z)P)aﬂ)

gAnCn”fHOﬂ +BnCn+l||fHot < C(An +Bn)Hf||a7

where € is chosen in accordance with C, + Chi1 < C and the second inequality is
calculated by Lemma 3.1. Then the boundedness of the weighted differentiation com-
position operator D’g, y on Y is guaranteed by

1D,y flp.e = 1Dyl SN fllex
and

1D,y fO) S 17 1e

Conversely, if D’q’)’w : By — AL is bounded, then there exists a constant C > 0
such that [|D , fllg.a < %, foreach 0 # f € By

Taking hy(z) = 2—’: € o, it follows by the boundedness of Dy, that

Sgﬂg#a(Z)W(Z)lZSEEI;M(Z)K o.y/n) ()] < Clihn| - (3.1

Further taking h,1(z) =
again that

(2 T 1) € Ay, it follows by the boundedness of D

sup o (2) |y ()0 (2) + y(2)9(2)| = SUp Ha (@)D yhn+1) (@) < Cllnri]la-

zeD
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Then we have that by (3.1)

Sup o (2)|W(2)¢" (2)] < Cllnr1]la-

zeD
Consider the function
(1 _ ‘ a|2)k+1
(1— az)oc+k ’

fa,k (Z) =

where a € D, z€ D and k € N. A simple calculation shows that

, kya(l—|al*) !
R

and hence

supsup(1 — 1)1 (2] = (ot + k) supsup(1 oy AL 1AV
a€D zeD ' a€D zeD |1 —az|

2N (1 [ 12Vk+1
() (PP e

< (o + k) supsup T Ja)eT S

aebzep (1—12)% (

It follows that
sup | fakll 2, < e,
acD

which yields to f,x € B .
On the one hand, for each a € D, we define

F(z) =

(a+n+2)o!
(ot +n)!

(o +1)!
(o +n)!

o(a),1(2) — 1f6(2)2(2),2 € D.

Obviously, F' € %, . A simple calculation shows that
(1-19(@)2)*9(@)"

(1= 9(@z)=+n+! (1= 9laz)=n2

and

n+1

(1—19(@)P)29(a)

(1—g(ayz)xtn+2

(1—l9p(@Pqo(@""
(1_¢( ) )a+n+3

FD () =(o+n+1)(a+n+2)

—(o+n+1)(oc+n+2)

(3.2)

Thus we have that F") (¢(a)) = Lﬂ,ﬂ,l and F""t1)(¢(a)) = 0. Note that for

(1-[9(@)]?)
each z €D,
Lo ()Y (2)]9
2

0"
(1=1lo(2)[?)**

T = Mo (2)|(DG  F)'(2)] < ClIF[|or,

|
)
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which yields to

@IV QIO _
W oyt ~ IFlle
Hence,

_Ha@WY D] Ha @V ()20 ()1
|¢le;|z% (1=lo@))! g‘ (Su‘g_ (1—¢(z)]2)*tn-1 =

<2 Flle

Furthermore, observe that by (3.1)

LV < wp @l E] <o

sup
()< lo(2)|<3

1
2

Then we conclude that

12V ()
= To)P)et

On the other hand, for each a € D, we define

A, = < oo

o (o+1)!

G(z) = —qu)(a),l () + [CETES]

fo(a)2(2),z€D.
Obviously, G € %, . A simple calculation shows that

Gz — (1= 10@PP8@" | (1-|9(@)P) 01"
(1 _ ¢(a)z)a+n+l (1 _ ¢(a)z)a+n+2

and
s+l 37t
(n+1) () — (1-[0(@)P)9@"" (1-[9(a)P)*9(a)
G (Z) (a+n+2) (1_¢( ) )a+n+2 (Ol—l—n—l—l) (1_¢( ) )a+n+3
Thus we have that GV (¢(a)) = % and G"(¢(a)) = 0. Note that for

each z €D,

Ha(2) W ()10 ()19 )"
(1=19(2)[7)x+

= 1a(2)[(D§ 4,G) ()] < C[|Glla

which yields to

DRI Qo P!
sup S o S ClGl:

Hence,

sup Ha ()Y ()[19(2)| _ ua(Z)IW(Z)|\¢’(Z)2||2¢( 2!

< sup <26l < oo
0> (1—19(z)]2)o+n e (1—[p(x)[2)e+r a
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Furthermore, observe that by (3.2) and the fact ||¢]]. < 1

Ha (DY ()19 )
o e S e pev e )<

Then we conclude that

Ho (2) |y (2)[19"(2)]

B, = sup < oo
"en (L-lo()P)etr

This completes the proof. [

4. The compactness of the weighted differentiation composition operator from
By to By with o >0

In this section we investigate the compactness of the weighted differentiation com-
position operators from the oc— Bloch space to the o¢— Bloch-Orlicz space with o > 0,
where the method we used in the proof is also standard (see, e.g., [1]).

THEOREM 4.1. For o > 0, the weighted differentiation composition operator

D" . is compact from B, to B if and only if y € B,

oy

J = sgﬂgw(z)lw(zm’(z)l < oo, (4.1)

lim He(2) | Y (2)]
lo(z)|—1- (1 —|¢(z)|?) 21

=0 4.2)
and

H@IVEY@] _, 43
: . .

A e

Proof. Suppose that v € AP, (4.1), (4.2) and (4.3) hold. We firstly prove that
Dgﬂl/ By, — By is bounded. For every € > 0, there exists a 0 < r < 1 such that for

90(2) >,
oW ()| _ e
(1=lo(@)[H)xnt 2

Ha@IY(2)9()] _ &

(I=lp()P)rr ~2
hold. It follows that by the conditions y € % and (4.1),
1o (2)| W' (2)) €

A, = sup < <+
D (1=[9(@))*rn=t =2 (1—p2)xtn]

and
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and

pa (D)W (2)9'(2)] _ € J

B,=sup———— > —— <~ — 55—
"ep (T=]o()P)ern T2 (1 -2yt

Then we conclude that D’(; : By — B is bounded.

For a chosen sequence {f;}; C %y which satisfies that sup .y [|fj]| 2, < K and
{fj} converges to zero uniformly on any compact subsets of the unit dlSk as j — oo,
where K is a fixed constant, we are only supposed to check that lim,,_... ||D’(;7W fill 9 =
0 to establish the compactness of Djj . Note that lim; ... f;(0) = 0 implies that

lim;_... f;k) (0) =0 for each k € N uniformly on any compact subsets of the unit disk.
It follows by Proposition 2.3 that

1D% o fill g = D% 4 il
<105 . £5(0) |+ supa(2) |y @1 (0@ + w9 @ (0()])

<ID} , £i(0)] + eDi;‘F)K }ua <z><|w’<z>f}"><¢<z>>| +y (@' @ ()

+  sup (W R 6@+ w6 )£ ()]
{zeD:|¢(Z)|>r}

<|D$,ij(0)| + ”W”%(‘g{ sup |fj(n)(z)| +J  sup ‘f,(n+l)(2)|

z€D:|z|<r} {zeD:|z|<r}

+ s we@WVEATGE)+ s ta@v)e @ (6)]
{zeD:|p(z)[>r} {zeD:]g(2)[>r}

<|D} , £1(0) sup A+ sup [V (2)

z€Dx|z|<r} {zeDx|z|<r}
Cn”fjHot
L—o(z)2)etn!

)¢/( )| Cn+1||fjHO£

+ sup o (2| (2)]
{zeD:|o(2)|>r} (

+ sup LoDV D) T e
D) (I—1[9(2)H)*+
<UDy Fi O+ Wl g sup A7 @1+7 sup A7)+ KCe,
{zeD:|z|<r} {zeD:|z|<r}

where C is chosen in accordance with C, +C, 11 < C and the third inequality from the
bottom is calculated by Lemma 3.1. It follows that limj ... [[D \, fi|| 4o = 0. Then we

71
conclude that D¢ v'

Conversely, suppose that Dg_ : By — B is compact and hence D %a
A% is bounded. By (3.1) and (3.2), Ve AP and J < oo hold. We prove (4. 2) and (4.3)
hold as follows. Set {z;}; be a sequence in the unit disk satisfying lim; ... |§(z;)| = 1.
If such sequence does not exist, then the proof is completed.

On the one hand, we define the function

(@+n+2)al (1-19(z)P)?  (a+1)! (1-]9(z)])?
(0+n)! (1=t (a+n)!(1—-9¢(z)z)*+?

: By — B is compact.

Foz)(2) =
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where j € N and z € D. Obviously, Fy(;) € Ao and Fyz;) — 0 uniformly on any
compact subset of the unit disk as j — co. By the compactness of D;’, v it follows that
}EEIOHD&WFMZJ-)”M = }Ergo||D$=WF¢(Zj)“%$ =0.

Note that ngzlz)ﬂ(d)(zj)) = qu;f% and ngg)l)(O) = 0. Thus we have

. U (z)) W (z))]
T T o () PyanT

:07

which yields to
o (2)[¥' (2)]
lim =0.
bI—1- (1 —[g(z)[2)*tn!

On the other hand, we define the function

al  (1=[oz))?  (e+D)! (1-[9@E)P)’
(a+n)!(1_sz)Z)a+l (a+n+1)!(1_mz)a+2’

Go(ep)(@) ==

where j € N and z € D. Obviously, Fy(;) € Ao and Fy(z;) — 0 uniformly on any

compact subset of the unit disk as j — co. By the compactness of D;’, v it follows that

}EEIOHD&WFMZJ-)”M = }ij?o||D$.,wF¢(z/‘)Hg@$ =0.

n+1 0(z;)" n
Note that G((p(;.))((P(Zj)) = %ﬁp)wn and G‘(p()zj)(o) = 0. Thus we have

a2z 19'(2)
T o))

:07

which yields to

BEVERIE]
LIET

im
o@=1- (1=[o(2)2)*+
This completes the proof. [
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