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SPECTROGRAMS AND TIME–FREQUENCY

LOCALIZED FUNCTIONS IN THE HANKEL SETTING

SAIFALLAH GHOBBER ∗ , SIWAR HKIMI AND SLIM OMRI

(Communicated by D. Han)

Abstract. The uncertainty principle in Fourier analysis sets a limit to the possible simultane-
ous concentration of a function and its Hankel transform. Nevertheless, signals that have highly
concentrated time–frequency content have many applications in quantum mechanics, PDE, engi-
neering and in signal analysis. We use here time–frequency localization operators in the Hankel
setting to measure the time–frequency content of functions on a subset of finite measure Σ within
the time–frequency plane. Then, using eigenfunctions and eigenvalues of these operators, we
prove a characterization of functions that are time–frequency concentrated in Σ , and we obtain
approximation inequalities for such functions using a finite linear combination of eigenfunctions,
since they are maximally time–frequency-concentrated in the region of interest.

1. Introduction

Hankel transforms are integral transformationswhose kernels are Bessel functions.
They are sometimes referred to as Fourier-Bessel transforms. When we are dealing with
problems that show circular symmetry, Hankel transforms may be very useful. For ex-
ample, the Hankel transform is the two-dimensional Fourier transform of a circularly
symmetric function, and this plays an important role in optical data processing. More-
over the Hankel transform arises as a generalization of the Fourier transform of a radial
integrable function on Euclidean d-space as well as from the eigenvalues expansion of
a Schrödinger operator. For α � − 1

2 , the Hankel transform (see [23] and [25] as refer-
ence sources for some definitions and properties that are useful in the harmonic analysis
associated with the Hankel transform) is defined on L1

α(R+)∩L2
α(R+) by,

Hα( f )(ξ ) =
∫ ∞

0
f (x) jα (xξ )dμα(x), ξ ∈ R+ = [0,∞),

and it is extended from L1
α(R+)∩L2

α (R+) to L2
α(R+) in the usual way, where dμα(x)=

x2α+1

2α Γ(α+1) dx is a weight measure, the Bessel function jα is given by:

jα(x) := Γ(α +1)
∞

∑
n=0

(−1)n

n!Γ(n+ α +1)

( x
2

)2n
,
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and, for 1 � p < ∞ , Lp
α(R+) is the Banach space consisting of measurable functions f

on R+ equipped with the norms:

‖ f‖Lp
α

=
(∫ ∞

0
| f (x)|p dμα(x)

)1/p

.

Notice that, j−1/2(x) = cos(x) and dμ−1/2(x) =
√

2
π dx is the Lebesgue measure,

then

H−1/2( f )(ξ ) =

√
2
π

∫ ∞

0
f (x)cos(x)dx

is the Fourier-cosine transform, which is the Fourier transform restricted to even func-
tions in L2(R) . More generally, if f ∈ L2(Rd) , d > 1, is a radial function on R

d , such
that f (x) = f̃ (|x|) , with f̃ ∈ L2

d/2−1(R+) , then

F ( f )(ξ ) = Hd/2−1( f̃ )(|ξ |), ξ ∈ R
d ,

where | · |=√〈·, ·〉 is the Euclidean norm on R
d , and F is the usual Fourier transform

defined by

F ( f )(ξ ) = (2π)−d/2
∫

Rd
f (x)e−i〈x,ξ 〉 dx, ξ ∈ R

d .

The uncertainty principle, in its several forms, sets a restriction on the time–frequency
behavior of a function. For example a signal f and its Hankel transform Hα ( f ) cannot
both be concentrated in subsets of finite measure (see [10, 11, 14]). The Heisenberg-
type [5, 13] and the Shapiro-type uncertainty principles [13, 15] provides another quan-
titative restriction on the joint time–frequency behavior of functions and orthonormal
sequences in L2

α(R+) . These facts indicate that a signal cannot have all its energy
concentrated in a finite region of the time–frequency plane.

Signals that have highly concentrated time–frequency content are very useful in
many applications, and time–frequency resolution is usually associated with the win-
dowed Fourier transform, also known as the (continuous) Gabor transform, or the short-
time Fourier transform, which is defined on L2(Rd) by

Fg( f )(x,ξ ) = F
[
f g(·− x)

]
(ξ ) = (2π)−d/2

∫
Rd

f (t)g(t − x)ei〈t,ξ 〉 dt,

where g ∈ L2(Rd) is a nonzero window function.

In the present paper, we will study functions whose time–frequency content are
concentrated in a some region in phase space using time–frequency localization op-
erators associated with the windowed Hankel transform, as a main tool. To be more
precise, for y ∈ R+ , we define the translation operator τα

y on L2
α(R+) by:

τα
y f (x) =

Γ(α +1)√
πΓ(α +1/2)

∫ π

0
f (
√

x2 + y2−2xycosθ)(sinθ )2α dθ , x ∈ R+,
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and for ξ ∈ R+ we define the modulation operator M α
ξ on L2

α(R+) by:

M α
ξ g := Hα

(√
τα

ξ |Hα (g)|2
)

, ξ ∈ R̂+,

where R̂+ denote the half real line thought of as the frequency axis.
For a nonzero window function g ∈ L2

α (R+) , the windowed Hankel transform of
f ∈ L2

α(R+) with respect to the window g is given by:

V α
g ( f )(x,ξ ) =

∫ ∞

0
f (t)τα

x M α
ξ g(t)dμα(t), (x,ξ ) ∈ R+× R̂+.

Then the time-frequency localization operator with window g and symbol χΣ is for-
mally defined as,

A g
Σ f (t) =

∫
Σ
V α

g ( f )(x,ξ )τα
x M α

ξ g(t)dνα(x,ξ ), (1.1)

where dνα(x,ξ ) = dμα(x)dμα(ξ ) .

Contrary to the Hankel transform, the windowed Hankel transform cannot be ob-
tained from the windowed Fourier transform by taking spherical averages, i.e. if
f̃ , g̃ ∈ L2

d/2−1(R+) are the radial parts of f ,g ∈ L2(Rd) , then it is not true in general
that

V
d/2−1

g̃ ( f̃ )(|x|, |ξ |) = Fg( f )(x,ξ ), x,ξ ∈ R
d , (1.2)

because, generally Fg( f ) is not radial in any of the two variables. So that the win-
dowed Hankel transform V α

g , and then the localization operator A g
Σ are two new ob-

jects and not just an average of the standard windowed Fourier transform or the standard
localization operator (see e.g. Example 1 and Example 2 in [7] showing that (1.2) is not
true, even in dimension d = 1).

In this paper, we study the localization operator A g
Σ , which leads to a compact

self-adjoint operator whose eigenfunctions with large eigenvalues span a subspace that
can be used to determine the component of a general signal that is concentrated within
the given region of the time–frequency plane.

The time-frequency localization operators were first introduced and studied by
Daubechies in [8], and Ramanathan-Topiwala in [21]. These operators can be used
to extract and localize components of a signal from its representation in the time–
frequency plane. They have appeared in physics as tools in quantization procedures
[4] called anti-Wick operators, and in the approximation of pseudo-differential opera-
tors [6]. The method of Daubechies extended the work of Landau, Pollak, and Slepian
(see [18, 19, 26]), who developed the study of bandlimited functions that are concen-
trated on a finite time interval. They made use of compositions of time- and band-
limiting operators and considered the eigenvalue problem associated with these oper-
ators. The resulting operators yield the well-known prolate spheroidal functions as
eigenfunctions. These functions satisfy some optimality in concentration in a rectangu-
lar region in the time-frequency domain. The study of localization operators associated
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to windowed Hankel transforms is a contribution to the topic of radial time-frequency
analysis [23, 24, 25]. As it was done for the prolate spheroidal wave functions (PSWFs
for short), the author in [20] showed that the radial part of the bi-dimensional PSWFs,
called circular prolate spheroidal wave function solve the energy concentration problem
of Hankel bandlimited functions. Recently, the author in [28] showed that the gener-
alized prolate spheroidal wave functions are the solution of the energy concentration
problem in reproducing kernel Hilbert space.

Here, we make use of time–frequency localization operators to describe functions
that have time–frequency content in a subset of finite measure. As in the case of the pro-
late spheroidal wave functions, the eigenfunctions of the time–frequency localization
operators A g

Σ are maximally time–frequency concentrated in the region of interest and
we will use these eigenfunctions to approximate time–frequency localized functions
(see Theorem 3.3).

The remainder of the paper is organized as follows. Next section is devoted to
some preliminaries results and in Section 3, we prove our main results.

2. Preliminaries

2.1. Notation

If A is a subset of R+× R̂+ , then we denote by Ac =
(

R+× R̂+

)
\A the comple-

ment of A in R+ × R̂+ and the characteristic function of A will be denoted by χA .
For 1 � p < ∞ , Lp

α (R+× R̂+) will be the Banach space consisting of measurable
functions F on R+× R̂+ equipped with the norms

‖F‖Lp
α (R+×R̂+) =

(∫
R+×R̂+

|F(x,ξ )|p dνα(x,ξ )
)1/p

.

The singular values {en(A )}∞
n=1 of a compact operator A ∈ B

(
L2

α(R+)
)

are the
eigenvalues of the positive self-adjoint operator |A | = √

A ∗A . For 1 � p < ∞ , the
Schatten class Sp is the space of all compact operators whose singular values lie in �p .
Hence Sp is equipped with the norm

‖A ‖Sp
=

(
∞

∑
n=1

(en(A ))p

)1/p

. (2.1)

In particular, S2 is the space of Hilbert-Schmidt operators, and S1 is the space of trace
class operators. It is well known that, the trace of an operator A ∈ S1 is defined by (see
e.g. [27, Theorem 2.6]):

tr(A ) =
∞

∑
n=1

〈A ϕn,ϕn〉μα
, (2.2)

where {ϕn}∞
n=1 is any orthonormal basis for L2

α(R+) . Moreover, if A is positive, then
(see e.g. [27, Theorem 2.7]):

tr(A ) = ‖A ‖S1
. (2.3)
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Moreover, if a compact operator A on the Hilbert space L2
α(R+) is Hilbert-Schmidt,

then the positive operator A ∗A is in the space of trace class S1 and

‖A ‖2
HS := ‖A ‖2

S2
= ‖A ∗A ‖S1

= tr(A ∗A ) =
∞

∑
n=1

‖A ϕn‖2
L2

α
, (2.4)

for any orthonormal basis {ϕn}∞
n=1 for L2

α(R+) .
For consistency, we define S∞ := B

(
L2

α(R+)
)

to be the space of bounded operators
from L2

α(R+) into L2
α(R+) , equipped with norm,

‖A ‖S∞
= sup

f : ‖ f‖
L2

α
�1

‖A f‖L2
α
. (2.5)

It is obvious that Sp ⊆ Sq , 1 � p � q � ∞ .

2.2. Generalities

For α > −1/2, let us recall the Poisson representation formula

jα (x) =
Γ(α +1)

Γ
(
α + 1

2

)
Γ
(

1
2

) ∫ 1

−1
(1− s2)α−1/2 cos(sx)dx.

Therefore, jα is bounded with | jα(x)| � jα (0) = 1. As a consequence,

‖Hα ( f )‖∞ � ‖ f‖L1
α
. (2.6)

Here ‖.‖∞ is the usual essential supremum norm and L∞(R+) and L∞(R+ × R̂+) will
denote the usual spaces of essentially bounded functions.

It is also well known that the Hankel transform extends to an isometry on L2
α(R+) ,

‖Hα( f )‖L2
α

= ‖ f‖L2
α
. (2.7)

2.3. Generalized translation

Following Levitan [16], for any function f ∈ C2(R+) we define the generalized
Bessel translation operator

τα
y f (x) = u(x,y); x, y ∈ R+,

as a solution of the following Cauchy problem:(
∂ 2

∂x2 +
2α +1

x
∂
∂x

)
u(x,y) =

(
∂ 2

∂y2 +
2α +1

y
∂
∂y

)
u(x,y),

with initial conditions u(x,0) = f (x) and ∂
∂xu(x,0) = 0, here ∂ 2

∂x2 + 2α+1
x

∂
∂x is the

differential Bessel operator. The solution of the Cauchy problem can be written out in
explicit form:

τα
x f (y) =

Γ(α +1)√
πΓ(α +1/2)

∫ π

0
f (
√

x2 + y2−2xycosθ )(sinθ )2α dθ . (2.8)
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The operator τα
x can be also written by the formula

τα
x f (y) =

∫ ∞

0
f (t)W (x,y,t)dμα(t), (2.9)

where W (x,y, t)dμα(t) is a probability measure and W (x,y,t) is defined by

W (x,y, t) =

⎧⎪⎨⎪⎩
2πα+1/2Γ(α +1)2

Γ
(
α + 1

2

) Δ(x,y,t)2α−1

(xyt)2α , if |x− y| < t < x+ y;

0, otherwise;

where
Δ(x,y,t) =

(
(x+ y)2− t2

)1/2(
t2 − (x− y)2)1/2

is the area of the triangle with side length x,y,t . Further, W (x,y,t)dμα(t) is a proba-
bility measure, so that, for p � 1, |τα

x f |p � τα
x | f |p thus

‖τα
x f ‖Lp

α
� ‖ f‖Lp

α
. (2.10)

This allows to extend the definition of τα
x f to functions f ∈ Lp

α(R+) .

The Bessel convolution f ∗α g of two functions f and g in L1
α(R+)∩L∞(R+) is

defined by

f ∗α g(x) =
∫ ∞

0
f (t)τα

x g(t)dμα(t) =
∫ ∞

0
τα
x f (t)g(t)dμα(t), x � 0.

Then, if 1 � p,q,r � ∞ are such that 1/p+1/q−1= 1/r , f ∗α g ∈ Lr
α(R+) and

‖ f ∗α g‖Lr
α

� ‖ f‖Lp
α
‖g‖Lq

α
.

This then allows to define f ∗α g for f ∈ Lp
α(R+) and g ∈ Lq

α(R+) . In particular, if
f ∈ L1

α(R+) and g ∈ Lq
α(R+) , q = 1 or 2 then

Hα( f ∗α g) = Hα( f )Hα (g). (2.11)

Moreover for f , g ∈ L2
α(R+) , the function f ∗α g belongs to L2

α(R+) if and only if the
function Hα( f )Hα (g) belongs to L2

α(R+) and then (2.11) holds.

2.4. The windowed Hankel transform

Following [7], for every g ∈ L2
α(R+) , the modulation of g by ξ ∈ R̂+ is defined

by:

M α
ξ g = gα

ξ := Hα

(√
τα

ξ |Hα(g)|2
)

. (2.12)

Then for every g ∈ L2
α(R+) and ξ ∈ R̂+ , we have:∥∥∥gα

ξ

∥∥∥
L2

α
= ‖g‖L2

α
and

∥∥∥Hα(gα
ξ )
∥∥∥

∞
� ‖Hα(g)‖∞. (2.13)
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By gα
x,ξ we denote the phase-space shift of g ∈ L2

α(R+) by (x,ξ ) ∈ R+× R̂+ ,

gα
x,ξ = τα

x gα
ξ . (2.14)

From (2.10), (2.13), the phase-space shift satisfies∥∥∥gα
x,ξ

∥∥∥
L2

α
� ‖g‖L2

α
. (2.15)

For any function f ∈ L2
α (R+) , we define its windowed Hankel transform with respect

to the window g by:

V α
g ( f )(x,ξ ) =

∫ ∞

0
f (t)gα

x,ξ (t)dμα(s) =
〈

f ,gα
x,ξ

〉
μα

, (2.16)

which can also be written in the form

V α
g ( f )(x,ξ ) = f ∗α gα

ξ (x), (x,ξ ) ∈ R+× R̂+. (2.17)

Here 〈·, ·〉μα is the usual inner product in the Hilbert space L2
α(R+) . Thus from the

Cauchy-Schwartz inequality and (2.10), (2.13) we have:∥∥V α
g ( f )

∥∥
∞ � ‖ f‖L2

α
‖g‖L2

α
. (2.18)

Moreover the windowed Hankel transform satisfies the following properties (see [3, 7]).

PROPOSITION 2.1. Let g ∈ L2
α(R+) be a nonzero window function. Then we

have:

1. A Plancherel-type theorem: for every f ∈ L2
α(R+):∥∥V α

g ( f )
∥∥

L2
α (R+×R̂+) = ‖ f‖L2

α
‖g‖L2

α
. (2.19)

2. An inversion formula : for every f ∈ L2
α(R+) ,

f (·) =
1

‖g‖2
L2

α

∫
R+×R̂+

V α
g ( f )(x,ξ )gα

x,ξ (·)dνα (x,ξ ). (2.20)

3. An orthogonality relation : for every f , h ∈ L2
α (R+) ,〈

V α
g ( f ),V α

g (h)
〉

να
= ‖g‖2

L2
α
〈 f ,h〉μα , (2.21)

where 〈·, ·〉να is the usual inner product in the Hilbert space L2
α(R+ × R̂+) .

The inversion formula for the windowed Hankel transform (2.20) is well defined in the
weak sense for all f ∈ L2

α(R+) and 0 
= g ∈ L2
α(R+) .
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3. Time–frequency concentration via the windowed Hankel transform

In the remainder of this section, g will be a non-zero window function such that
‖g‖L2

α
= 1 and Σ ⊂ R+× R̂+ will be a subset of finite measure 0 < να(Σ) < ∞ .

3.1. Time–frequency localization operators

For F a function in L2
α (R+× R̂+) , we define the formal adjoint (V α

g )∗ by

(V α
g )∗F(t) =

∫
R+×R̂+

F(x,ξ )gα
x,ξ (t)dνα(x,ξ ), (3.1)

where the integral is defined weakly by〈
(V α

g )∗F, f
〉

μα
=
〈
F,V α

g ( f )
〉

να
. (3.2)

DEFINITION 3.1. Let σ be a bounded nonnegative function on R+ × R̂+ . The
time-frequency localization operator A g

σ with window g and symbol σ is formally
defined as

A g
σ f (·) =

∫
R+×R̂+

σ(x,ξ )V α
g ( f )(x,ξ )gα

x,ξ (·)dνα (x,ξ ) = (V α
g )∗σV α

g f (·).

Note that, if σ ≡ 1, then by the inversion formula (2.20), A g
σ f = f . Moreover, if σ is

supported on Σ , then A g
σ f is interpreted as the part of f that lives essentially in Σ .

For the purpose of this research, we shall keep our focus on time–frequency local-
ization operators A g

σ with symbol σ = χΣ . In this case, we also write the localization
operator as A g

Σ . Note that, A g
Σ : L2

α(R+) → L2
α(R+) is bounded, with∥∥A g

Σ
∥∥

B(L2
α (R+)) � 1. (3.3)

Indeed, since (V α
g )∗ is a bounded operator from L2

α(R+ × R̂+) to L2
α(R+) with oper-

ator norm less than 1, then for every f ∈ L2
α(R+) ,∥∥A g

Σ f
∥∥

L2
α

=
∥∥(V α

g )∗(χΣV α
g f )

∥∥
L2

α
�
∥∥(V α

g )∗
∥∥∥∥V α

g f
∥∥

L2
α

� ‖ f‖L2
α
.

It is usually more convenient to use the alternative weak definition of A g
σ given

by 〈
A g

σ f ,h
〉

μα
=
〈
σ V α

g ( f ),V α
g (h)

〉
να

=
〈

σ ,V α
g ( f )V α

g (h)
〉

να
. (3.4)

Let H = V α
g

[
L2

α (R+)
]⊂ L2

α(R+ × R̂+) be the (closed) range of the V α
g , and let

Pg (or PH ) be the orthogonal projection from L2
α(R+ × R̂+) onto H . The orthogonal

projector Pg is an integral operator explicitly given by,

PgF(z) =
∫

R+×R̂+
F(z′)Kg(z;z′)dνα(z′), z = (x,ξ ) ∈ R+× R̂+. (3.5)
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Using this description, it follows that (see [12, Proposition 4.1]) H is a reproducing
kernel Hilbert space in L2

α(R+ × R̂+) with kernel function Kg defined by:

Kg

(
(x′,ξ ′);(x,ξ )

)
= gα

x,ξ ∗α gα
ξ ′(x′) = V α

g (gα
x,ξ )(x′,ξ ′). (3.6)

This means that each function F ∈ H is continuous and satisfies:

F(x,ξ ) =
〈
F,Kg

(
· ;(x,ξ )

)〉
να

, (x,ξ ) ∈ R+× R̂+. (3.7)

Since Kg is the integral kernel of an orthogonal projection, it satisfies

Kg(z′;z) = Kg(z;z′), z = (x,ξ ), z′ = (x′,ξ ′) ∈ R+ × R̂+, (3.8)

and
Kg(z;z′) =

∫
R+×R̂+

Kg(z;z′′)Kg(z′′;z′)dνα(z′′). (3.9)

We introduce the orthogonal projections PΣ on L2
α(R+× R̂+) , known as the time–

frequency limiting operator defined by:

PΣF = FχΣ; F ∈ L2
α(R+ × R̂+).

DEFINITION 3.2. Let 0 < ε < 1. Then,

1. a nonzero function f ∈ L2
α(R+) is ε -time–frequency concentrated inside Σ if,∥∥PΣcV α

g ( f )
∥∥2

L2(R+×R̂+) � ε‖ f‖2
L2

α
, (3.10)

2. a nonzero function f ∈ L2
α(R+) is ε -localized with respect to an operator L if

‖L f − f‖2
L2

α
� ε‖ f‖2

L2
α
. (3.11)

The definition (3.10) is the analogous for our setting of that given in reference [9] for
the windowed Fourier transform, and the definition (3.11) has been introduced in [2] to
refine the Landau-Pollak degrees of freedom estimate. We will use and compare these
to measures (see Proposition 3.2). Notice also that when ε = 0, then Σ will be the
exact support of V α

g ( f ) , so that Inequality (3.10) with 0 < ε < 1 means that V α
g ( f ) is

“practically zero” outside Σ and then Σ may be considered as the “essential” support
of V α

g ( f ) .
Since H is a reproducing kernel Hilbert space in L2

α(R+ × R̂+) , then PΣPg is a
Hilbert-Schmidt operator with (see [12, Inequality (4.8)]),

‖PΣPg‖2
HS � να (Σ). (3.12)
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DEFINITION 3.3. We define the Gabor-Toeplitz operator Tg,Σ : H → H by,

Tg,Σ F = PgPΣF. (3.13)

PROPOSITION 3.1. The time–frequency operator A g
Σ is Hilbert-Schmidt.

Proof. Since A g
Σ = (V α

g )∗PΣV α
g , then(

V α
g A g

Σ (V α
g )∗

)
F = PgPΣF = Tg,ΣF, F ∈ H. (3.14)

Therefore the time–frequency operator A g
Σ and the Gabor-Toeplitz operator Tg,Σ are

related by
(V α

g )∗Tg,ΣV α
g = A g

Σ . (3.15)

Consequently Tg,Σ and A g
Σ enjoy the same spectral properties, in particular A g

Σ is
Hilbert-Schmidt. �
Boundedness and Schatten class properties of time–frequency localization operators
in terms of properties of the symbol σ have been studied in [3]. More precisely the
authors in [3] have proved the following result.

THEOREM 3.1. Let σ be symbol in Lp
α(R+ × R̂+) , 1 � p � ∞ . Then the local-

ization operator A g
σ : L2

α (R+) → L2
α(R+) is in Sp with,

‖A g
σ ‖Sp � 4

1
p ‖σ‖Lp

α (R+×R̂+). (3.16)

Since the time–frequency localization operator A g
Σ = (V α

g )∗χΣV α
g that we con-

sider is a compact and self–adjoint operator, the spectral theorem gives the following
spectral representation:

A g
Σ f =

∞

∑
n=1

sn(Σ)
〈
f ,ϕΣ

n

〉
μα

ϕΣ
n , f ∈ L2

α (R+), (3.17)

where {sn(Σ)}∞
n=1 are the positive eigenvalues arranged in a non-increasingmanner and

{ϕΣ
n }∞

n=1 is the corresponding orthonormal set of eigenfunctions. Note that sn(Σ) ↘ 0,
and by (3.3), we have for all n � 1,

sn(Σ) � s1(Σ) � 1. (3.18)

This, together with (3.15), we deduce that the Gabor-Toeplitz operator Tg,Σ can be
diagonalized as

Tg,ΣF =
∞

∑
n=1

sn(Σ)
〈
F,φΣ

n

〉
να

φΣ
n , F ∈ H, (3.19)

where φΣ
n = V α

g (ϕΣ
n ) . The functions ϕΣ

n and the eigenvalues sn(Σ) depend on the
choice of the window g , but we do not make this dependence explicit in the notation.
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LEMMA 3.1. For all z = (x,ξ ) ∈ R+ × R̂+ , let ΘΣ(z) = ‖V α
g (gx,ξ )‖L2(Σ,να ) .

Then

ΘΣ(z) =
∞

∑
n=1

sn(Σ)
∣∣φΣ

n (z)
∣∣2. (3.20)

Proof. For z = (x,ξ ) ∈ R+ × R̂+ , we have from (3.7), that for all F ∈ H ,

F(z) =
〈
F,Kg (· ;z)〉να

. (3.21)

Therefore from (3.6)〈
Tg,ΣKg (· ;z) ,Kg (· ;z)〉να

=
〈
PΣKg (· ;z) ,Kg (· ;z)〉να

=
∫

Σ
Kg

(
z′ ;z

)
Kg (z′ ;z)dνα(z′)

= ΘΣ(z).

Let {ψΣ}∞
n=1 ⊂ H be an orthonormal basis of Ker(Tg,Σ) (eventually empty). Hence

{φΣ}∞
n=1∪{ψΣ}∞

n=1 is an orthonormal basis of H and therefore the reproducing kernel
Kg can be written as

Kg
(
z ;z′

)
= Kg (z′ ;z) =

∞

∑
n=1

φΣ
n (z)φΣ

n (z′)+
∞

∑
n=1

ψΣ
n (z)ψΣ

n (z′). (3.22)

Using this we compute again

〈
Tg,ΣKg (· ;z) ,Kg (· ;z)〉να

=

〈
Tg,Σ

∞

∑
n=1

φΣ
n (z)φΣ

n ,
∞

∑
k=1

φΣ
k (z)φΣ

k

〉
να

= ∑
n,k

φΣ
n (z)φΣ

k (z)
〈
Tg,ΣφΣ

n ,φΣ
k

〉
να

=
∞

∑
n=1

sn(Σ)
∣∣φΣ

n (z)
∣∣2,

and the conclusion follows. �

3.2. Functions time–frequency concentrated in Σ

We denote by C (ε,Σ,g) the set of functions in L2
α(R+) that are ε -time–frequency-

concentrated in Σ and by relation (3.4), a function f ∈ L2
α(R+) is in C (ε,Σ,g) if,〈

A g
Σ f , f

〉
μα

� (1− ε)‖ f‖2
L2

α
, (3.23)

or equivalently 〈(
I−A g

Σ
)

f , f
〉

μα
� ε‖ f‖2

L2
α
, (3.24)

where I is the identity operator.
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Since 〈
A g

Σ f , f
〉

μα
=

∞

∑
n=1

sn(Σ)
∣∣∣〈 f ,ϕΣ

n

〉
μα

∣∣∣2 =
∥∥V α

g ( f )
∥∥2

L2(Σ,να ) , (3.25)

then the operator A g
Σ is useful in studying the following optimization problem

Maximize
∥∥V α

g ( f )
∥∥2

L2(Σ,να ) , ‖ f‖L2
α

= 1,

which aims to look for the function that has a spectrogram that is well concentrated in
Σ . Consequently, ϕΣ

1 , the first eigenfunction of the compact self-adjoint operator A g
Σ ,

solves the problem:

s1(Σ) =
∥∥V α

g (ϕΣ
1 )
∥∥

L2(Σ,να ) = max
{〈

A g
Σ f , f

〉
μα

: ‖ f‖L2
α

= 1
}

. (3.26)

Moreover, the min-max lemma for self-adjoint operators states that (see e.g. [22, Sec-
tion 95]),

sn(Σ) = max
{〈

A g
Σ f , f

〉
μα

: ‖ f‖L2
α

= 1, f⊥ϕΣ
1 , . . . ,ϕΣ

n−1

}
. (3.27)

So the eigenvalues of A g
Σ determines the number of orthogonal functions that have a

well-concentrated spectrogram in Σ . Moreover if ϕΣ
n is an eigenfunction of A g

Σ with
eigenvalue sn(Σ) � (1− ε) , then from the spectral representation,〈

A g
Σ ϕΣ

n ,ϕΣ
n

〉
μα

= sn(Σ) � (1− ε). (3.28)

Hence ϕΣ
n is in C (ε,Σ,g) . In addition if we denote by VN the span of the first N

eigenfunctions of the time-frequency localization operator A g
Σ , then for f ∈VN ,

〈
A g

Σ f , f
〉

μα
=

N

∑
n=1

sn(Σ)
∣∣∣〈 f ,ϕΣ

n

〉
μα

∣∣∣2
� sN(Σ)

N

∑
n=1

∣∣∣〈 f ,ϕΣ
n

〉
μα

∣∣∣2 = sN(Σ)‖ f‖2
L2

α
. (3.29)

This implies that a function f in VN is in C (1− sN(Σ),Σ,g) . So for a properly chosen
N , functions in VN are in C (ε,Σ,g) . Moreover the quantity

n(ε,Σ) = card{n : sn(Σ) � 1− ε}
determines the maximum dimension of a subspace V ⊂ L2

α(R+) of signals f ∈V that
are in C (ε,Σ,g) .

Landau in [17] introduced the notion of ε -approximated eigenvalues and eigen-
functions, that is, ρ is said to be an ε -approximated eigenvalue of L if there exists a
unit L2

α -norm function f in L2
α(R+) , such that

‖L f −ρ f‖L2
α

� ε. (3.30)

Then f is called an ε -approximated eigenfunction corresponding to ρ . So a function
f ∈ L2

α (R+) that is ε -localized with respect to L is a
√

ε -approximated eigenfunction
of L corresponding to 1. Moreover we have the following comparison.
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PROPOSITION 3.2. If f ∈ L2
α(R+) is in C (ε,Σ,g) , then f is also ε -localized

with respect to A g
Σ . On the other hand, if f ∈ L2

α (R+) is ε -localized with respect to
A g

Σ , then f is in C (ε +
√

ε,Σ,g) .

Proof. The time–frequency operator A g
Σ is bounded with ‖A g

Σ ‖B(L2
α (R+)) � 1,

then 〈
(A g

Σ )2 f , f
〉

μα
�
〈
A g

Σ f , f
〉

μα
, (3.31)

or equivalently, 〈
(I−A g

Σ )2 f , f
〉

μα
�
〈
(I−A g

Σ ) f , f
〉

μα
. (3.32)

Since A g
Σ is self-adjoint, the left-hand side is equal to

∥∥A g
Σ f − f

∥∥2
L2

α
, so by (3.24) the

first statement is obtained.
For the second statement, we observe that

2
〈
(I−A g

Σ ) f , f
〉

μα
=
∥∥A g

Σ f − f
∥∥2

L2
α

+‖ f‖2
L2

α
−∥∥A g

Σ f
∥∥2

L2
α

�
∥∥A g

Σ f − f
∥∥2

L2
α

+
(∥∥A g

Σ f − f
∥∥

L2
α
+
∥∥A g

Σ f
∥∥

L2
α

)2 −∥∥A g
Σ f
∥∥2

L2
α

= 2
∥∥A g

Σ f − f
∥∥2

L2
α
+2

∥∥A g
Σ f − f

∥∥
L2

α

∥∥A g
Σ f
∥∥

L2
α
.

So, by (3.3) we have〈
(I−A g

Σ ) f , f
〉

μα
�
∥∥A g

Σ f − f
∥∥2

L2
α

+
∥∥A g

Σ f − f
∥∥

L2
α
‖ f‖L2

α
, (3.33)

and the result follows. �
Relation (3.29) implies that any function f in VN = span{ϕΣ

n }N
n=1 is in C (1−

sN(Σ),Σ,g) . In contrast, functions which are in C (1− sN(Σ),Σ,g) need not lie in
VN . Nevertheless based on an idea from the recent paper [9], we obtain the following
theorem that characterizes functions that are in C (1− sN(Σ),Σ,g) .

THEOREM 3.2. Let N0 be the integer such that and s1+N0(Σ) < 1− ε � sN0(Σ) .
Furthermore, let fker denote the orthogonal projection of f onto the kernel Ker(A g

Σ )
of A g

Σ . A function f ∈ L2
α(R+) is in C (ε,Σ,g) if and only if,

N0

∑
n=1

(sn(Σ)+ ε −1)
∣∣∣〈 f ,ϕΣ

n

〉
μα

∣∣∣2 � (1− ε)‖ fker‖2
L2

α

+
∞

∑
n=N0+1

(1− ε − sn(Σ))
∣∣∣〈 f ,ϕΣ

n

〉
μα

∣∣∣2.
Proof. The eigenfunctions

{
ϕΣ

n

}∞
n=1 form an orthonormal subset in L2

α(R+) , pos-
sibly incomplete if Ker(A g

Σ ) 
= {0} ; hence, we can write

f =
∞

∑
n=1

〈
f ,ϕΣ

n

〉
μα

ϕΣ
n + fker, (3.34)



520 S. GHOBBER, S. HKIMI AND S. OMRI

where fker ∈ Ker(A g
Σ ) . Then

〈
A g

Σ f , f
〉

μα
=

∞

∑
n=1

sn(Σ)
∣∣∣〈 f ,ϕΣ

n

〉
μα

∣∣∣2. (3.35)

So the function f is ε -time–frequency concentrated on Σ if and only if

∞

∑
n=1

sn(Σ)
∣∣∣〈 f ,ϕΣ

n

〉
μα

∣∣∣2 � (1− ε)

(
‖ fker‖2

L2
α
+

∞

∑
n=1

∣∣∣〈 f ,ϕΣ
n

〉
μα

∣∣∣2) , (3.36)

and the conclusion follows. �

REMARK 3.1.

1. A function f ∈ L2
α(R+) is in C (1− sN(Σ),Σ,g) if and only if,

N−1

∑
n=1

(sn(Σ)− sN(Σ))
∣∣∣〈 f ,ϕΣ

n

〉
μα

∣∣∣2 � sN(Σ)‖ fker‖2
L2

α

+
∞

∑
n=N+1

(sN(Σ)− sn(Σ))
∣∣∣〈 f ,ϕΣ

n

〉
μα

∣∣∣2.
2. Despite the interpretation of A g

Σ as the part of f that essentially lives in Σ , it is
possible that the resulting function A g

Σ f is not ε -time–frequency concentrated
on Σ . In fact, for every eigenfunction ϕΣ

n with corresponding eigenvalue sn(Σ) <
1− ε ,〈

A g
Σ
(
A g

Σ ϕΣ
n

)
,A g

Σ ϕΣ
n

〉
μα

= s3
n(Σ) = sn(Σ)‖A g

Σ ϕΣ
n ‖2

L2
α

< (1− ε)‖A g
Σ ϕΣ

n ‖2
L2

α
.

Therefore A g
Σ ϕΣ

n is not ε -time–frequency concentrated on Σ .

While a function f that is ε -time–frequency concentrated on Σ does not neces-
sarily lies in some subspace VN of eigenfunctions of A g

Σ , it can be approximated using
a finite number of such eigenfunctions. Let PVN denote the orthogonal projection onto
the subspace VN .

THEOREM 3.3. Let f be a function in C (ε,Σ,g) . For fixed c > 1 , let
{

ϕΣ
n

}N
n=1

be the system of all eigenfunctions of A g
Σ corresponding to eigenvalues sn(Σ) > 1− 1

c .
Then

1. ‖PVN f‖2
L2

α
� (1− cε)‖ f‖2

L2
α
,

2. ‖ f −PVN f‖2
L2

α
< cε‖ f‖2

L2
α
,

3.
〈
A g

Σ PVN f ,PVN f
〉

μα
� sN(Σ)(1− cε)‖ f‖2

L2
α
.
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Proof. We have, by assumption:

〈
A g

Σ f , f
〉

μα
=

∞

∑
n=1

sn(Σ)
∣∣∣〈 f ,ϕΣ

n

〉
μα

∣∣∣2 � (1− ε)‖ f‖2
L2

α
. (3.37)

Assume towards a contradiction that∥∥∥∥∥PVN f =
N

∑
n=1

〈
f ,ϕΣ

n

〉
μα

ϕΣ
n

∥∥∥∥∥
2

L2
α

=
N

∑
n=1

∣∣∣〈 f ,ϕΣ
n

〉
μα

∣∣∣2 < (1− cε)‖ f‖2
L2

α
. (3.38)

Since

‖ f‖2
L2

α
= ‖ fker‖2

L2
α
+

∞

∑
n=1

∣∣∣〈 f ,ϕΣ
n

〉
μα

∣∣∣2, (3.39)

then
∞

∑
n=N+1

∣∣∣〈 f ,ϕΣ
n

〉
μα

∣∣∣2 = ‖ f‖2
L2

α
−‖PVN f‖2

L2
α
−‖ fker‖2

L2
α
. (3.40)

Therefore

∞

∑
n=N+1

sn(Σ)
∣∣∣〈 f ,ϕΣ

n

〉
μα

∣∣∣2 � c−1
c

(
‖ f‖2

L2
α
−‖PVN f‖2

L2
α
−‖ fker‖2

L2
α

)
, (3.41)

and

∞

∑
n=1

sn(Σ)
∣∣∣〈 f ,ϕΣ

n

〉
μα

∣∣∣2 � s1(Σ)‖PVN f‖2
L2

α

+
c−1

c

(
‖ f‖2

L2
α
−‖PVN f‖2

L2
α
−‖ fker‖2

L2
α

)
.

Moreover, by (3.18),〈
A g

Σ f , f
〉

μα
� c−1

c
‖ f‖2

L2
α
+

1
c
‖PVN f‖2

L2
α
− c−1

c
‖ fker‖2

L2
α

<
c−1

c
‖ f‖2

L2
α
+

1
c
(1− cε)‖ f‖2

L2
α
− c−1

c
‖ fker‖2

L2
α

= (1− ε)‖ f‖2
L2

α
− c−1

c
‖ fker‖2

L2
α

< (1− ε)‖ f‖2
L2

α
.

This contradicts (3.37) and we conclude for the first inequality.
For the second inequality we have,

‖ f‖2
L2

α
= ‖PVN f +( f −PVN f )‖2

L2
α

= ‖PVN f‖2
L2

α
+‖ f −PVN f‖2

L2
α
. (3.42)

It follows then,

‖ f −PVN f‖2
L2

α
= ‖ f‖2

L2
α
−‖PVN f‖2

L2
α

� ‖ f‖2
L2

α
− (1− cε)‖ f‖2

L2
α

= cε‖ f‖2
L2

α
.
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Finally for the third inequality,

〈
A g

Σ PVN f ,PVN f
〉

μα
=

N

∑
n=1

sn(Σ)
∣∣∣〈 f ,ϕΣ

n

〉
μα

∣∣∣2
� sN(Σ)‖PVN f‖2

L2
α

� sN(Σ)(1− cε)‖ f‖2
L2

α
.

This completes the proof of the proposition. �

3.3. Spectrogram of a subspace

Given an N -dimensional subspace V of L2
α(R+) , PV the orthogonal projection

onto V with projection kernel κV , i.e.

PV f (·) =
∫

R+
κV (·,t) f (t)dμα(t). (3.43)

Recall that if {en}N
n=1 is an orthonormal basis of V , then

κV (x,t) =
N

∑
n=1

en(x)en(t). (3.44)

The kernel κV is independent of the choice of orthonormal basis for V .

DEFINITION 3.4. The spectrogram of the subspace V with window function g
is defined as:

SPECgV (x,ξ ) :=
∫

R+×R̂+
κV (t,y)gα

x,ξ (t)gα
x,ξ (y)dνα(t,y). (3.45)

Then we have the following result.

LEMMA 3.2. The spectrogram SPECgV is given by,

SPECgV (x,ξ ) =
N

∑
n=1

|V α
g (en)(x,ξ )|2. (3.46)

Proof. We have

SPECgV (x,ξ ) =
∫ ∞

0

∫ ∞

0

N

∑
n=1

en(t)en(y)gα
x,ξ (y)gα

x,ξ (t)dνα(t,y)

=
N

∑
n=1

∫ ∞

0
en(t)gα

x,ξ (t)dμα(t)
∫ ∞

0
en(y)gα

x,ξ (y)dμα(y)

=
N

∑
n=1

V α
g (en)(x,ξ )V α

g (en)(x,ξ ).



SPECTROGRAMS AND TIME-FREQUENCY LOCALIZED FUNCTIONS 523

This allows as to conclude. �
Let ρΣ := SPECgVn(ε,Σ) (called the accumulated spectrogram, see e.g. [1]), where we
assume that n(ε,Σ) = �να(Σ)� is the smallest integer greater than or equal to να(Σ)
and

V�να (Σ)� = span
{

ϕΣ
n

}�να (Σ)�
n=1 .

Then

ρΣ =
�να (Σ)�

∑
n=1

|V α
g (ϕΣ

n )|2 =
�να (Σ)�

∑
n=1

∣∣φΣ
n

∣∣2. (3.47)

LEMMA 3.3. Define the quantity

E(Σ) := 1− ∑n(ε,Σ)
n=1 sn(Σ)

να(Σ)
. (3.48)

Then
0 � E(Σ) � ε. (3.49)

Proof.
Since, for all 1 � n � n(ε,Σ),

sn(Σ) � 1− ε, (3.50)

then
n(ε,Σ)

∑
n=1

sn(Σ) � (1− ε)n(ε,Σ). (3.51)

Therefore,

0 � E(Σ) � 1− (1− ε)
n(ε,Σ)
να(Σ)

. (3.52)

Since n(ε,Σ) � να (Σ) , we obtain the desired result. �
The following result bounds the error between ρΣ and ΘΣ .

THEOREM 3.4. Assume that Σ is a bounded set of finite measure. Then

1
να(Σ)

‖ρΣ −ΘΣ‖L1
α (R+×R̂+) � 1

να(Σ)
+2E(Σ), (3.53)

and

limsup
r→∞

1
να(Σr)

‖ρΣr −ΘΣr‖L1
α (R+×R̂+) � 2ε. (3.54)

Proof. From Lemma 3.1 we have,

ρΣ(z)−ΘΣ(z) =
∞

∑
n=1

(�n− sn(Σ))
∣∣φΣ

n (z)
∣∣2, (3.55)
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where �n = 1 if n � �να(Σ)� and 0 otherwise. By Plancherel theorem (2.19),

‖ρΣ −ΘΣ‖L1
α (R+×R̂+) =

∞

∑
n=1

|�n− sn(Σ)| =
�να (Σ)�

∑
n=1

(1− sn(Σ))+ ∑
n>�να (Σ)�

sn(Σ)

= �να(Σ)�+
∞

∑
n=1

sn(Σ)−2
�να (Σ)�

∑
n=1

sn(Σ)

� �να(Σ)�+ να(Σ)−2
�να(Σ)�

∑
n=1

sn(Σ)

= (�να (Σ)�−να(Σ))+2

(
να(Σ)−

�να (Σ)�
∑
n=1

sn(Σ)

)

� 1+2

(
να(Σ)−

�να (Σ)�
∑
n=1

sn(Σ)

)
,

and the estimate (3.53) follows. Now since limsup
r→∞

να(Σr) = ∞ , then with (3.49) we

obtain (3.54). �
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[1] L. D. ABREU, K. GRÖCHENIG, AND J. L. ROMERO, On accumulated spectrograms, Trans. Amer.
Math. Soc. 368 (2016), 3629–3649.

[2] L. D. ABREU AND J. M. PEREIRA, Measures of localization and quantitative Nyquist densities, Appl.
Comput. Harmon. Anal. 38 (2015), 524–534.

[3] C. BACCAR, N. B. HAMADI AND H. HERCH, Time-frequency analysis of localization operators
associated to the windowed Hankel transform, Integral Transforms Spec. Funct. 27 (2016), 245–258.

[4] F. A. BEREZIN, Wick and anti–Wick operator symbols, Math. USSR-Sb. 15 1971.
[5] P. C. BOWIE, Uncertainty inequalities for Hankel transforms, SIAM J. Math. Anal. 2 (1971), 601–

606.
[6] A. CORDOBA AND C. FEFFERMAN, Wave packets and Fourier integral operators, Comm. Partial

Differential Equations, 3 (1978), 979–1005.
[7] W. CZAJA AND G. GIGANTE, Continuous Gabor transform for strong hypergroups, J. Fourier Anal.

Appl. 9 (2003), 321–339.
[8] I. DAUBECHIES, Time–frequency localization operators: a geometric phase space approach, IEEE

Trans. Inform. Theory, 34 (1988), 605–612.
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Université de Tunis El Manar

Tunis 2092, Tunisia
e-mail: siwar.hkimi@fst.utm.tn

Slim Omri
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