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Abstract. The main object of this paper is to introduce a new Banach space derived by using
a matrix operator which is comprised of Euler’s totient function. Also, we determine α , β ,
γ -duals of this space and characterize some matrix classes on this new space. Finally, we obtain
necessary and sufficient conditions for some matrix operators to be compact.

1. Introduction

By ω , we denote the space of all real valued sequences. Any vector subspace of
ω is called a sequence space. Ψ, �∞,c,c0 and �p (1 � p < ∞) are the sets of all finite,
bounded, convergent, null sequences and p-absolutely convergent series, respectively.
Throughout the study, we assume that p,q � 1 and 1

p + 1
q = 1.

A complete normed space is called a B-space. A topological sequence space is
called a K-space if all coordinate functionals pk , pk(u) = uk , are continuous. A BK-
space is a Banach space with continuous coordinates. A BK-space Λ ⊃ ψ is said to
have AK if every sequence u = (uk) ∈ Λ has a unuqiue representation u = ∑k uke(k) ,
where e(k) is the sequence whose only non-zero term is 1 in the n th place for each
k ∈ N . For example, the space �p (1 � p < ∞) is a BK-space with the norm ‖u‖p =
(∑k |uk|p)1/p and c0 and �∞ are BK-spaces with the norm ‖u‖∞ = supk |uk| . Also, the
BK-spaces c0 and �p have AK but c and �∞ do not have AK.

The α -, β -, γ -duals of a sequence space Λ are defined by

Λα =

{
a = (ak) ∈ ω :

∞

∑
k=1

|akuk| < ∞ for all u = (uk) ∈ Λ

}
,

Λβ =

{
a = (ak) ∈ ω :

∞

∑
k=1

akuk converges for all u = (uk) ∈ Λ

}
,

Λγ =

{
a = (ak) ∈ ω : sup

n

∣∣∣∣∣
n

∑
k=1

akuk

∣∣∣∣∣< ∞ for all u = (uk) ∈ Λ

}
,
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respectively.
Let Λ and Ω be two sequence spaces and S = (snk) be an infinite matrix of real

numbers. Then, we say that S is a matrix mapping from Λ into Ω if for every sequence
u = (uk) ∈ Λ , Su = (Sn(u)) , the S -transform of u , is in Ω , where

Sn(u) =
∞

∑
k=1

snkuk

provided that the series is convergent for each n∈N = {1,2, ...} . Throughout the study,
Sn will be the sequence of nth row of an infinite matrix S = (snk) .

(Λ,Ω) stands for the class of all infinite matrices from a sequence space Λ into
another sequence space Ω . Hence, S ∈ (Λ,Ω) if and only if Sn ∈ Λβ for all n ∈ N .

The matrix domain ΛS of an infinite matrix S in a sequence space Λ consists of
sequences whose S -transforms are in Λ ; that is,

ΛS = {u = (uk) ∈ ω : Su ∈ Λ}.

In the literature, there are many papers related to new sequence spaces constructed
by means of the matrix domain of a special triangle. See, for this construction and for
some triangular matrices [1, 2, 3, 4, 11, 12, 13, 15, 16, 17, 18, 22, 25, 33, 34]. For more
details about matrix domains of triangles, one can see [5].

Throughout the paper, ϕ and μ denote the Euler function and the Möbius func-
tion, respectively. For every m ∈ N with m > 1, ϕ(m) is the number of positive inte-
gers less than m which are coprime with m and ϕ(1) = 1. If pa1

1 pa2
2 ...par

r is the prime
factorization of a natural number m > 1, then

ϕ(m) = m(1− 1
p1

)(1− 1
p2

)...(1− 1
pr

).

Also, the equality
m = ∑

k|m
ϕ(k)

holds for every m ∈ N and ϕ(m1m2) = ϕ(m1)ϕ(m2) , where m1,m2 ∈ N are coprime
[19]. Given any m ∈ N with m > 1, μ is defined as

μ(m) =

⎧⎨
⎩

(−1)r if m = p1p2...pr, where p1, p2, ..., pr are
non-equivalent prime numbers

0 if p2 | m for some prime number p

and μ(1) = 1. If pa1
1 pa2

2 ...par
r is the prime factorization of a natural number m > 1,

then

∑
k|m

kμ(k) = (1− p1)(1− p2)...(1− pr).

Also, the equality

∑
k|m

μ(k) = 0 (1)
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holds except for m = 1 and μ(m1m2) = μ(m1)μ(m2) , where m1,m2 ∈ N are coprime
[19]. One can consult to [31] for more details related to these functions.

Let Λ be a normed space and BΛ be the unit sphere in Λ . For a BK-space Λ ⊃ ψ
and z = (zk) ∈ ω , we use the notation

‖z‖∗Λ = sup
u∈BΛ

∣∣∣∣∣∑k zkuk

∣∣∣∣∣
under the assumption that the supremum is finite. In this case observe that z ∈ Λβ .

LEMMA 1. [21, Theorem 1.29] �
β
1 = �∞ , �

β
p = �q and �

β
∞ = �1 , where 1 < p < ∞ .

If Λ ∈ {�1, �p, �∞} , then ‖z‖∗Λ = ‖z‖Λβ holds for all z∈ Λβ , where ‖.‖Λβ is the natural
norm on Λβ .

By B(Λ,Ω) , we denote the set of all bounded (continuous) linear operators from
Λ into Ω .

LEMMA 2. [21, Theorem 1.23 (a)] Let Λ and Ω be BK-spaces. Then, for every
S ∈ (Λ,Ω) , there exists a linear operator LS ∈ B(Λ,Ω) such that LS(u) = Su for all
u ∈ Λ .

LEMMA 3. [21] Let Λ ⊃ ψ be a BK-space and Ω ∈ {c0,c, �∞} . If S ∈ (Λ,Ω) ,
then

‖LS‖ = ‖S‖(Λ,Ω) = sup
n
‖Sn‖∗Λ < ∞.

The Hausdorff measure of noncompactness of a bounded set Q in a metric space
Λ is defined by

χ(Q) = inf{ε > 0 : Q ⊂ ∪n
i=1B(xi,ri),xi ∈ Λ,ri < ε,n ∈ N},

where B(xi,ri) is the open ball centered at xi and radius ri for each i = 1,2, ...,n . For
more details about the Hausdorff measure of noncompactness, one can consult [21] and
references therein.

The following theorem is useful to compute the Hausdorff measure of noncom-
pactness in �p for 1 � p < ∞ .

THEOREM 1. [32] Let Q be a bounded subset in �p for 1 � p < ∞ and Pr : �p →
�p be the operator defined by Pr(u) = (u0,u1,u2, ...,ur,0,0, ...) for all u = (uk) ∈ �p

and each r ∈ N . Then, we have

χ(Q) = lim
r

(
sup
u∈Q

‖(I−Pr)(u)‖�p

)
,

where I is the identity operator on �p .
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Let Λ and Ω be Banach spaces. Then, a linear operator L : Λ → Ω is said to be
compact if the domain of L is all of Λ and L(Q) is a totally bounded subset of Ω for
every bounded subset Q in Λ . Equivalently, we say that L is compact if its domain is
all of Λ and for every bounded sequence u = (un) in Λ , the sequence (L(un)) has a
convergent subsequence in Ω .

The idea of compact operators between Banach spaces is closely related to the
Hausdorff measure of noncompactness, and it can be given as follows.

Let Λ and Ω be Banach spaces and L ∈ B(Λ,Ω) . Then, the Hausdorff measure
of noncompactness of L , denoted by ‖L‖χ , is defined by

‖L‖χ = χ(L(BΛ)) (2)

and
L is compact if and only if ‖L‖χ = 0. (3)

One of the applications of the Hausdorff measure of noncompactness is to obtain
necessary and sufficient conditions for matrix operators between BK spaces to be com-
pact. Several authors studied compact operators on the sequence spaces. Many signifi-
cant results are obtained related to the Hausdorff measure of noncompactness of a linear
operator. One can see the papers [6, 7, 8, 9, 10, 14, 20, 21, 23, 24, 27, 28, 29, 30, 32]
and references therein.

In this paper, we introduce a new BK-space derived by the aid of Euler function.
After determining α , β , γ -duals of this space, we obtain necessary and sufficient
conditions for some matrix operators to be compact.

2. The sequence space �p(Φ)

In the present section, we introduce the sequence space �p(Φ) by using the regular
matrix Φ , where 1 � p � ∞ . Also, we present some theorems which give inclusion
relations corcerning this space.

The matrix Φ = (φnk) is defined as

φnk =
{ ϕ(k)

n , if k | n
0 , if k � n.

We call this matrix as Euler Totient matrix operator.
The inverse Φ−1 = (φ−1

nk ) of the matrix Φ is computed in [35] as

φ−1
nk =

{
μ( n

k )
ϕ(n) k , if k | n

0 , if k � n.

for all k,n ∈ N .
Now, we introduce the sequence spaces �p(Φ) and �∞(Φ) by

�p(Φ) =

{
u = (un) ∈ ω : ∑

n

∣∣∣∣∣1n ∑
k|n

ϕ(k)uk

∣∣∣∣∣
p

< ∞

}
(1 � p < ∞)
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and

�∞(Φ) =

{
u = (un) ∈ ω : sup

n

∣∣∣∣∣1n ∑
k|n

ϕ(k)uk

∣∣∣∣∣< ∞

}
.

As the notation of matrix domain, the sequence spaces �p(Φ) and �∞(Φ) may be
represented by

�p(Φ) = (�p)Φ (1 � p < ∞) and �∞(Φ) = (�∞)Φ.

Unless otherwise stated, v = (vn) will be the Φ-transform of a sequence u = (un) ,
that is, vn = Φn(u) = 1

n ∑k|n ϕ(k)uk for all n ∈ N .

THEOREM 2. The spaces �p(Φ) and �∞(Φ) are Banach spaces with the norms

given by ‖u‖�p(Φ) =
(

∑n

∣∣ 1
n ∑k|n ϕ(k)uk

∣∣p)1/p
and ‖u‖�∞(Φ) = supn

∣∣ 1
n ∑k|n ϕ(k)uk

∣∣ , re-
spectively, where 1 � p < ∞ .

Proof. We omit the proof which is straightforward. �

COROLLARY 1. The spaces �p(Φ) and �∞(Φ) are BK-spaces, where 1 � p < ∞ .

THEOREM 3. The space �p(Φ) is linearly isomorphic to �p , where 1 � p � ∞ .

Proof. Let S be a mapping defined from �p(Φ) to �p such that S(u) = Φu for all
u ∈ �p(Φ) . It is clear that S is linear. Also it is injective since the kernel of S consists
of only zero. To prove that S is surjective consider the sequence u = (un) whose terms
are

un = ∑
k|n

μ( n
k )

ϕ(n)
kvk

for all n ∈ N , where v = (vk) is any sequence in �p . It follows from (1) that

Φn(u) =
1
n ∑

k|n
ϕ(k)uk =

1
n ∑

k|n
ϕ(k)∑

j|k

μ( k
j )

ϕ(k)
jv j

=
1
n ∑

k|n
∑
j|k

μ(
k
j
) jv j =

1
n ∑

k|n

(
∑
j|k

μ( j)

)
n
k
v n

k
=

1
n

μ(1)nvn = vn

and so u = (un) ∈ �p(Φ) . S preserves norms since the equality ‖u‖�p(Φ) = ‖Su‖�p

holds. �

REMARK 1. The space �2(Φ) is an inner product space with the inner product
defined as 〈u,v〉�2(Φ) = 〈ϕu,ϕv〉�2 , where 〈., .〉�2 is the inner product on �2 which
induces ‖.‖�2 .

THEOREM 4. The space �p(Φ) is not an inner product space for p �= 2 .
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Proof. Consider the sequences u = (un) and ũ = (ũn) , where

un =

{
∑k|n

μ( n
k )

ϕ(n) k , if n is even
μ(n)
ϕ(n) , if n is odd

and

ũn =

{
∑k|n(−1)k−1 μ( n

k )
ϕ(n) k , if n is even

μ(n)
ϕ(n) , if n is odd

for all n∈N . Then, we have Φu = (1,1,0, ...,0, ...)∈ �p and Φũ = (1,−1,0, ...,0, ...)∈
�p . Hence, one can easily observe that

‖u+ ũ‖�p(Φ) +‖u− ũ‖�p(Φ) �= 2(‖u‖�p(Φ) +‖ũ‖�p(Φ)). �

THEOREM 5. The inclusion �p(Φ) ⊂ �q(Φ) strictly holds for 1 � p < q < ∞ .

Proof. It is clear that the inclusion �p(Φ) ⊂ �q(Φ) holds since �p ⊂ �q for 1 �
p < q < ∞ . Also, �p ⊂ �q is strict and so there exists a sequence w = (wn) in �q\�p .
By defining a sequence u = (un) as

un = ∑
k|n

μ( n
k )

ϕ(n)
kwk

for all n ∈ N , we conclude that u ∈ �q(Φ)\�p(Φ) . Hence, the desired inclusion is
strict. �

THEOREM 6. The inclusion �p(Φ) ⊂ �∞(Φ) strictly holds for 1 � p < ∞ .

Proof. The inclusion is obvious since �p ⊂ �∞ holds for 1 � p < ∞ . Let u = (un)

be a sequence such that un = ∑k|n(−1)k μ( n
k )

ϕ(n) k for all n ∈ N . We obtain that Φu =(
1
n ∑k|n ϕ(k)∑ j|k(−1) j μ( k

j )
ϕ(k) j

)
= ((−1)n)∈ �∞\�p which implies that u∈ �∞(Φ)\�p(Φ)

for 1 � p < ∞ . �

3. The α -, β - and γ -duals of the space �p(Φ)

In this section, we determine the α -, β - and γ -duals of the sequence space �p(Φ) ,
where 1 � p � ∞ . The following lemmas are required to prove our main results in this
section. Here and in what follows K denotes the family of all finite subsets of N .

LEMMA 4. [36] The following statements hold:
S = (snk) ∈ (�p, �1) if and only if

sup
F∈K

∑
k

∣∣∣∣∣∑n∈F

snk

∣∣∣∣∣
q

< ∞ (4)
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holds, where 1 < p < ∞ .
S = (snk) ∈ (�∞, �1) if and only if (4) holds with q = 1 .
S = (snk) ∈ (�1, �1) if and only if

sup
k

∑
n
|snk| < ∞ (5)

holds.
S = (snk) ∈ (�p,c) if and only if

lim
n→∞

snk exists for each k ∈ N (6)

and
sup

n
∑
k

|snk|q < ∞ (7)

holds, where 1 < p < ∞ .
S = (snk) ∈ (�∞,c) if and only if (6) and

lim
n→∞∑

k

|snk| = ∑
k

∣∣∣ lim
n→∞

snk

∣∣∣ (8)

hold.
S = (snk) ∈ (�1,c) if and only if (6) and

sup
n,k

|snk| < ∞ (9)

hold.
S = (snk) ∈ (�p,c0) if and only if

lim
n→∞

snk = 0 for each k ∈ N (10)

and (7) holds, where 1 < p < ∞ .
S = (snk) ∈ (�∞,c0) if and only if (10) and

lim
n→∞∑

k

|snk| = 0 (11)

hold.
S = (snk) ∈ (�1,c0) if and only if (9) and (10) hold.
S = (snk) ∈ (�p, �∞) if and only if (7) holds, where 1 < p < ∞ .
S = (snk) ∈ (�∞, �∞) if and only if (7) holds with q = 1 .
S = (snk) ∈ (�1, �∞) if and only if (9) holds.

In the following theorem, we determine the α -duals of the spaces �p(Φ) (1 <
p < ∞) , �∞(Φ) and �1(Φ) .
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THEOREM 7. The α -duals of the spaces �p(Φ) (1 < p < ∞) , �∞(Φ) and �1(Φ)
are as follows:

(�p(Φ))α =

{
t = (tn) ∈ ω : sup

F∈K
∑
k

∣∣∣∣∣ ∑
n∈F,k|n

μ( n
k )

ϕ(n)
ktn

∣∣∣∣∣
q

< ∞

}
,

(�∞(Φ))α =

{
t = (tn) ∈ ω : sup

F∈K
∑
k

∣∣∣∣∣ ∑
n∈F,k|n

μ( n
k )

ϕ(n)
ktn

∣∣∣∣∣< ∞

}

and

(�1(Φ))α =

{
t = (tn) ∈ ω : sup

k
∑

n∈N,k|n

∣∣∣∣μ( n
k )

ϕ(n)
ktn

∣∣∣∣< ∞

}
.

Proof. Consider the matrix C = (cnk) defined by

cnk =

{
0 , k � n

μ( n
k )

ϕ(n) ktn , k | n

for any sequence t = (tn) ∈ ω . Hence, given any u = (un) ∈ �p(Φ) for 1 � p � ∞ , we
have tnun = Cn(v) for all n ∈ N . This implies that tu ∈ �1 with u ∈ �p(Φ) if and only
if Cv ∈ �1 with v ∈ �p . It follows that t ∈ (�p(Φ))α if and only if C ∈ (�p, �1) which
completes the proof in view of Lemma 4. �

LEMMA 5. [2, Theorem 3.1] Let B = (bnk) be defined via a sequence t = (tk)∈ ω
and the inverse matrix V = (vnk) of the triangle matrix U = (unk) by

bnk =
n

∑
j=k

t jv jk

for all k,n ∈ N . Then,

Λβ
U = {t = (tk) ∈ ω : B ∈ (Λ,c)},

and
Λγ

U = {t = (tk) ∈ ω : B ∈ (Λ, �∞)}.
Consequently, we have the following theorem.

THEOREM 8. Let define the following sets:

A1 =

{
t = (tk) ∈ ω : lim

n→∞

n

∑
j=k,k| j

μ( j
k )

ϕ( j)
kt j exists for each k ∈ N

}
,

A2 =

{
t = (tk) ∈ ω : sup

n
∑
k

∣∣∣∣∣
n

∑
j=k,k| j

μ( j
k )

ϕ( j)
kt j

∣∣∣∣∣
q

< ∞

}
,
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A3 =

{
t = (tk) ∈ ω : lim

n→∞∑
k

∣∣∣∣∣
n

∑
j=k,k| j

μ( j
k )

ϕ( j)
kt j

∣∣∣∣∣= ∑
k

∣∣∣∣∣
∞

∑
j=k,k| j

μ( j
k )

ϕ( j)
kt j

∣∣∣∣∣
}

and

A4 =

{
t = (tk) ∈ ω : sup

n,k

∣∣∣∣∣
n

∑
j=k,k| j

μ( j
k )

ϕ( j)
kt j

∣∣∣∣∣< ∞

}
.

The β and γ -duals of the spaces �p(Φ) (1 < p < ∞) , �∞(Φ) and �1(Φ) are as follows:
(�p(Φ))β = A1∩A2 , (�∞(Φ))β = A1∩A3 and (�1(Φ))β = A1∩A4 ,
(�p(Φ))γ = A2 , (�p(∞))γ = A2 with q = 1 and (�1(Φ))γ = A4 .

For a sequence z = (zk)∈ω , we define a sequence z̃ = (z̃k) as z̃k = ∑∞
j=k,k| j

μ( j
k )

ϕ( j) kz j

for all k ∈ N .
We need the following results in the sequel.

LEMMA 6. Let z = (zk) ∈ (�p(Φ))β , where 1 � p � ∞ . Then z̃ = (z̃k) ∈ �q and

∑
k

zkuk = ∑
k

z̃kvk

for all u = (uk) ∈ �p(Φ) .

LEMMA 7. The following statements hold.
(a) ‖a‖∗�1(Φ) = supk |ãk| < ∞ for all a = (ak) ∈ (�1(Φ))β .

(b) ‖a‖∗�p(Φ) = (∑k |ãk|q)1/q < ∞ for all a = (ak) ∈ (�p(Φ))β , where 1 < p < ∞ .

(c) ‖a‖∗�∞(Φ) = ∑k |ãk| < ∞ for all a = (ak) ∈ (�∞(Φ))β .

Proof. We only prove part (a) and the others can be proved analogously. Choose
a = (ak) ∈ (�1(Φ))β . Then, by Lemma 6, we have ã = (ãk) ∈ �∞ and ∑k akuk =
∑k ãkvk for all u = (uk) ∈ �1(Φ) . Since ‖u‖�1(Φ) = ‖v‖�1 holds, we obtain that u ∈
B�1(Φ) if and only if v∈ B�1 . Hence, we deduce that ‖a‖∗�1(Φ) = supu∈B�1(Φ)

|∑k akuk|=
supv∈B�1

|∑k ãkvk|= ‖ã‖∗�1
. From Lemma 1, it follows that ‖a‖∗�1(Φ) = ‖ã‖∗�1

= ‖ã‖�∞ =
supk |ãk| . �

4. Some matrix transformations related to the sequence space �p(Φ)

In this section, we give the characterization of the classes (�p(Φ),Ω) , where 1 �
p � ∞ and Ω ∈ {�∞,c,c0, �1} . Throughout this section, we write r(n,k) = ∑n

j=1 r jk for
all n,k ∈ N , where R = (rnk) is an infinite matrix.

The following theorem is essential for our results.

THEOREM 9. Let 1 � p � ∞ and Λ be an arbitrary subset of ω . Then, we have
S = (snk) ∈ (�p(Φ),Λ) if and only if

R(n) =
(
r(n)
mk

)
∈ (�p,c) f or each n ∈ N, (12)
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R = (rnk) ∈ (�p,Λ), (13)

where r(n)
mk =

{
0 , k > m

∑m
j=k,k| j sn j

μ( j
k )

ϕ( j) k , 1 � k � m
and rnk = ∑∞

j=k,k| j sn j
μ( j

k )
ϕ( j) k for all

k,m,n ∈ N .

Proof. We omit the proof since it follows with the same technique in [18, Theorem
4.1]. �

We obtain the following results by combining Theorem 9 with Lemma 4.

THEOREM 10.
(a) S = (snk) ∈ (�1(Φ), �∞) if and only if

lim
m→∞

r(n)
mk exists for each n,k ∈ N, (14)

sup
m,k

∣∣∣r(n)
mk

∣∣∣< ∞ for each n ∈ N (15)

and (9) holds with rnk instead of snk .
(b) S = (snk) ∈ (�1(Φ),c) if and only if (14) and (15) hold, and (6) and (9) also

hold with rnk instead of snk .
(c) S = (snk) ∈ (�1(Φ),c0) if and only if (14) and (15) hold, and (9) and (10) also

hold with rnk instead of snk .
(d) S = (snk) ∈ (�1(Φ), �1) if and only if (14) and (15) hold, and (5) also holds

with rnk instead of snk .

THEOREM 11. Let 1 < p < ∞ .
(a) S = (snk) ∈ (�p(Φ), �∞) if and only if (14) and

sup
m

m

∑
k=1

∣∣∣r(n)
mk

∣∣∣q < ∞ for each n ∈ N (16)

hold, and (7) also holds with rnk instead of snk .
(b) S = (snk) ∈ (�p(Φ),c) if and only if (14) and (16) hold, and (6) and (7) also

hold with rnk instead of snk .
(c) S = (snk) ∈ (�p(Φ),c0) if and only if (14) and (16) hold, and (10) and (7) also

hold with rnk instead of snk .
(d) S = (snk) ∈ (�p(Φ), �1) if and only if (14) and (16) hold, and (4) also holds

with rnk instead of snk .

THEOREM 12.
(a) S = (snk) ∈ (�∞(Φ), �∞) if and only if (14) and

lim
m→∞

m

∑
k=1

∣∣∣r(n)
mk

∣∣∣= m

∑
k=1

|rnk| for each n ∈ N (17)



A NEW BANACH SPACE DEFINED BY EULER TOTIENT MATRIX OPERATOR 537

hold, and (7) also holds with q = 1 and rnk instead of snk .
(b) S = (snk) ∈ (�∞(Φ),c) if and only if (14) and (17) hold, and (6) and (8) also

hold with rnk instead of snk .
(c) S = (snk) ∈ (�∞(Φ),c0) if and only if (14) and (17) hold, and (10) and (11)

also hold with rnk instead of snk .
(d) S = (snk) ∈ (�∞(Φ), �1) if and only if (14) and (17) hold, and (4) holds with

rnk instead of snk and q = 1 .

By using Theorems 10-12, we derive the following results:

COROLLARY 2. The following statements hold:
(a) S = (snk) ∈ (�1(Φ),bs) if and only if (14), (15) hold and (9) holds with r(n,k)

instead of snk , where r(n,k) = ∑n
j=1 r jk .

(b) S = (snk) ∈ (�1(Φ),cs) if and only if (14), (15) hold and (6),(9) hold with
r(n,k) instead of snk , where r(n,k) = ∑n

j=1 r jk .
(c) S = (snk) ∈ (�1(Φ),cs0) if and only if (14), (15) hold and (9),(10) hold with

r(n,k) instead of snk , where r(n,k) = ∑n
j=1 r jk .

COROLLARY 3. Let 1 < p < ∞ . Then, the following statements hold:
(a) S = (snk) ∈ (�p(Φ),bs) if and only if (14), (16) hold and (7) holds with r(n,k)

instead of snk , where r(n,k) = ∑n
j=1 r jk .

(b) S = (snk) ∈ (�p(Φ),cs) if and only if (14), (16) hold and (6),(7) hold with
r(n,k) instead of snk , where r(n,k) = ∑n

j=1 r jk .
(c) S = (snk) ∈ (�p(Φ),cs0) if and only if (14), (16) hold and (7),(10) hold with

r(n,k) instead of snk , where r(n,k) = ∑n
j=1 r jk .

COROLLARY 4. The following statements hold:
(a) S = (snk) ∈ (�∞(Φ),bs) if and only if (14), (17) hold and (7) holds with r(n,k)

instead of snk and q = 1 , where r(n,k) = ∑n
j=1 r jk .

(b) S = (snk) ∈ (�∞(Φ),cs) if and only if (14), (17) hold and (6),(8) hold with
r(n,k) instead of snk , where r(n,k) = ∑n

j=1 r jk .
(c) S = (snk) ∈ (�∞(Φ),cs0) if and only if (14), (17) hold and (10),(11) hold with

r(n,k) instead of snk , where r(n,k) = ∑n
j=1 r jk .

5. Compact operators on the spaces �p(Φ) and �∞(Φ)

Throughout this section, we use the matrix S̃ = (s̃nk) defined by an infinite matrix
S = (snk) via

s̃nk =
∞

∑
j=k,k| j

μ( j
k )

ϕ( j)
ksn j

for all n,k ∈ N under the assumption that the series is convergent.

LEMMA 8. Let Λ be an arbitrary subset of ω and S = (snk) be an infinite matrix.
If S ∈ (�p(Φ),Λ) , then S̃ ∈ (�p,Λ) and Su = S̃v for all u ∈ �p(Φ) , where 1 � p � ∞ .
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Proof. It follows from Lemma 6. �

LEMMA 9. If S ∈ (�1(Φ), �p) , then we have

‖LS‖ = ‖S‖(�1(Φ),�p) = sup
k

(
∑
n
|s̃nk|p

)1/p

< ∞,

where 1 � p < ∞ .

LEMMA 10. [26, Theorem 3.7] Let Λ ⊃ ψ be a BK-space. Then, the following
statements hold.

(a) S ∈ (Λ, �∞) , then 0 � ‖LS‖χ � limsupn ‖Sn‖∗Λ .
(b) S ∈ (Λ,c0) , then ‖LS‖χ = limsupn ‖Sn‖∗Λ .
(c) If Λ has AK or Λ = �∞ and S ∈ (Λ,c) , then

1
2

limsup
n

‖Sn− s‖∗Λ � ‖LS‖χ � limsup
n

‖Sn− s‖∗Λ,

where s = (sk) and sk = limn snk for each k ∈ N .

LEMMA 11. [26, Theorem 3.11] Let Λ ⊃ ψ be a BK-space. If S ∈ (Λ, �1) , then

lim
r

(
sup

N∈Kr

∥∥∥∥∥∑
n∈N

Sn

∥∥∥∥∥
∗

Λ

)
� ‖LS‖χ � 4lim

r

(
sup

N∈Kr

∥∥∥∥∥∑
n∈N

Sn

∥∥∥∥∥
∗

Λ

)

and LS is compact if and only if limr
(
supN∈Kr

‖∑n∈N Sn‖∗Λ
)

= 0 , where Kr is the
subcollection of K consisting of subsets of N with elements that are greater than r .

THEOREM 13. Let 1 < p < ∞ .

1. For S ∈ (�p(Φ), �∞) ,

0 � ‖LS‖χ � limsup
n

(
∑
k

|s̃nk|q
)1/q

holds.

2. For S ∈ (�p(Φ),c) ,

1
2

limsup
n

(
∑
k

|s̃nk − s̃k|q
)1/q

� ‖LS‖χ � limsup
n

(
∑
k

|s̃nk − s̃k|q
)1/q

holds, where s̃ = (s̃k) and s̃k = limn s̃nk for each k ∈ N .
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3. For S ∈ (�p(Φ),c0) ,

‖LS‖χ = limsup
n

(
∑
k

|s̃nk|q
)1/q

holds.

4. For S ∈ (�p(Φ), �1) ,

lim
r
‖S‖(r)

(�p(Φ),�1)
� ‖LS‖χ � 4lim

r
‖S‖(r)

(�p(Φ),�1)

holds, where ‖S‖(r)
(�p(Φ),�1)

= supN∈Kr
(∑k |∑n∈N s̃nk|q)1/q (r ∈ N) .

Proof.

1. Let S ∈ (�p(Φ), �∞) . Since the series ∑∞
k=1 snkuk converges for each n ∈ N ,

we have Sn ∈ (�p(Φ))β . From Lemma 7 (b), we write ‖Sn‖∗�p(Φ) = ‖S̃n‖∗�p
=

‖S̃n‖�q = (∑k |s̃nk|q)1/q for each n ∈ N . By using Lemma 10 (a), we conclude
that

0 � ‖LS‖χ � limsup
n

(
∑
k

|s̃nk|q
)1/q

.

2. Let S ∈ (�p(Φ),c) . By Lemma 8, we have S̃ ∈ (�p,c) . Hence, from Lemma 10
(c), we write

1
2

limsup
n

‖S̃n− s̃‖∗�p
� ‖LS‖χ � limsup

n
‖S̃n− s̃‖∗�p

,

where s̃ = (s̃k) and s̃k = limn s̃nk for each k ∈ N . Moreover, Lemma 1 implies
that ‖S̃n− s̃‖∗�p

= ‖S̃n− s̃‖�q = (∑k |s̃nk − s̃k|q)1/q for each n∈ N . This completes
the proof.

3. Let S∈ (�p(Φ),c0) . Since we have ‖Sn‖∗�p(Φ) = ‖S̃n‖∗�p
= ‖S̃n‖�q = (∑k |s̃nk|q)1/q

for each n ∈ N , we conclude from Lemma 10 (b) that

‖LS‖χ = limsup
n

(
∑
k

|s̃nk|q
)1/q

.

4. Let S ∈ (�p(Φ), �1) . By Lemma 8, we have S̃ ∈ (�p, �1) . It follows from Lemma
11 that

lim
r

⎛
⎝ sup

N∈Kr

∥∥∥∥∥∑
n∈N

S̃n

∥∥∥∥∥
∗

�p

⎞
⎠� ‖LS‖χ � 4lim

r

⎛
⎝ sup

N∈Kr

∥∥∥∥∥∑
n∈N

S̃n

∥∥∥∥∥
∗

�p

⎞
⎠ .

Moreover, Lemma 1 implies that ‖∑n∈N S̃n‖∗�p
= ‖∑n∈N S̃n‖�q = (∑k |∑n∈N s̃nk|q)1/q

which completes the proof. �
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As a consequence of this theorem, we have the following corollary which follows
from (3).

COROLLARY 5. Let 1 < p < ∞ .

1. LS is compact for S ∈ (�p(Φ), �∞) if

lim
n

(
∑
k

|s̃nk|q
)1/q

= 0.

2. LS is compact for S ∈ (�p(Φ),c) if and only if

lim
n

(
∑
k

|s̃nk − s̃k|q
)1/q

= 0.

3. LS is compact for S ∈ (�p(Φ),c0) if and only if

lim
n

(
∑
k

|s̃nk|q
)1/q

= 0.

4. LS is compact for S ∈ (�p(Φ), �1) if and only if

lim
m

‖S‖(m)
(�p(Φ),�1)

= 0,

where ‖S‖(r)
(�p(Φ),�1)

= supN∈Kr
(∑k |∑n∈N s̃nk|q)1/q .

THEOREM 14.

1. For S ∈ (�∞(Φ), �∞) ,
0 � ‖LS‖χ � limsup

n
∑
k

|s̃nk|

holds.

2. For S ∈ (�∞(Φ),c) ,

1
2

limsup
n

∑
k

|s̃nk − s̃k| � ‖LS‖χ � limsup
n

∑
k

|s̃nk − s̃k|

holds.

3. For S ∈ (�∞(Φ),c0) ,
‖LS‖χ = limsup

n
∑
k

|s̃nk|

holds.
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4. For S ∈ (�∞(Φ), �1) ,

lim
r
‖S‖(r)

(�∞(Φ),�1)
� ‖LS‖χ � 4lim

r
‖S‖(r)

(�∞(Φ),�1)

holds, where ‖S‖(r)
(�∞(Φ),�1)

= supN∈Kr
(∑k |∑n∈N s̃nk|) (r ∈ N) .

Proof. It follows with the same technique in Theorem 13. �
Similarly, we have the following result.

COROLLARY 6.

1. LS is compact for S ∈ (�∞(Φ), �∞) if

lim
n ∑

k

|s̃nk| = 0.

2. LS is compact for S ∈ (�∞(Φ),c) if and only if

lim
n ∑

k

|s̃nk − s̃k| = 0.

3. LS is compact for S ∈ (�∞(Φ),c0) if and only if

lim
n ∑

k

|s̃nk| = 0.

4. LS is compact for S ∈ (�∞(Φ), �1) if and only if

lim
r
‖S‖(r)

(�∞(Φ),�1)
= 0,

where ‖S‖(r)
(�∞(Φ),�1)

= supN∈Kr
(∑k |∑n∈N s̃nk|) .

THEOREM 15.

1. For S ∈ (�1(Φ), �∞) ,

0 � ‖LS‖χ � limsup
n

(
sup

k
|s̃nk|

)

holds.

2. For S ∈ (�1(Φ),c) ,

1
2

limsup
n

(
sup

k
|s̃nk − s̃k|

)
� ‖LS‖χ � limsup

n

(
sup

k
|s̃nk − s̃k|

)

holds.
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3. For S ∈ (�1(Φ),c0) ,

‖LS‖χ = limsup
n

(
sup

k
|s̃nk|

)

holds.

4. For S ∈ (�1(Φ), �1) ,

‖LS‖χ = lim
r

(
sup

k

∞

∑
n=r

|s̃nk|
)

holds.

Proof. It follows with the same technique in Theorem 13. �
Similarly, we have the following result.

COROLLARY 7.

1. LS is compact for S ∈ (�1(Φ), �∞) if

lim
n

(
sup

k
|s̃nk|

)
= 0.

2. LS is compact for S ∈ (�1(Φ),c) if and only if

lim
n

(
sup

k
|s̃nk − s̃k|

)
= 0.

3. LS is compact for S ∈ (�1(Φ),c0) if and only if

lim
n

(
sup

k
|s̃nk|

)
= 0.

4. LS is compact for S ∈ (�1(Φ), �1) if and only if

lim
r

(
sup

k

∞

∑
n=r

|s̃nk|
)

= 0.
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