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A NEW BANACH SPACE DEFINED BY
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(Communicated by I. M. Spitkovsky)

Abstract. The main object of this paper is to introduce a new Banach space derived by using
a matrix operator which is comprised of Euler’s totient function. Also, we determine o, f3,
v-duals of this space and characterize some matrix classes on this new space. Finally, we obtain
necessary and sufficient conditions for some matrix operators to be compact.

1. Introduction

By w, we denote the space of all real valued sequences. Any vector subspace of
o is called a sequence space. ‘¥, e, c,co and £, (1 < p < o) are the sets of all finite,
bounded, convergent, null sequences and p-absolutely convergent series, respectively.
Throughout the study, we assume that p,g > 1 and % +1-1.

A complete normed space is called a B-space. A topological sequence space is
called a K-space if all coordinate functionals py, pi(u) = uy, are continuous. A BK-
space is a Banach space with continuous coordinates. A BK-space A D v is said to
have AK if every sequence u = (1) € A has a unugiue representation u = Y ue®
where e is the sequence whose only non-zero term is 1 in the n’" place for each
k € N. For example, the space £, (1 < p < o) is a BK-space with the norm |u||, =
(34 |ux|P)V/P and co and 4., are BK-spaces with the norm ||u||.. = sup, [ux|. Also, the
BK-spaces cg and £, have AK but ¢ and {.. do not have AK.

The o-, -, y-duals of a sequence space A are defined by

A*=<a=(aq) €w: E\akuk|<°of0rallu=(uk)€1\ ,
k=1

M=Lai=(a)eco: Y aguy converges for all u = (1) €A ¢,
=1

A'=<a= (@) € o:sup Eakuk <ooforallu= (ux) €A,
no k=1
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respectively.

Let A and Q be two sequence spaces and S = (s,;) be an infinite matrix of real
numbers. Then, we say that S is a matrix mapping from A into Q if for every sequence
u=(ur) €A, Su=(S,(u)), the S-transform of u, is in Q, where

Sp(u) = Z SpkUk
k=1

provided that the series is convergent for each n € N={1,2,...}. Throughout the study,
S, will be the sequence of nM row of an infinite matrix S = (s,).
(A, Q) stands for the class of all infinite matrices from a sequence space A into
another sequence space Q. Hence, S € (A,Q) if and only if S, € AP forall n e N.
The matrix domain Ag of an infinite matrix S in a sequence space A consists of
sequences whose S-transforms are in A; that is,

As={u= () € 0:SueA}.

In the literature, there are many papers related to new sequence spaces constructed
by means of the matrix domain of a special triangle. See, for this construction and for
some triangular matrices [1, 2, 3,4, 11, 12, 13, 15, 16, 17, 18, 22, 25, 33, 34]. For more
details about matrix domains of triangles, one can see [5].

Throughout the paper, ¢ and u denote the Euler function and the Mdébius func-
tion, respectively. For every m € N with m > 1, ¢(m) is the number of positive inte-
gers less than m which are coprime with m and ¢@(1) = 1. If p{' p5*...p% is the prime
factorization of a natural number m > 1, then

1 1 1
m)=m(l——)1——)...(1 ——
@(m) = m( pl)( pz) ( pr)
Also, the equality
m= ¢(k)
k|m

holds for every m € N and @ (mymy) = @(my;)@(my), where my,m, € N are coprime
[19]. Given any m € N with m > 1, u is defined as

(=1)" if m= pips...pr, where py,pa,...,p, are
wim) = non-equivalent prime numbers
0 if p? | m for some prime number p

and p(1) = 1. If p{'p5*...p% is the prime factorization of a natural number m > 1,
then

D ku(k) = (1= p1)(1 = p2)...(1 = py).
k|m

Also, the equality
3 u(k) =0 (1)

klm
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holds except for m =1 and p(mymy) = p(my)u(ms), where my,mp € N are coprime
[19]. One can consult to [31] for more details related to these functions.

Let A be a normed space and B, be the unit sphere in A. For a BK-space A D y
and z = (zx) € ®, we use the notation

l2lf7 = sup
uEB)

Ezkuk
k

under the assumption that the supremum is finite. In this case observe that z € AP .

LEMMA 1. [21, Theorem 1.29] 6% = ¢.., (8 — 0, and (B = t,, where 1 < p < .
IfF A€ {0y, 0}, then ||z||5 = ||zl| \p holds forall z € AP, where ||.| s is the natural
norm on AP.

By B(A,Q), we denote the set of all bounded (continuous) linear operators from
A into Q.

LEMMA 2. [21, Theorem 1.23 (a)] Let A and Q be BK-spaces. Then, for every
S € (A,Q), there exists a linear operator Lg € B(A,Q) such that Ls(u) = Su for all
ucA.

LEMMA 3. [21] Let A D ¥ be a BK-space and Q € {cq,c,l}. If S € (A,Q),
then
ILs]| = [IS1/(a,0) = sup[SallA < ee.
n

The Hausdorff measure of noncompactness of a bounded set Q in a metric space
A is defined by

x(0)=inf{e >0: Q0 C U | B(xi,ri),xi € A,ri < €,n € N},

where B(x;,r;) is the open ball centered at x; and radius r; for each i =1,2,...,n. For
more details about the Hausdorff measure of noncompactness, one can consult [21] and
references therein.

The following theorem is useful to compute the Hausdorff measure of noncom-
pactness in £, for 1 < p < oo,

THEOREM 1. [32] Let Q be a bounded subset in £, for 1 < p < oo and P,:{, —

¢, be the operator defined by P.(u) = (uo,u1,us,...,ur,0,0,...) for all u= (u) € £,
and each r € N. Then, we have

x(Q) = lim (sggll(I—Pr)(u)ep> 7

where 1 is the identity operator on {,,.
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Let A and Q be Banach spaces. Then, a linear operator L : A — € is said to be
compact if the domain of L is all of A and L(Q) is a totally bounded subset of Q for
every bounded subset Q in A. Equivalently, we say that L is compact if its domain is
all of A and for every bounded sequence u = (u,) in A, the sequence (L(u,)) has a
convergent subsequence in Q.

The idea of compact operators between Banach spaces is closely related to the
Hausdorff measure of noncompactness, and it can be given as follows.

Let A and Q be Banach spaces and L € B(A,Q). Then, the Hausdorff measure
of noncompactness of L, denoted by ||L||,, is defined by

1Ll = x(L(BA)) 2)

and
L is compact if and only if ||L||,, = 0. 3)

One of the applications of the Hausdorff measure of noncompactness is to obtain
necessary and sufficient conditions for matrix operators between BK spaces to be com-
pact. Several authors studied compact operators on the sequence spaces. Many signifi-
cant results are obtained related to the Hausdorff measure of noncompactness of a linear
operator. One can see the papers [6, 7, 8, 9, 10, 14, 20, 21, 23, 24,27, 28, 29, 30, 32]
and references therein.

In this paper, we introduce a new BK-space derived by the aid of Euler function.
After determining o, 3, y-duals of this space, we obtain necessary and sufficient
conditions for some matrix operators to be compact.

2. The sequence space {,(D)

In the present section, we introduce the sequence space £,(®) by using the regular
matrix @, where 1 < p < . Also, we present some theorems which give inclusion
relations corcerning this space.

The matrix ® = (@) is defined as

b = O it | n
nk 0 ,ifk{n.

We call this matrix as Euler Totient matrix operator.
The inverse @1 = (¢,,') of the matrix @ is computed in [35] as

1:{’“‘(%%, ifk|n

o(n)
Oni 0 ., ifkfn.

for all k,n € N.
Now, we introduce the sequence spaces £,(®) and /..(®) by

~S ok

k|n

P
Kp(d)):{u:(un)ewzz <<>o} (1< p<oo)

n



A NEW BANACH SPACE DEFINED BY EULER TOTIENT MATRIX OPERATOR 531

<ol

As the notation of matrix domain, the sequence spaces £,(®) and /..(®) may be
represented by

and

E(P U

n k\n

leo(®) = {u:( :sup

(@)= (lp)e (1 <p<oo) and loo(P) = (Loo)o.

Unless otherwise stated, v = (v,) will be the ®-transform of a sequence u = (uy,),
that is, v, = @, (1) = 1 3y, @(k)uy. forall n € N.

THEOREM 2. The spaces £,(®) and l.(®) are Banach spaces with the norms

. 1/p

given by ||ull¢, @) = <Zn | Shin (P(k)”k|p> and ||ul];_ (@) = sup, |+ Sy, @ (k)u|, re-
spectively, where 1 < p < oo.

Proof. We omit the proof which is straightforward. [

COROLLARY 1. The spaces £,(®) and lo(D) are BK-spaces, where 1 < p < oo.

THEOREM 3. The space {,(®) is linearly isomorphic to {,, where 1 < p < eo.

Proof. Let S be a mapping defined from ¢,(®) to £, such that S(u) = ®u for all
u € £,(®). Itis clear that S is linear. Also it is injective since the kernel of S consists
of only zero. To prove that S is surjective consider the sequence u = (u,) whose terms
are .
U, = 2 M/’cvk
i o)

forall n € N, where v = () is any sequence in £,. It follows from (1) that

1 n(h)
k IZ gy
:_ZZ“ )jvj = Z(Z,LL ) %V% :%“(l)nvn:"n
k\n Jlk k|n Jlk

and so u = (u,) € £,(®P). S preserves norms since the equality |[ul|s,@) = [|Sull¢,
holds. [

REMARK 1. The space /»(®) is an inner product space with the inner product
defined as (u,v)s, @) = (Qu,@v)s,, where (.,.),, is the inner product on £, which

induces |||, .

THEOREM 4. The space {,(®) is not an inner product space for p # 2.
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Proof. Consider the sequences u = (u,) and ii = (i, ), where

{ 2kin %k , if nis even
u, = )

ZEZ) ., if nis odd

and

B}

i = o(n)
" k() ., if nis odd

_ {an(—l)klwk , if nis even

forall n € N. Then, we have ®u = (1,1,0,...,0,...) €/, and ®ii = (1,—-1,0,...,0,...) €
¢,,. Hence, one can easily observe that

e+l g, @) + Nl = tll g, (@) 7 2([[ullg, @) + g, @) D

THEOREM 5. The inclusion £,(®) C Ly(P) strictly holds for 1 < p < g < oo.

Proof. Tt is clear that the inclusion /,(®) C £,(®) holds since £, C ¢, for 1 <
p < g <eo. Also, £, C (g is strict and so there exists a sequence w = (w,) in £,\(,.
By defining a sequence u = (u,) as

ERY1())
"= 2 o)

for all n € N, we conclude that u € £,(®)\/,(®). Hence, the desired inclusion is
strict. [

THEOREM 6. The inclusion £,(®) C l(®) strictly holds for 1 < p < oo.

Proof. The inclusion is obvious since £, C £ holds for 1 < p <eo. Let u = (u,)

be a sequence such that u, = Zk‘n(—l)k%k for all n € N. We obtain that ®u =

u(ky n C
(}%an o(k) Zﬂk(—l)ﬂ;(—]’{)]) = ((—1)") € £ \¢;, which implies that © € Lo.(D)\ L, (D)
forI<p<oe. O

3. The a-, B-and y-duals of the space /,(®)

In this section, we determine the -, 8- and y-duals of the sequence space £,(®),
where 1 < p < eo. The following lemmas are required to prove our main results in this
section. Here and in what follows .#~ denotes the family of all finite subsets of N.

LEMMA 4. [36] The following statements hold:
S = (sux) € (£p,¢1) if and only if

q
<o “)

sup Y

FeXt |

Z Snk

neF
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holds, where 1 < p < oo,
S = (spx) € (beo, £1) if and only if (4) holds with q = 1.
S = (su) € (61,1) if and only if
Sup Y. [suk| < o
k n

holds.
S = (sux) € (¢p,c) if and only if

lim s, exists for each k € N
Nn—oco

and
sup Y [l ? < oo
nog

holds, where 1 < p < oo,
S = ($uk) € (o, ¢) if and only if (6) and

Jim 3 s = 33 tm s
hold.
S = (snx) € (£1,¢) if and only if (6) and

Sup [spx| < oo
n,k

hold.
S = (sux) € (p,co) if and only if

lim s, =0 for eachk € N
Nn—oo

and (7) holds, where 1 < p < eo.
S = (spk) € (oo, o) if and only if (10) and

fim 3ol =0

hold.
S = (sux) € (¢1,c0) if and only if (9) and (10) hold.
S = (sux) € (p, L) if and only if (7) holds, where 1 < p < oo.
S = (suk) € (oo, les) if and only if (7) holds with g = 1.
S = (syx) € (¢1,0w) if and only if (9) holds.

533

(&)

(6)

(N

®)

©))

(10)

Y

In the following theorem, we determine the ¢t -duals of the spaces £,(®) (1 <

p <), Loo(®) and ¢1(D).
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THEOREM 7. The o -duals of the spaces £p(®) (1 < p <o), Leo(®) and {1(PD)
are as follows:

o | , s, |
(Lp(@))* = {t—(tn)ew-;;{%% ne;/qn o) kin| < }
o | w u(z) .
(loo(@))* = {t_(tn)ew.;ezgg ne%dn <p(n)kt" < }
and
(él(dD))a:{t:(tn)ew:sup D “(?)kzn <°o}.
k nenvinl (1)

Proof. Consider the matrix C = (¢;;) defined by

0 ,kin
ok = B kg

o(n)

for any sequence 7 = (,) € w. Hence, given any u = (u,) € £,(®) for 1 < p < oo, we
have t,u, = C,(v) for all n € N. This implies that ru € ¢; with u € £,(®) if and only
if Cv € ¢y with v € £,,. It follows that 7 € (¢,(®))%* if and only if C € (¢,,¢;) which
completes the proof in view of Lemma 4. [J

LEMMA 5. [2, Theorem 3.1] Let B = (b,) be defined via a sequence t = (1) € ®
and the inverse matrix V.= (vy) of the triangle matrix U = (up;) by

b = Z 1jvik
j=k
forall k,n € N. Then,

Ag ={t=() ew:Be(Ac)},

and
A ={t=)€w:Be (AL}

Consequently, we have the following theorem.

THEOREM 8. Let define the following sets:

n i
Alz{t:(tk)ea):lim 2 “(k)ktjexistsforeachkeN},

q
<w},

e j=kk|j (P(])

- klj

&)
/=§,k\j ()

Agz{t:(tk)ea):supz
nk
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| & wd < u(d)
A3 =<(t=(f) € ®: lim K k| = Kt
{ 'H'”% j:%clj‘p(f) ' % j:%c\jq) i
and
A = = . Su k oo .
= T e %‘,¢< )

The B and 7y-duals of the spaces £,(®) (1 < p <o), Lou(D) and £{(P) are as follows:
(D) =A1NAy, (fu(D ))ﬁ A1NA;3 and (0;(®))P =A;NA4,
(£p(®))7 = A, (€))7 = Az with = 1 and (0,(®))” = Ay.

I
Forasequence z= (z) € @, we define a sequence 2= (%) as & =27 4 ; Mkzj

i)
forall k € N.
We need the following results in the sequel.

LEMMA 6. Let z= () € (£,(®))P, where 1 < p < oo. Then 7= (%) € £, and
N g = Zvk
k k
forall u= (uy) € £y(P).

LEMMA 7. The following statements hold.

(a) H‘IHZ@) = supy || < oo for all a = (a;) € (4,(P))B.

(b) HaHZP@) = (Sela| )Y < oo forall a = (ay) € (0,(D))B, where 1 < p < oo.
() llallj_ ) = Zklax| <o forall a= (a) € (£(®))P.

Proof. We only prove part (a) and the others can be proved analogously. Choose
a = (a) € (/1(®))P. Then, by Lemma 6, we have @ = () € e and Y;aru; =
Yrarvi for all u = (ur) € £1(®@). Since [Jully (@) = [[v[l¢, holds, we obtain that u €
By, (@) if and only if v € By, . Hence, we deduce that HaH}fl(q)) = SUPyep, o | > axur| =
SUDyep,, | Xk dxve| = |l|7, . From Lemma 1, it follows that HaH;l((D) =lall7, =llalle.. =
sup,lai]. O

4. Some matrix transformations related to the sequence space ¢,(®)

In this section, we give the characterization of the classes (£,(®),Q), where 1 <
p <o and Q € {lw,c,cp, 1 }. Throughout this section, we write r(n,k) iy rjk for
all n,k € N, where R = (r,;) is an infinite matrix.

The following theorem is essential for our results.

THEOREM 9. Let 1 < p < oo and A be an arbitrary subset of @. Then, we have
S = (snk) € (£p(P),A) if and only if

R = (rr(nk)> (€y,c) foreachn €N, (12)



536 M. ILKHAN AND E. E. KARA

R = (ru) € (p,A), (13)
here ) { o ok>m d " MO for al
where ¢ k — 'u(l) an T'nk = i—kkliSni ol or a
" Tkl Snigryk s L <k<m J=koklj 51 )
k,m,n € N.

Proof. We omit the proof since it follows with the same technique in [18, Theorem
4.1]. O
We obtain the following results by combining Theorem 9 with Lemma 4.

THEOREM 10.
(a) S = (su) € (£1(P), L) if and only if

(n)

lim r, - exists for each n,k € N, (14)
sup’rr(:g‘ < oo foreachn € N (15)
m,k

and (9) holds with r,y. instead of s,y

(b) S = (sp) € (£1(D),c) if and only if (14) and (15) hold, and (6) and (9) also
hold with ryy, instead of sy

(c) S = (su) € (01(D),co) if and only if (14) and (15) hold, and (9) and (10) also
hold with ry;, instead of sy

(d) S = (sux) € (41(D),£y) if and only if (14) and (15) hold, and (5) also holds
with 1y instead of syy.

THEOREM 11. Let 1 < p < oo.
(a) S = (sur) € ({p(P), L) if and only if (14) and

m
supz ‘r%{)‘q<ooforeachnEN (16)
m k=1

hold, and (7) also holds with r,; instead of s,.

(b) S = (suk) € (£p(®),c) if and only if (14) and (16) hold, and (6) and (7) also
hold with ry;, instead of sy

(¢c) S = (suk) € (Lp(P),co) if and only if (14) and (16) hold, and (10) and (7) also
hold with ry; instead of sy

(d) S = (spx) € (€p(®),£1) if and only if (14) and (16) hold, and (4) also holds
with 1y instead of syy.

THEOREM 12.
(a) S = (sp) € (lo(D),le) if and only if (14) and

g

m m
lim Z = Y |ru| for each n €N 17)
k=1 =1

k



A NEW BANACH SPACE DEFINED BY EULER TOTIENT MATRIX OPERATOR 537

hold, and (7) also holds with q =1 and r,; instead of sy .

(b) S = (spx) € (bu( D), ) if and only if (14) and (17) hold, and (6) and (8) also
hold with ryy, instead of sy

(c) S = (spk) € (loo(D),c0) if and only if (14) and (17) hold, and (10) and (11)
also hold with r,; instead of syy.

(d) S = (spr) € (boo(®), 1) if and only if (14) and (17) hold, and (4) holds with
Tk instead of sy and g =1.

By using Theorems 10-12, we derive the following results:

COROLLARY 2. The following statements hold:

(a) S= (sux) € (£1(®),bs) if and only if (14), (15) hold and (9) holds with r(n,k)
instead of sy, where r(n,k) = Xy Tk

(b) S = (sx) € (U1(D),cs) if and only if (14), (15) hold and (6),(9) hold with
r(n,k) instead of sy, where r(n,k) =37 k.

(c) S= (sk) € (£1(®),cs0) if and only if (14), (15) hold and (9),(10) hold with
r(n,k) instead of sy, where r(n,k) =3X7_ k.

COROLLARY 3. Let 1 < p < oo. Then, the following statements hold:

(a) S= (spk) € (£p(P),bs) if and only if (14), (16) hold and (7) holds with r(n,k)
instead of sy, where r(n,k) = Xy Tk

(b) S = (spx) € (Lp(D@),cs) if and only if (14), (16) hold and (6),(7) hold with
r(n,k) instead of sy, where r(n,k) =X k.

(c) S = (snk) € (Lp(P),cs0) if and only if (14), (16) hold and (7),(10) hold with
r(n,k) instead of sy, where r(n,k) =X k.

COROLLARY 4. The following statements hold:

(a) S = (sux) € (boo(D),bs) if and only if (14), (17) hold and (7) holds with r(n,k)
instead of sy and q = 1, where r(n,k) = Z’;:l Fjk-

(b) S = (sur) € (beo(D),cs) if and only if (14), (17) hold and (6),(8) hold with
r(n,k) instead of sy, where r(n,k) =X k.

(c) S= (spk) € (boo(D),c50) if and only if (14), (17) hold and (10),(11) hold with
r(n,k) instead of sy, where r(n,k) = 2.};:1 rik-

5. Compact operators on the spaces /,(®) and (..(®)

Throughout this section, we use the matrix S = (§,;) defined by an infinite matrix
S = (su) via

R 1))
Snk = Z < ksnj
j=kk|j ®(j)

for all n,k € N under the assumption that the series is convergent.

LEMMA 8. Let A lze an arbitrary subset gf o and S = (sy;) be an infinite matrix.
If S€ ({,(®),A), then S € (€,,A) and Su=Sv forall u € {,(®), where 1 < p < oo.
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Proof. Tt follows from Lemma 6. [

LEMMA 9. If S € (£1(®),{,), then we have

1/p
TR —sup(z|snkﬂ) <o,

where 1 < p < oo,

LEMMA 10. [26, Theorem 3.7] Let A D y be a BK-space. Then, the following
statements hold.

(a) S € (A,L2). then 0 < |ILs]], < limsup, IS, ;-

(b) S € (Asco), then ||Ls||; = limsup, [1Sall;.

(c)If A has AK or A =Vl and S € (A,c), then

1. . "
5 limsup||S, —sif3 < [[Lsly <limsup S, —sl3,
where s = (si) and s; = lim,, sy for each k € N.

LEMMA 11. [26, Theorem 3.11] Let A D y be a BK-space. If S € (A, ¢y), then

lim | sup < |\ Lslly, < 4hm sup
"o \Nex; A NeJt; A

and L is compact if and only if 1im, (supyc - || SnenSully) = 0, where ;. is the
subcollection of  consisting of subsets of N with elements that are greater than r.

Zs

neN

3 s,

neN

THEOREM 13. Let 1 < p < oo.
1. For S € ({,(®),lx),

1/q
< ILslly < hmsup (Z,Snkq)

k
holds.

2. For S€ (£y(®),c),

n k

. 1/q 1/q
3 limsup (2 S — §k|’1> < ||Ls|y < limsup (2 S — Ek‘1>
n k

holds, where § = (§;) and §; = lim,, 8. for each k € N.
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3. For S € (£,(®),co),

1/q
|Ls||; = limsup (Z 5nk|q>
n X

holds.
4. For S€ (Lp(D),4y),

tim 117 )1,y < ILs e < 4lim IS )

holds, where |IS|(;) g ) = suPye.z; (S| Zuen 5l )/ (r €N).

Proof.

1. Let S € ({)(®P),l-). Since the series Y | sukix converges for each n € N,
we have S, € (£,(®))P. From Lemma 7 (b), we write 1527, () = HgnH?p =

[18ulle, = (Zk \s”,,k\q)l/q for each n € N. By using Lemma 10 (a), we conclude
that

1/q
0 < ||Ls||; < limsup <Z|§nkq> )
n 3
2. Let S € (¢,(®),c). By Lemma 8, we have S € (¢,,c). Hence, from Lemma 10
(c), we write

1. & - . & -
EhmsupHSn =517, < IILsll, <limsup||S, =37,
n n

where § = (8) and §; = lim, §,; for each k € N. Moreover, Lemma | implies
that ||S,, =3Iz, = 180 =8¢, = (X |5k — §¢|9)'/4 for each n € N.. This completes
the proof.

3. Let S € (¢,(®),co). Since we have [[Syll} ) =[ISall7, = 1Sulle, = (i EMORE
for each n € N, we conclude from Lemma 10 (b) that

1/q
|Ls||, = limsup <Z§nkq> .
n X

4. Let S € (£,(®),¢,). By Lemma 8, we have S € (£,,/). It follows from Lemma
11 that

* *
lim | sup Sy
"\ Nex; Z

< ||Ls|ly < 4lim | sup
neN "

Ne

2, S

neN

0 0

Moreover, Lemma | implies that || £, Sull;, = | Znen Salle, = (S | Znen Sul?)
which completes the proof. [
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As a consequence of this theorem, we have the following corollary which follows
from (3).

COROLLARY 5. Let 1 < p < eo.

1. Lg is compact for S € ({,(®P), L) if

1/q
lim (Z s~nk4> =0.
"\ k

2. Lg is compact for S € (£,(®),c) if and only if

1/q
lim (2 ISk — 5k‘1> =0.

k

3. Lg is compact for S € (£,(®),co) if and only if

1/q
lim (2 s~,,kf1> =0.
"\ k

4. Lg is compact for S € (£,(®),41) if and only if

. (m) =
Lim 1S, @).¢,) = O

where HS”EZ@)WI) = SUPye ¥ (k| zneank|q)l/q-

THEOREM 14.
1. For S € (lo(D),ls),
0< ILslly < limsup Y, 5
nok
holds.
2. For S € (les(®),c),
1 L . . .
Ehmsup2|snk — §i| < || Lsly < limsup Y [$ux — Sk
nok nok
holds.
3. For S € ({es(®), o),
[Lsl|; = limsup )" [Su]
nok

holds.
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4. For S € ({eo(®),4y),
tim IS .0,y < 12l < 41m S]]
holds, where HS”EZ((D),Q) = supyez (Zi | Znen Sml) (r€N).

Proof. 1t follows with the same technique in Theorem 13. [
Similarly, we have the following result.

COROLLARY 6.

1. Lg is compact for S € (Leo(®), L) if
lim Y [$,| = 0.
"
2. Lg is compact for S € (Lw(®),¢) if and only if
lim Y [ — 5| = 0.
"k
3. Lg is compact for S € (Leo(D),co) if and only if
llrrln§‘|snk\ =0.
4. Lg is compact for S € (loo(®),£y) if and only if
: (n _
lim IS1l ;. (@),¢,) = 0,

where HS||EZL((I))7(1) = SUPye #; (k| Zen Sukl) -

THEOREM 15.

1. For S € ({1(D),4-),
0 < ||Ls|l, < limsup (supf,,k|)
n k

holds.
2. For S € ({1(®),c),

1
—limsup (sup S — §k|) < ||Ls|y < limsup (sup|§nk —s”k>
2 n k n k

holds.
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3. For S € (6,(®),co),
ILs|l, = limnsup (sip |§nk|)
holds.
4. For S € ({1(®),4y),

sl =tim (sup 3 5] )

n=r

holds.

Proof. It follows with the same technique in Theorem 13. [
Similarly, we have the following result.

COROLLARY 7.

1. Lg is compact for S € (£1(D), ) if

lim (sup s”,,k|) =0.
o\ k

2. Lg is compact for S € (£1(®),¢) if and only if

lim (sup S — §k|) =0.
no\

3. Lg is compact for S € (£1(®),co) if and only if

lim (sup s”,,k|) =0.
o\ k

4. Lg is compact for S € (€1(®),¢1) if and only if

lim (sup D |§nk|) =0.
T\ k

n=r
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