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A NOTE ON THE MAXIMAL NUMERICAL RANGE

ILYA M. SPITKOVSKY

(Communicated by C.-K. Li)

Abstract. We show that the maximal numerical range of an operator has a non-empty intersection
with the boundary of its numerical range if and only if the operator is normaloid. A description
of this intersection is also given.

First, let us set some notation and terminology.
For a subset X of the complex plane C , by clX , ∂X and convX we will denote

the closure, boundary and the convex hull of X , respectively.
By an “operator” we throughout the paper understand a bounded linear operator

acting on a Hilbert space H . The numerical range of such an operator A is defined by
the formula

W (A) = {〈Ax,x〉 : x ∈ H , ‖x‖ = 1},
where 〈., .〉 and ‖.‖ stand, respectively, for the scalar product on H and the norm
associated with it. Introduced a century ago in the works by Toeplitz [9] and Hausdorrf
[7] (and thus also known as the Toeplitz-Hausdorff set), it since has been a subject of
intensive research. We mention here only [4] as a standard source of references and
note the following basic properties:

Due to the Cauchy-Schwarz inequality, the set W (A) is bounded. Namely,

w(A) := sup{|z| : z ∈W (A)} � ‖A‖ ; (1)

w(A) is called the numerical radius of A .
The set W (A) is convex (the Toeplitz-Hausdorff theorem) and if dimH < ∞ it is

also closed.
A (relatively) more recent notion of the maximal numerical range W0(A) was in-

troduced in [8] as the set of all λ ∈ C for which there exist

xn ∈ H such that ‖xn‖ = 1, ‖Axn‖→ ‖A‖ , and 〈Axn,xn〉 → λ . (2)

It was also shown in [8, Lemma 2] that W0(A) is convex, closed and is contained
in the closure of W (A) :

W0(A) ⊂ clW (A). (3)
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Observe that in the finite dimensional case W0(A) =W (B) , where B is the compression
of A onto the eigenspace of A∗A corresponding to its maximal eigenvalue, so the above
mentioned properties of the maximal numerical range are rather straightforward.

Given the inclusion (3), it is natural to try to describe in more detail the positioning
of W0(A) with respect to W (A) . In particular, what can be said about the points of
W0(A) which lie on the boundary ∂W (A) of W (A)?

We start by describing the intersection of W0(A) with the circle

CA := {z : |z| = ‖A‖}.

LEMMA 1. For any operator A,

W0(A)∩CA = clW (A)∩CA = σ(A)∩CA. (4)

Proof. The second equality in (4) is well known [5, Problem 218]. Due to (3) it
therefore remains to prove only the inclusion of the middle term in the left hand side. To
this end, observe that with any λ ∈ clW (A) by definition there is associated a sequence
of unit vectors xn ∈ H for which 〈Axn,xn〉 → λ . If, in addition, |λ | = ‖A‖ , then the
Cauchy-Schwarz inequality implies that ‖Axn‖→ ‖A‖ . In other words, (2) holds. �
Recall that operators for which the second (and thus, equivalently, the third) term in (4)
is non-empty are called normaloid. Therefore, Lemma 1 implies the sufficiency in the
following

THEOREM 1. The intersection W0(A)∩ ∂W (A) is non-empty if and only the op-
erator A is normaloid.

Proof of necessity. To simplify the notation, without loss of generality suppose that
‖A‖ = 1; this can be arranged by an appropriate scaling not having any effect on the
validity of the statement. Then CA is simply the unit circle T .

If W0(A)∩∂W (A) 
= /0 , then (2) holds for some λ ∈ ∂W (A) . Choose unit vectors
yn orthogonal to xn and lying in the span of xn and Axn . Then of course

Axn = anxn + cnyn

for some an,cn ∈ C such that

an → λ , |cn|2 → 1−|λ |2 . (5)

Consider the compression of A onto the span of xn,yn . Its matrix An with respect to
the basis {xn,yn} has [an,cn]T as its first column; denote the second column of An as
[bn,dn]T .

Passing to a subsequence if needed, we may suppose that

An → A0 :=
[
a b
c d

]
,
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where due to (5) a = λ and |c|2 = 1−|λ |2 .
Since W (An) ⊂W (A) for all n = 1,2, . . . , we have W (A0) ⊂ clW (A) and so the

(1,1)-entry a of A0 lies on the boundary of its numerical range. This is only possible
if |b| = |c| , as was observed e.g. in [10, Corollary 4], see also [3, Proposition 4.3].
Moreover,

A∗
0A0 =

[
1 ab+ cd

ba+dc |b|2 + |d|2
]
. (6)

Since ‖A0‖ = lim‖An‖ � 1, the matrix A∗
0A0 must be diagonal. When combined with

the already established equality |b|= |c| , this implies that either b = c = 0, or |d|= |a| .
In the former case the normaloidness of A is immediate, because then λ ∈ T .

In the latter case (6) simplifies to A∗
0A0 = I , i.e. A0 is unitary. Then clW (A)∩T ⊃

σ(A0) 
= /0 , also implying that A is normaloid. �
It follows from Theorem 1 in particular that an operator A is normaloid if and only

if its numerical radius w(A) coincides with w0(A) := max{|z| : z∈W0(A)} . This result
was established in [1, Corollary 1]. Moreover, the paper [1] served as a motivation for
the present note and our proof of Theorem 1 is making use of some reasoning from [1].
Note that a simplified version of the proof, adapted to the finite dimensional setting,
was included in [6]. The latter paper contains also results on the explicit description of
W0(A) for some classes of matrices A .

A closer look at the proof of Theorem 1 yields an explicit description of the set
W0(A)∩∂W (A) .

COROLLARY 1. The intersection of W0(A) with the boundary of W (A) consists
of σ(A)∩CA and the set LA of all the chords of CA lying on ∂W (A):

W0(A)∩∂W (A) = (σ(A)∩CA)∪LA.

Note that the endpoints of the above mentioned chords belong to σ(A)∩CA . Con-
sidering by convention the remaining points of σ(A)∩CA as the endpoints of “degen-
erate” zero-length chords of CA , we may say simply that W0(A)∩∂W (A) is exactly the
set of all chords of CA lying on ∂W (A) .

Being convex, along with σ(A)∩CA the set W0(A) must also contain its convex
hull conv(σ(A)∩CA) . Since LA ⊂ conv(σ(A)∩CA) , the equality

W0(A) = conv(σ(A)∩CA) (7)

is plausible. It may fail, however, even in finite dimensions.
Example. Let

B =

⎡
⎣0 1 0

0 0 0
0 0 1

⎤
⎦ .

Then ‖B‖= 1 is attained on the 2-dimensional span of the standard basis vectors e2,e3 .

The compression of A onto their span is the matrix

[
0 0
0 1

]
and so W0(B) is the line

segment [0,1] . On the other hand, W (A) is the ice-cone shaped convex hull of the
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circle centered at the origin and having radius 1/2 and the point 1 . In particular,
w(B) = 1, making A normaloid. In agreement with Corollary 1 we have (taking into
consideration that CB = T):

W0(B)∩∂W (B) = σ(B)∩T = {1},
and so conv(σ(B)∩T) = {1} is a proper subset of W0(B) .

The situation changes if A is normal and not merely normaloid.

THEOREM 2. Equality (7) holds for normal operators A.

Proof. Due to the inclusion W0(A) ⊃ σ(A)∩CA and the fact that both sides in
(7) are convex and compact, it suffices to show that any open half-plane containing
σ(A)∩CA also contains W0(A) .

So, consider a half-plane Π ⊃ σ(A)∩CA . The spectrum of A is disjoint with the
arc γ = CA \Π , and the distance between γ and σ(A) is therefore positive. Denoting
it by ε , observe that

σε(A) := {λ ∈ σ(A) : |λ | � ‖A‖− ε} ⊂ Π.

Let Aε be the restriction of A onto its spectral subset corresponding to σε(A) . The
definition of W0(A) implies that W0(A) ⊂ clW (Aε) . On the other hand, the operator
Aε is normal along with A and so clW (Aε ) = convσ(Aε) = convσε(A) ⊂ Π . �

Recall that an operator A acting on a Hilbert space H is subnormal if there exists
a Hilbert space G and operators B : G → H , C : G → G such that the operator

N :=
[
A B
0 C

]
: H ⊕G → H ⊕G

is normal. As it happens, property (7) extends from normal to subnormal operators.

COROLLARY 2. Equality (7) holds for subnormal operators A.

Proof. Consider the minimal normal extension N of A , the existence and proper-
ties of which are discussed e.g. in [2, 5]. It is true in particular that ‖A‖ = ‖N‖ . So,
whenever a sequence of unit vectors xn ∈ H is such that ‖Axn‖→ ‖A‖ , it at the same
time satisfies ‖Nxn‖→ ‖N‖ . Consequently,

W0(A) ⊂W0(N). (8)

Furthermore, σ(A) equals σ(N) with some holes filled and so

σ(A)∩CA = σ(N)∩CN . (9)

Combining (8),(9) with the equality W0(N) = conv(σ(N)∩CN) which holds due to
Theorem 2, we obtain

W0(A) ⊂W0(N) = conv(σ(N)∩CN) = conv(σ(A)∩CA).

Since the converse inclusion holds for any A , we are done. �
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