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Abstract. Let H and K be two infinite-dimensional complex Hilbert spaces. Let B(H )
denote the algebra of all bounded linear operators on H . If T is an operator in B(H ) and
x a vector in H then γT (x) denotes the peripheral local spectrum of T at x . In this paper we
characterize all surjective maps ϕ from B(H ) onto B(K ) satisfying

γ(μST ∗S+νT ∗S)(h0) = γ(μϕ(S)ϕ(T )∗ϕ(S)+νϕ(T )∗ϕ(S))(k0), (S, T ∈ B(H )),

for a given couple of complex scalars (μ ,ν) �= (0,0) and nonzero vectors h0 ∈H and k0 ∈K .
This result provides a complete description of all surjective maps from B(H ) onto B(K )
preserving the peripheral local spectrum of the skew double product ”T ∗S” and the skew triple
product ”TS∗T ” of operators. It also unifies and extends several known results on local spectrum
preservers.

1. Introduction

The study of linear and nonlinear local spectra preserver problems has attracted
the attention of a number of authors. Mainly, several authors have described maps
on matrices or operators that preserve local spectrum, local spectral radius, and inner
local spectral radius, see for instance [14, 15, 17, 21]. In [11, 12], nonlinear surjective
maps on Banach space operators preserving the local spectrum of the product and the
triple product of operators have been investigated. In [5, 6], maps preserving the local
spectrum of the product and the triple product of matrices have been characterized. In
[9], maps on Mn(C) , the algebra of all n× n complex matrices, preserving the local
spectrum of Jordan product of matrices have been described. In [1], maps preserving
the local spectrum of skew triple and double product of operators are described. Many
recent results on this research area can be found on [13].

Recently, A. Bourhim, T. Jari and J. Mashreghi described in [8] surjective maps on
B(X) , the algebra of all bounded operators on a complex Banach space X , preserving
the peripheral local spectrum at a nonzero fixed vector of double and triple product of
operators. In [2] maps on Mn(C) preserving the local spectrum of the matrix product
μAB∗A+ νB∗A were characterized. In this paper, we provide an infinite dimensional
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variant of [2] with the refinement of using the peripheral spectrum instead of local spec-
trum. Our aim in this paper is to characterize surjective maps φ on B(H ) , the algebra
of all bounded operators on a complex Hilbert space H , preserving the peripheral local
spectrum at a nonzero fixed vector of a specific product of operators. This provides, in
particular, a complete description of all surjective maps φ from B(H ) onto B(K )
preserving the peripheral spectrum of the skew double product ”TS∗ ” and the skew
triple product ”TS∗T ” of operators. This is a new result that extends the main results
of [1].

2. Main result

Throughout this paper, H and K are two infinite-dimensional complex Hilbert
spaces. As usual B(H ,K ) denotes the space of all bounded linear operators from
H into K . When H = K we simply write B(H ) instead of B(H ,H ) . The
inner product of H or K will be denoted by 〈 , 〉 if there is no confusion. Let F (H )
denote the ideal of all finite rank operators on H . For a positive integer n , let Fn(H )
be the set of all operators of B(H ) of rank at most n . For an operator T ∈ B(H ) ,
let T ∗ denote as usual its adjoint. The local resolvent set, ρT (x) , of an operator T ∈
B(H ) at a point x∈H is the union of all open subsets U of the complex plane C for
which there is an analytic function φ : U → H such that (T −λ )φ(λ ) = x, (λ ∈U) .
Clearly ρT (x) contains the resolvent set ρ(T ) of T , but this containment could be
proper. The local spectrum of T at x is defined by

σT (x) := C\ρT (x),

and thus it is a closed subset (possibly empty) of σ(T ) , the spectrum of T . In fact,
σT (x) �= /0 for all nonzero vectors x in H precisely when T has the single-valued
extension property (SVEP). Recall that T is said to have SVEP provided that for every
open subset U of C , the equation (T − λ )φ(λ ) = 0, (λ ∈ U) , has no nontrivial
analytic solution φ . Every operator T ∈F (H ) enjoys this property. The local spectral
radius of T at x is defined by

rT (x) := limsup
n→+∞

‖Tn(x)‖ 1
n .

The set
γT (x) := {λ ∈ σT (x) :| λ |= rT (x)}

is called the peripheral local spectrum of T at x . Note that γT (x) = /0 provided that
max{| λ |: λ ∈ σT (x)} < rT (x) . The books [3] by P. Aiena and [26] by K. B. Laursen,
M. M. Neumann provide an excellent exposition as well as a rich bibliography of the
local spectral theory.

For two scalars μ and ν for which (μ ,ν) �= (0,0) , define a map θ from B(H )×
B(H ) to B(H ) by

θ (S,T ) := μSTS+ νTS, (S, T ∈ B(H )).
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The following theorem is our main result, It describes all surjective maps on
B(H ) preserving peripheral local spectrum of θ (S,T ) at a nonzero fixed vector
h0 ∈ H . Its proof is given in section 5 and uses some ideas influenced by arguments
quoted from [1, 11, 12]. It also uses new results and lemmas presented in section 4.

THEOREM 2.1. Let h0 ∈H and k0 ∈ K be two fixed nonzero vectors. A map ϕ
from B(H ) onto B(K ) satisfies

γθ(S,T ∗)(h0) = γθ(ϕ(S),ϕ(T )∗)(k0), (T, S ∈ B(H )), (2.1)

if and only if there exist two unitary operators U and V in B(H ,K ) and a nonzero
scalars α and β such that for every T ∈ B(H ) ,

ϕ(T ) = UTV ∗ and Vh0 = βk0 if μ = 0, (2.2)

and
ϕ(T ) = UTU∗ and Uh0 = α k0 if μ �= 0. (2.3)

Note that if H and K are isomorphic, then they are isomotrically isomorphic. Thus
the statments of our theorem can be reduced to the case when H = K and h0 = k0 .
But the fact that ”H and K are isomorphic ” is one of the conclusions of the main
result.

3. Preliminaries

In this section, we fix some notions and exhibit some tools on the local spectral
theory and some essential results needed for the proof of our main result. The first
lemma summarizes some basic properties of the local spectrum that will be used in the
sequel.

LEMMA 3.1. For an invertible operator A ∈ B(H ) , a vector x ∈ H and a
nonzero scalar α ∈ C , the following statements hold.

(a) σT (αx) = σT (x) and σαT (x) = ασT (x) for all T ∈ B(H ) .

(b) If T has the SVEP, x �= 0 and Tx = λx for some λ ∈ C , then σT (x) = {λ} .

(c) σT (x+ y)⊂ σT (x)∪σT (y) . The equality holds if σT (x)∩σT (y) = /0 .

(d) σATA−1(Ax) = σT (x) for all T ∈ B(H ) .

(e) σTn(x) = {σT (x)}n for all x ∈ H and n � 1 .

In [11, 12], the authors gave some essential lemmas and theorems which are useful
tools to establish our main results. For our purpose, we state these results only in the
case of Hilbert spaces. Let x and y be two nonzero vectors in H , the rank one operator
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x⊗ y is defined by (x⊗ y)z = 〈z,y〉x , for all z ∈ H . The peripheral local spectrum of
an operator of rank one at a vector h0 ∈ H is given by

γx⊗y(h0) =

⎧⎨
⎩

{0} if 〈h0,y〉 = 0

{〈x,y〉} if 〈h0,y〉 �= 0,
(3.1)

LEMMA 3.2. Let h0 be a nonzero vector in H . For every rank one operator
R ∈ B(H ) , we have

γθ(R,(T+S))(h0) = γθ(R,T)(h0)+ γθ(R,S)(h0),

for all T,S ∈ B(H ) .

Proof. Let R ∈ B(H ) be a rank one operator and write R = x⊗ y . For every
T,S ∈ B(H ) we have

θ (x⊗ y,T ) = [μ〈Tx,y〉x+ νTx]⊗ y,

θ (x⊗ y,S) = [μ〈Sx,y〉x+ νSx]⊗ y,

and
θ (x⊗ y,T +S) = [μ〈(T +S)x,y〉x+ ν(T +S)x]⊗ y.

Therefore, if 〈h0,y〉 = 0 then we have

γθ(R,T+S)(h0) = {0}
γθ(R,T)(h0) = {0}
γθ(R,S)(h0) = {0}.

Hence,
γθ(R,T+S)(h0) = γθ(R,T )(h0)+ γθ(R,S)(h0)

Now, if 〈h0,y〉 �= 0, then

γθ(R,T+S)(h0) = {〈(T +S)x,y〉[μ〈x,y〉+ ν]}
γθ(R,T)(h0) = {〈Tx,y〉[μ〈x,y〉+ ν]}
γθ(R,S)(h0) = {〈Sx,y〉[μ〈x,y〉+ ν]}.

Again we get
γθ(R,T+S)(h0) = γθ(R,T )(h0)+ γθ(R,S)(h0).

The proof is therefore complete. �
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4. Auxilary results

In this section we first etablish a local spectral idendity principle that provides nec-
essary and sufficient conditions for two operators to be equal in term of the peripheral
local spectrum of θ (S,T ) .

THEOREM 4.1. For a nonzero vector h0 in H and two operators A and B in
B(H ) , the following statements are equivalent.

(a) A = B.

(b) γθ(S,A)(h0) = γθ(S,B)(h0) for all S ∈ B(H ) .

(c) γθ(R,A)(h0) = γθ(R,B)(h0) for all R ∈ F1(H ) .

Proof. We only need to prove that the implication (c) =⇒ (a) holds. So assume
that

γθ(R,A)(h0) = γθ(R,B)(h0) (4.1)

for all R ∈ F1(H ) , and fix a nonzero vector x ∈ H . If 〈h0,x〉 �= 0, then (3.1) implies
that

{〈Ax,x〉[μ‖x‖2 + ν]} = γθ(R,A)(h0) = γθ(R,B)(h0) = {〈Bx,x〉[μ‖x‖2 + ν]}
If necessary, replace x by tx for wich t2μ‖x‖2 + ν �= 0 to deduce that

〈Ax,x〉 = 〈Bx,x〉.
If however, 〈h0,x〉= 0, then 〈h0,x+ th0〉= t‖h0‖2 �= 0 for all nonzero real scalars

t and
〈A(x+ th0),(x+ th0)〉 = 〈B(x+ th0),(x+ th0)〉.

Now take the limit as t goes to 0 to get that 〈Ax,x〉 = 〈Bx,x〉 in this case too. Since x
is an arbitrary vector in H , we clearly have A = B . �

The following theorem gives a local spectral characterization of rank one operators
in term of the peripheral local spectrum of θ (S,T ) .

THEOREM 4.2. Let h0 be a nonzero vector of H . For a nonzero operator R ∈
B(H ) , the following statements are equivalent.

(a) R has rank one.

(b) γθ(T,R)(h0) is a singleton for all T ∈ B(H ) .

Proof. Obviously, if R has rank one and T ∈B(H ) is an arbitrary operator, then,
θ (T,R) has rank one too and thus γθ (T,R) (h0) is a singleton.

Conversely, assume that R has rank at least two, and let us show that there exists
T ∈ B(H ) such that γθ (T,R) (h0) contains at least two elements. We may and shall as-
sume that μ �= 0 as the case when μ = 0 is given in [8]. We shall discuss two situations.
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Case 1. If there exist two vectors h1,h2 ∈ H such that h0 , Rh1 and Rh2 are
linearly independent, then there also exists h ∈ H such that h,h0,Rh1 and Rh2 are
linearly independent. Hence, there exists an operator T ∈ B(H ) of a finite rank such
that Th0 = h1 , Th = h2 , μTRh2 = −h− νRh2 and μTRh1 = h0 − 2h− νRh1 . Then
we have θ (T,R)(h) = −h and θ (T,R)(h0) = h0−2h . Thus θ (T,R)(h0−h) = h0−h ,
and consequently

σθ(T,R)(h0) = σθ(T,R)(h)∪σθ(T,R)(h0−h) = {−1,1},

and then, γθ(T,R)(h0) = {−1,1} contains two different scalars.

Case 2. If h0,Rh1 and Rh2 are linearly dependent for all h1,h2 ∈ H , then R
has rank 2 and its image contains h0 . So, R := h1 ⊗ y1 + h2 ⊗ y2 and h0 = α1h1 +
α2h2 for some linearly independent vectors h1,h2 ∈ H , linearly independent vectors
y1,y2 ∈ H and α1,α2 ∈ C . If both α1 and α2 are nonzero scalars, then take z1

and z2 ∈ H linearly independent of h1 and h2 such that 〈z1,y1〉 = α−1
1 μ + ν〈h1,y1〉 ,

〈z2,y1〉 = ν〈h2,y1〉 , 〈z1,y2〉 = ν〈h1,y2〉 and 〈z2,y2〉 = −α−1
2 μ + ν〈h2,y2〉 .

Now, let h := h0− z1− z2 �= 0 and define μThi = zi −νhi and μ .Tzi = αizi . We
infer that θ (T,R)h = 0, θ (T,R)z1 = z1 and θ (T,R)z2 = −z2 . It follows that

σθ(T,R)(h0) = σθ(T,R)(h+ z1 + z2)

= σθ(T,R)(h)∪σθ(T,R)(z1)∪σθ(T,R)(z2)

= {−1,0,1}.

Then, γθ(T,R)(h0) = {−1,1} contains two different scalars.
If α2 = 0, then h0 = α1(h1 − h2) + α1h2 and R = (h1 − h2)⊗ y1 + h2 ⊗ (y1 +

y2) . By what has shown above, there is T ∈ B(H ) such that γθ(T,R)(h0) = {−1,1}
contains two different scalars. The case when α1 = 0 is similar, and thus the implication
(b) ⇒ (a) is established. �

For the proof of theorem 2.1, we also need the following essential lemmas.

LEMMA 4.3. Let h0 ∈ H and k0 ∈ K be two nonzero vectors and A, B be two
bijective linear operators from H into K , and ϕ : F1(H ) → F1(K ) defined by
ϕ(x⊗ y) := Ax⊗By for all x, y ∈ H . If ϕ satisfies

γθ(S,T ∗)(h0) = γθ(ϕ(S),ϕ(T )∗)(k0) (T, S ∈ F1(H )), (4.2)

then there exist two positives scalars ξ and η such that A∗A = ηI and B∗B = ξ I .
Moreover if μ �= 0 then, B∗A = I .

Proof. Let x, y, l and h be four vectors in H , and let us first show that

〈x, l〉〈h,y〉[μ〈x,y〉+ ν] = 〈Ax,Al〉〈Bh,By〉[μ〈Ax,By〉+ ν]. (4.3)

Note that (4.2) applied to x⊗ y and l⊗h entails that
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〈x, l〉γ[μ〈h,y〉x+νh]⊗y(h0) = 〈Ax,Al〉γ[μ〈Bh,By〉Ax+νBh]⊗By(k0), (4.4)

and let us show that
〈h0,y〉 �= 0 ⇐⇒ 〈k0,By〉 �= 0. (4.5)

Indeed, if 〈h0,y〉 �= 0 and 〈k0,By〉 = 0, then (4.4), applied when x = h = l = ty/‖y‖2 ,
for some scalar t such that tμ + ν �= 0, yields to

{‖y‖−2[tμ + ν]
}

= {0}.
Which is a contradiction and shows that if 〈k0,By〉 = 0 then 〈h0,y〉 = 0. Conversely,
if 〈h0,y〉 = 0 and 〈k0,By〉 �= 0, apply (4.4) when x = l = A−1By/‖By‖2 and h = y so
that

{0} = {tμ + ν} .

This contradiction shows that if 〈h0,y〉 = 0 then 〈k0,By〉 = 0. Therefore, (4.5) is es-
tablished.

By (4.5) and (3.1) we see that (4.3) holds provided that 〈h0,y〉 �= 0. Now, if
〈h0,y〉 = 0, note that for every λ > 0, 〈h0,y+ λh0〉 �= 0 and apply (4.3). We get

〈x, l〉〈h,y+λh0〉[μ〈x,y+λh0〉+ν] = 〈Ax,Al〉〈Bh,By+λBh0〉[μ〈Ax,By+λBh0〉+ν].

By expanding this identity and getting λ to 0, we deduce that (4.3) holds in this case
too. Hence, (4.3) is true for all x,y, l,h ∈ H .

Now, we show that the mappings A and B are continuous. Take x such that
‖x‖ = 1 and set δx = tμ+ν

‖Bx‖2(tμ〈Ax,Bx〉+ν) . From (4.3), we get

〈Ax,Al〉 = δx〈x, l〉,
for all l ∈ H . This obviously shows that u �→ 〈Ax,Au〉 is continuous, and thus, since
x is an arbitrary vector in H and A is bijective, the closed graph theorem implies that
A itself is continuous. Similarly, we can show that B is continuous, and we therefore
omit the details here.

Now, let us show at first that A∗Ax and x are linearly dependent for every x ∈H .
To do this, we rewrite (4.3) as follows

〈x, l〉〈h,y〉[μ〈x,y〉+ ν] = 〈A∗Ax, l〉〈B∗Bh,y〉[μ〈B∗Ax,y〉+ ν]. (4.6)

for all x, y, l, h ∈ H . Indeed, assume by the way of contradiction that there exists a
nonzero vector x1 ∈ H such that A∗Ax1 and x1 are linearly independent, and let l1 be
a nonzero vector in H such that 〈x1, l1〉 = 1 and 〈A∗Ax1, l1〉 = 0. From (4.6), we get
that for all h,y ∈ H ,

〈h,y〉[μ〈x1,y〉+ ν] = 0.

Which is not possible, this contradiction shows that A∗A = ηIH for some positive
scalar η . By a similar way, we show that B∗B = ξ IH for some positive scalar ξ .
Now, assume that μ �= 0 and let us show that B∗A = IH . Note that, since A∗A and
B∗B are scalar operators, (4.3) implies that
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μ〈x,y〉+ ν = αβ [μ〈B∗Ax,y〉+ ν].

If B∗A is not scalar, then there is a nonzero vector x2 ∈ H such that B∗Ax2 and x2

are linearly independant. Therefore, there exists a nonzero vector y2 ∈ H such that
〈x2,y2〉 := − ν

μ and 〈B∗Ax2,y2〉 := t . Back to the previous formula we get tμ + ν = 0
for all scalars t , which is a contradiction.

Hence, in the case when μ �= 0, we have B∗A = γIH for some nonzero scalar γ .
Moreover, observe that (4.6) implies that αβ γ = 1. Moreover, such a scalar γ must be
1. Indeed, since A and B are invertibles and AB∗ = γIK , AA∗ = ηIK , BB∗ = ξ IK ,
thus

ηξ IH = A∗AB∗B = γ γ IH .

This shows that ηξ = γ γ , and γ2γ = ηξ γ = 1. Therefore γ = 1 and B∗A = IH ,
and the proof of the lemma is complete. �

LEMMA 4.4. Let h0 ∈ H and k0 ∈ K be two nonzero fixed vectors, and let C
and D be two bijective linear operators from H into K , and ϕ : F1(H )→F1(K )
defined by

ϕ(x⊗ y) = Cy⊗Dx, (x,y ∈ H )

Then, there are rank one operators T and S ∈ F1(H ) such that

γθ(S,T ∗)(h0) �= γθ(ϕ(S),ϕ(T )∗)(k0).

Proof. Assume by the way of contradiction that γθ(S,T ∗)(h0) = γθ(ϕ(S),ϕ(T )∗)(k0)
for all rank one operators T,S ∈ F1(H ) and choose a nonzero vector y1 ∈ H such
that 〈k0,y1〉 = 0 and x = D−1y1 . Since x and h0 are nonzero vectors, there exists
y ∈ H such that 〈h0,y〉 �= 0 and 〈x,y〉 = 1. We therefore have

{(μ + ν)} = γ{μ+ν}(x⊗y)(h0)

= γμ(x⊗y)(x⊗y)(x⊗y)+ν(x⊗y)(x⊗y)(h0)

= γμ(x⊗y)(y⊗x)∗(x⊗y)+ν(y⊗x)∗(x⊗y)(h0)

= γμ(Cy⊗Dx)(Cx⊗Dy)∗(Cy⊗Dx)+ν(Cx⊗Dy)∗(Cy⊗Dx)(k0)

= γμ(Cy⊗Dx)(Dy⊗Cx)(Cy⊗Dx)+ν(Dy⊗Cx)(Cy⊗Dx)(k0)

= γ〈Cy,Cx〉[μ〈Dy,Dx〉Cy+νDy]⊗Dx)(k0)

= γ〈Cy,Cx〉[μ〈Dy,Dx〉Cy+νDy]⊗y1)(k0)

= {0}.

Thus, μ +ν = 0. Now, using (x⊗−y) instead of (x⊗ y) we get −μ +ν = 0. Hence,
μ = ν = 0. This leads to a contradiction and the lemma is therefore proved. �
In the next section we establish the proof of our main result.
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5. Proof of theorem 2.1

Proof of theorem 2.1. For the proof of the if part of theorem 2.1, let us assume
that there exist two unitary operators U and V in B(H ,K ) and a nonzero scalars α
and β such that ϕ satisfies (2.2) or (2.3). Assume that ϕ satisfies (2.2), then, for every
T,S ∈ B(H ) we have

γθ(ϕ(S),ϕ(T )∗)(k0) = γνϕ(T )∗ϕ(S)(k0)

= γνVT ∗U∗USV ∗(k0)
= γνVT ∗SV∗(k0)
= γνT ∗S(V ∗k0)

= γνT ∗S(β−1h0)
= γνT ∗S(h0)
= γθ(S,T ∗)(h0).

Now, if ϕ satisfies (2.3) we have

γθ(ϕ(S),ϕ(T )∗)(k0) = γμϕ(S)ϕ(T )∗ϕ(S)+νϕ(T )∗ϕ(S)(k0)

= γμUSU∗UT ∗U∗USU∗+νUT ∗U∗USU∗ (k0)
= γμUST ∗SU∗+νUT ∗U∗USU∗ (k0)
= γU(μST ∗S+νT ∗S)U∗(k0)

= γ(μST ∗S+νT ∗S)(U
∗k0)

= γ(μST ∗S+νT ∗S)(h0)

= γθ(S,T ∗)(h0),

for all T, S ∈ B(H ) , and therefore (2.1) is established.
Conversely, assume that ϕ satisfies (2.1) and let us show that ϕ takes the desired

form. The proof breaks down into three steps.

Step 1. ϕ is a one to one map preserving rank one operators in both directions.
We first show ϕ is a one to one map and ϕ(0) = 0. Take two operators A, B ∈

B(H ) such that ϕ(A) = ϕ(B) , and note that

γθ(S,A∗)(h0) = γθ(ϕ(S),ϕ(A)∗)(k0)

= γθ(ϕ(S),ϕ(B)∗)(k0)

= γθ(S,B∗)(h0)

for all S ∈ B(H ) . Theorem 4.1 tells us that A = B , and thus ϕ is a one to one. In a
similar way, we show that ϕ(0) = 0. For every S ∈ B(H ) , we have

γθ(ϕ(S),ϕ(0)∗)(k0) = γθ(S,0)(h0) = {0} = γθ(ϕ(S),0)(k0)

Again, by theorem 4.1 and the bijectivity of ϕ we see that ϕ(0) = 0.



662 A. EL GHAZI AND R. MARZOUKI

Next, we show that ϕ preserves rank one operators in both direction. Let R be a
rank one operator, and note that ϕ(R) �= 0 and that γθ(S,R∗)(h0) has at most one element
for all S ∈B(H ) , and so is γθ(ϕ(S),ϕ(R)∗)(k0) . By theorem 4.2 and the bijectivity of ϕ
we see that ϕ(R)∗ is rank one operator and so does ϕ(R) .

Conversely, assume that ϕ(R) is rank one for some operator R ∈ B(H ) , and
note that R �= 0 and that γθ(ϕ(S),ϕ(R)∗)(k0) has at most one element for all S ∈ B(H ) .
Therefore, γθ(S,R∗)(h0) has at most one element for all S ∈ B(H ) . Again theorem 4.2
tells us that R∗ is rank one operator and so does R .

Step 2. ϕ is linear.

First we show that ϕ is additive. Let R be a rank one operator, and let T and S
two operators in B(H ) , then by Lemma 3.2, we have

γθ(ϕ(R),ϕ(T+S)∗)(k0) = γθ(R,(T+S)∗)(h0)

= γθ(R,T ∗)(h0)+ γθ(R,S∗)(h0)

= γθ(ϕ(R),ϕ(T )∗)(k0)+ γθ(ϕ(R),ϕ(S)∗)(k0)

= γθ(ϕ(R),(ϕ(T )+ϕ(S))∗)(k0)

for all rank one operators R ∈ B(H ) . By theorem 4.1, we conclude that

ϕ(T +S) = ϕ(T )+ ϕ(S)

for all T, S ∈ B(H ) , and ϕ is additive; as desired.
Now, let us show that ϕ is homogeneous. Indeed, take a nonzero λ ∈ C and an

operator T ∈ B(H ) , and note that

γθ(ϕ(S),(λ ϕ(T))∗)(k0) = λ γθ(ϕ(S),ϕ(T )∗)(k0)

= λ γθ(S,T ∗)(h0)

= γθ(S,(λT )∗)(k0)

= γθ(ϕ(S),ϕ(λT)∗)(k0)

for all rank one operators R ∈ B(H ) . By theorem 4.1, we see that

ϕ(λT ) = λ ϕ(T )

for all T ∈ B(H ) and λ ∈ C . Hence, ϕ is linear.

Step 3. ϕ takes the desired forms ”(2.3)” and ”(2.2)”.

By the previous steps, ϕ is a bijective linear map preserving rank one operators
in both directions. By [25, theorem 3.3], either there are two bijective linear mappings
A,B : H → K such that

ϕ(x⊗ y) = Ax⊗By, (x,y ∈ H ), (5.1)
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or there are two bijective linear mappings C, D : H → K such that

ϕ(x⊗ y) = Cy⊗Dx, (x,y ∈ H ). (5.2)

By Lemma 4.4, ϕ cannot take the second form, and thus ϕ takes the form (5.1) when
it is restricted on F (H ) . Since ϕ satisfies (5.1), Lemma 4.3 shows that AA∗ = ηI
and BB∗ = ξ I for somes positives scalars η and ξ . Take U = 1

δ A where δ =
√η and

V = 1
λ B where λ =

√
ξ . Note that U and V are unitary operators on H . Next we

discuss the cases μ = 0 and μ �= 0. Now if μ = 0, by (4.3) we see that ξ η = 1. In this
case we have ϕ(x⊗ y) = 1

δ A(x⊗ y) 1
λ B∗ = U(x⊗ y)V for all x,y ∈ H . We continue

by showing that Vh0 = αk0 for some nonzero scalar α ∈ C . Assume by the way of
contradiction that they are linearly independent, and let u be a vector in H such that
〈h0,u〉 = 1 and 〈V−1k0,u〉 = 0. We have

{ν} = γν(h0⊗u)(h0)

= γν(h0⊗u)(h0⊗u)(h0)

= γν(u⊗h0)∗(h0⊗u)(h0)

= γνϕ(u⊗h0)∗ϕ(h0⊗u)(k0)

= γν(Uu⊗h0V∗)∗(Uh0⊗uV∗)(k0)

= γνV (h0⊗u)(h0⊗u)V∗(k0)

= γνV (h0⊗u)V∗(k0)

= νγ(h0⊗u)(U
∗k0)

= {0}.
This arises a contradiction, and shows that Vh0 and k0 are linearly dependent. Hence,
for every rank one operator R ∈ B(H ) and every operator T ∈ B(H ) , we have

γθ(ϕ(R),ϕ(T)∗)(k0) = γνϕ(T )∗ϕ(R)(k0)

= γνT ∗R(h0)
= γνT ∗R(αh0)
= γνT ∗R(V ∗k0)
= γνVT ∗RV∗(k0)
= γνVT ∗U∗URV ∗(k0)
= γνVT ∗U∗ϕ(R)(k0)

= γθ(ϕ(R),(UTV∗)∗)(h0).

Hence, by theorem 4.1, we see that

ϕ(T )∗ = (UTV ∗)∗.

And therefore
ϕ(T ) = UTV ∗,
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for all T ∈ B(H ) . The proof of 2.3 is then complete.
Now if μ �= 0. Lemma 4.3 shows that B∗A = I . In this case we have B = 1

δ U . It
follows that ϕ(x⊗ y) = 1

δ A(x⊗ y)δB∗ = U(x⊗ y)U∗ for all x,y ∈ H . We continue
by showing that Uh0 = βk0 for some nonzero scalar β ∈ C . Assume by the way of
contradiction that they are linearly independent, and let z be a vector in H such that
〈h0,z〉 = 1 and 〈U−1k0,z〉 = 0. We have

{μ + ν} = γμ(h0⊗z)+ν(h0⊗z)(h0)

= γμ(h0⊗z)(h0⊗z)(h0⊗z)+ν(h0⊗z)(h0⊗z)(h0)

= γμ(h0⊗z)(z⊗h0)∗(h0⊗z)+ν(z⊗h0)∗(h0⊗z)(h0)

= γμϕ(h0⊗z)ϕ(z⊗h0)∗ϕ(h0⊗z)+νϕ(z⊗h0)∗ϕ(h0⊗z)(k0)

= γμ(Uh0⊗zU∗)(Uz⊗h0U∗)∗(Uh0⊗zU∗)+ν(Uz⊗h0U∗)∗(Uh0⊗zU∗)(k0)

= γμU(h0⊗z)(h0⊗z)(h0⊗z)U∗+νU(h0⊗z)(h0⊗z)U∗(k0)

= γ(μ+ν)U(h0⊗z)U∗(k0)

= (μ + ν)γ(h0⊗z)(U
∗k0)

= {0}.
Therefore, μ + ν = 0. We get also −μ + ν = 0 by using h0 ⊗−z instead of h0 ⊗ z .
That means μ = ν = 0 wich is not possible. Hence, Uh0 = βk0 for some nonzero
scalar β ∈ C . To finish the proof note that for every rank one operator R ∈B(H ) and
every T ∈ B(H ) we have

γθ(ϕ(R),UT ∗U∗)(k0) = γμϕ(R)UT ∗U∗ϕ(R)+νUT ∗U∗ϕ(R)(k0)

= γμURU∗UT ∗U∗URU∗+νUT ∗U∗URU∗(k0)
= γμURT ∗RU∗+νUT ∗RU∗(k0)
= γU(μRT ∗R+νT∗R)U∗(k0)

= γ(μRT ∗R+νT∗R)(U
∗k0)

= γ(μRT ∗R+νT∗R)(h0)

= γ(μϕ(R)ϕ(T )∗ϕ(R)+νϕ(T)∗ϕ(R)(k0)

= γθ(ϕ(R),ϕ(T )∗)(k0).

Hence by theorem 4.1 we see that

ϕ(T )∗ = UT ∗U∗

And therefore,
ϕ(T ) = UTU∗

for all T ∈ B(H ) . The proof is then complete. �
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