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Abstract. Here, we focus on Anderson type operators over infinite graphs where the randomness
acts through higher rank perturbations. We show that for special family of graphs, the operator
has non-trivial multiplicity for its pure point spectrum. We, also, show that for some family
of graphs, any unitary which fixes the random operator, arising from an automorphism of the
graph is identity; but that, for these graphs the spectrum of the random operator has non-trivial
multiplicity.

The theory of random operators have gained a significant attention over the last few
decades. The Anderson tight binding model is an example of random operator which
was developed by P. W. Anderson [2] to study the transport property of spin waves
on doped semi-conductor. Many works focus on the spectrum of this operator.Under
different settings, the existence of the pure point and the absolute continuous spectra
are proved; see [10, 4, 6] for a comprehensive review on this topic. There are a few
other families of random operators on infinite dimensional Hilbert space, for example,
random Schrödinger operator, random Landau Hamiltonian and random dimer/polymer
model. Many results from the theory of Anderson tight binding model extend to these
models as well. On the other hand, some results which are true for Anderson tight
binding model may not hold for these models. One such example is multiplicity of the
spectrum. This work focuses on Anderson type operator with non-trivial multiplicity.

The multiplicity problem in the case of Anderson tight binding model has been
investigated in a few works. For example, Barry Simon [17] (works of other authors
include [11, 9]) showed that the spectrum is simple in the region of localization for
Anderson tight binding Hamiltonian. Jakšić-Last [8, 9] showed that for Anderson type
operators where the randomness acts through rank one perturbations, the singular spec-
trum is always simple.

Models where randomness acts through higher rank operators have been consid-
ered, as well. In the case of higher rank perturbations, at least for general Anderson
type operators, the best one can provide are bounds on the multiplicity, and it does
not exclude the possibility that in some special cases simplicity may show up. Some
works dealing with cases where randomness acts through higher rank perturbations are
[5, 14, 16] where the authors showed simplicity of pure-point spectrum. Many of these
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results are inspired from the heuristics which states that multiplicity of a Hamiltonian
arises from symmetry of the underlying problem. So, for Anderson type operators where
none of the symmetries of the underlying space (for example in the case of Anderson
tight binding model, these symmetries will be translations by the action of Zd ) keep the
random Hamiltonian invariant, the spectrum (at least, the pure point) should be simple.
Though in [16] Sadel and Schulz-Baldes showed that absolute continuous spectrum can
have non-trivial multiplicity. For general Anderson type operators, it is possible (see
[3, 12]) to provide bounds (based on the Green’s function) on the multiplicity for the
singular spectrum. In some special cases, this bound may imply simplicity of the sin-
gular spectrum, see [13, 3]. One of the goals of this work is to show that the above
mentioned heuristics does not hold in its strictest sense. In Section 2, we provide a
family of Anderson type operators for which the multiplicity of pure point spectrum is
high, but the multiplicity does not arise from any symmetry of the underlying space.

We should explain the terms symmetry and heuristics within the context of this
work. We will be working with Anderson type operators over graphs, so by symmetry
of the underlying space we mean graph automorphism. So, on the Hilbert space over the
graph, we can use the automorphism to construct unitary operators. We will show that,
there are Anderson type operators over certain graphs, for which the point spectrum
has non-trivial multiplicity, even though any unitary arising from automorphism which
fixes the operator is identity.

Many works involving local eigenvalue statistics for higher rank Anderson type
operators, for example [15, 7], showed that the statistics is compound Poisson. But,
that itself does not remove the possibility that the statistics is simple Poisson. The
operator discussed in Section 1 shows up as the limiting operator obtained in the work
[15]. Hence, the local eigenvalue statistics obtained in [15] is a non-trivial compound
Poisson. In a similar fashion, the family of operators from section 2 implies that the
local eigenvalue statistics defined in the work [7] can be a non-trivial compound Poisson
point process (i.e., the support of the Lévy measure has multiple points in it).

In the section 1, we show that the Anderson operator on canopy tree with higher
rank perturbations has non-trivial multiplicity depending on the rank of the perturba-
tions and the degree of (any vertex which are away from the boundary of) the graph. In
section 2, we construct a family of Anderson type operators which are ergodic under a
group action and which has non-trivial multiplicity. We, also, classify all the unitaries
arising from automorphisms of the graph which fix the operator. As a corollary, we
show that there are graphs such that the Anderson operator defined on them has non-
trivial multiplicity and the multiplicity does not arise from any automorphism of the
graph.

1. Canopy tree

In this section we will focus on an infinite canopy tree of degree K + 1. Before
going into the definition of the graph, let us establish a convention followed in the rest.
An undirected graph H is a pair of sets (V ,E ) where V denotes the set of vertices
and E denotes the set of edges. An edge e ∈ E is viewed as a subset of V with two
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elements. We will work with graphs which does not have self-loop, so we can view an
edge as a set of cardinality two.

The graph under consideration will have K +1 neighbors for each vertex, except
for the leaf nodes. For the proof of the Theorem 1 to work we will set K > 2.

DEFINITION 1. A canopy tree T of degree K + 1 is given by the pair (V ,E ) ,
where the vertex set is V = (N∪{0})× (N∪{0}) and the edge set is

E =
{{

(x,n),
(⌊ x

K

⌋
,n+1

)}
: x ∈ N∪{0},n∈ N∪{0}

}
.

V0 = ∂T

V1

V2

V3

Figure 1: An example of canopy tree for K = 3.

We will denote the boundary of the tree by

∂T = {(y,0) : y ∈ N∪{0}},
and for any i∈N∪{0} , the set of vertices which are i distance away from the boundary
by

Vi = {(y, i) : y ∈ N∪{0}}.
On V , we denote by d the usual metric of the graph. That is, for any two vertices v,w
in V , d(v,w) is the length of the shortest path connecting v and w . We will also need
a binary relation ≺ on V which is defined by

v ≺ w ⇔ d(v,∂T ) � d(w,∂T ) & d(v,w) = d(w,∂T )−d(v,∂T ),

where d(v,∂T ) is the distance of v from the boundary. Thus, v ≺ w means that v
lies in the shortest path between w and the boundary ∂T . For w ∈ V , the forward
neighbor set is defined by

Nw = {v ∈ V : v ≺ w & d(v,w) = 1}.
Note that Nw is empty for w ∈ ∂T , but for any other vertex it has cardinality K .
Finally for w ∈ V and l ∈ N , we will denote the tree

Λl(w) := {v ∈ V : v ≺ w,d(v,w) � l},
where the edges are obtained by restricting the edges of T to Λl(w) .
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The random operator of interest is defined on the Hilbert space �2(T ) . Denote by
ΔT to be the adjacency operator on �2(T ) , defined by

(ΔT u)(v) = ∑
d(v,w)=1

u(w) ∀v ∈ V ,

and the projection PS , for S ⊂ V , by

(PSu)(v) =
{

u(v) v ∈ S
0 v 	∈ S

∀v ∈ V ,

for any u ∈ �2(T ) . The family of random operators in consideration is given by

Hω
T = ΔT + ∑

x∈N

ωxPΛl(x), (1)

for some l ∈ N , where
N =

⋃
m∈N∪{0}

Vm(l+1)+l,

and {ωx}x∈N are independent identically distributed random variables.
We will denote Δn to be the adjacency matrix for the tree Λn(x) , for x ∈ Vn , for

n ∈ N (since all of these trees are isomorphic, we do not need to specify the root other
than the distance from boundary).

The following theorem shows that the operator Hω
T have non-trivial multiplic-

ity over certain part of the spectrum. This can be viewed as extending the result of
Theorem 1.6 of Aizenman-Warzel [1] to Anderson type operator. Instead of infinite
degeneracy, as in the case of [1, Theorem 1.6], we only get finite degeneracy as a result
of randomness. This is mostly because any eigenvalue of Δn is an eigenvalue of Δn+1 ,
and for K > 2, the multiplicity is high enough to produce non-trivial multiplicity for
the Anderson operator.

THEOREM 1. For K > 2 , let T denote the canopy tree of degree K + 1 and on
the Hilbert space �2(T ) , define the random operator Hω

T by (1), for some l � 2 . Set
the random variables {ωx}x∈N to be independent and identically distributed following
a real absolutely continuous distribution μ . Then

σ(Δl−1)+ supp(μ) ⊂ σpp(Hω
T ) a.s.,

and the maximum multiplicity of point spectrum in σ(Δl−1)+supp(μ) is at least K−1 .

Proof. Let Tl−1 denote a tree with root e which is isomorphic to the tree Λl−1(x) ,
for x ∈ Vl−1 . Using the fact that all the Λl−1(x) are identical for any x ∈ Vl−1 , we will
denote φx to be the isomorphism

φx : Λl−1(x) → Tl−1.

We will view Δl−1 as the adjacencymatrix for the graph Tl−1 . Finally, for E ∈σ(Δl−1)
consider a normalized eigenvector ψ corresponding to the eigenvalue E .
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Claim: For any x ∈ Vl ⊂ N , E +ωx is an eigenvalue of the operator Hω
T with multi-

plicity at least K−1 .
To show this, we are going to define the K − 1 orthonormal eigenvectors for E + ωx .
Let α := (αy),y ∈ Nx be an K−1 -tuple in Rn , satisfying the following conditions

∑
y

αy = 0 & ∑
y
|αy|2 = 1. (2)

For each such α , define the vector Ψ(α) ∈ �2(T ) by

Ψ(α)(p) =
{

αyψ(φy(p)), if p ≺ y for some y ∈ Nx

0, if p 	∈ ∪y∈Nx Λ(y) ∀p ∈ T .

Observe that Ψ(α) satisfies

[(Hω
T − (E + ωx))Ψ(α)](p) = 0 ∀p ∈ V \Λl(x),

trivially, because all the entries that show up are defined to be zero. For any p∈Λl−1(y)
where y ∈ Nx , we have

[(Hω
T − (E + ωx))Ψ(α)](p) = αy[ΔTl ψ ](φy(p))−Eψ(φy(p)) = 0.

Here we are using the fact that Ψ(α)(x) = 0, hence [ΔT Ψ(α)](p) = [ΔTl ψ ](φy(p)) .
Finally, at x we have

[(Hω
T − (E + ωx))Ψ(α)](x) = ∑

y∈Nx

Ψ(α)(y) = ψ(e) ∑
y∈Nx

αy = 0

by definition of (αy) . Observe that, for any (αy)y and (βy)y that satisfies (2), we have

〈
Ψ(α),Ψ(β )

〉
�2(T )

= ∑
y∈Nx

αyβy.

Hence we can have K − 1 orthonormal vectors Ψ(α) which are eigenvectors for Hω
T

for the eigenvalue E + ωx .
Now using the fact that {ωx}x∈Vl are i.i.d, we have

{E + ωx : x ∈ Vl} = E + supp(μ) a.s.,

which completes the proof of the theorem by using the above claim. �

REMARK 1. Note that, in the theorem we can remove the hypothesis that μ is
absolutely continuous and still the result will hold. The only problem is that the set
σ(Δl−1)+ supp(μ) may not have positive Lebesgue measure. Following the proof, it
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is easy to see that the measure μΔl−1(·) = ∑E∈σ(Δl−1) μ(·−E) is absolutely continuous
with respect to density of state measure:

N( f ) = lim
L→∞

1
|ΛL(xL)| tr( f (PΛL(xL)H

ω
T PΛL(xL))) ∀ f ∈Cc(R),

where the sequence xL ∈V is chosen to satisfy d(xL,∂T ) =L (the limit is non-random
follows from[15]). So, the density of state measure has non-trivial singular component
if μ is singular.

2. Cayley type graph and G-ergodic operators

It should be noted that in the proof of the Theorem 1, the fact that we are working
with tree is not important, but that there is an eigenvalue of the adjacency matrix for
the tree, which has non-trivial multiplicity and there are eigenvectors which are zero at
root. This observation can be used to create other examples of Anderson type operators
where similar result holds.

In this section, we focus on a class of infinite graphs generated by the help of
finitely generated groups which are similar to Cayley graph, and define Anderson type
operators. We will show that, under certain circumstances the operator defined has
non-trivial multiplicity for its pure point spectrum. The infinite graphs that we will be
working with are defined as follows:

DEFINITION 2. Given a finitely generated group G with generators g1, . . . ,gn

and a set of vertices v1, . . . ,vn,v−1, . . . ,v−n ∈ V from a finite undirected graph H =
(V ,E ) , define the infinite graph HG = (VG,EG) by

• The vertex set is given by

VG := {(v,g) : v ∈ V ,g ∈ G};

• The edge set EG is union of the sets

{{(v,g),(w,g)} : {v,w} ∈ E ,g ∈ G},
and

{{(v−i,g),(vi,ggi)} : g ∈ G,1 � i � n}.
An important fact to note is that the graph HG depends on the generator set of G .
This can easily be demonstrated by focusing on the fact that Cayley graphs for a group
may not be isomorphic for different generator sets. So, the graph described above is
dependent on H , G , {vi}n

i=−n and also {gi}n
i=1 .

Before moving forward, it should be noted that the vertices {vi}n
i=−n in the defi-

nition need not be distinct. So, one can take a tree Tl with root e (similar to previous
section) and set all the vi to be e and generate the graph TG . One should note that the
graph TG , when G is a free group, is not isomorphic to canopy tree; hence the previous
result is not a restriction of this case.
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Figure 2: An example of a Cayley type graph obtained by Z2 action on some finite
graph H .

For the graph HG = (VG,EG) , we can define the adjacency operator ΔHG on
�2(HG) by

(ΔHGu)((v,h)) = ∑
{(w,g),(v,h)}∈EG

u((w,g)) ∀(v,h) ∈ VG,

and define the projection Pg , for g ∈ G , by

(Pgu)((v,h)) =
{

u((v,g)) g = h
0 g 	= h

∀(v,h) ∈ VG,

for u ∈ �2(HG) . With these definitions in place, we can now define the family of
Anderson type operators

Hω
G = ΔHG + ∑

g∈G

ωgPg, (3)

where {ωg}g∈G are i.i.d real random variables with common distribution μ . If we
assume that the support of μ is bounded, then the operator Hω

G is bounded almost
surely.

Assuming μ to be a Borel measure, one can use Kolmogorov construction and
view ωg as a random variable over the product probability space (RG,⊗GBR,⊗Gμ)
which will be denoted by (Ω,B,P) . For any g ∈ G , define the measure preserving
map θg : Ω → Ω by

(θgω)h = ωgh ∀h ∈ G,

and the unitary operator Ug : �2(HG) → �2(HG)

(Ugu)((v,h)) = u((v,gh)) ∀(v,h) ∈ VG,

and observe that
UgH

ω
GU∗

g = H
θg(ω)
G ∀g ∈ G,
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almost surely. Hence the family of random operators Hω
G is ergodic under the action of

the group G .
Before going to the main result of this section, let us first focus on the unitary

maps generated by the automorphisms of the graph HG . Since graph automorphisms
are bijection of vertex set, an automorphism φ : HG → HG produces a unitary map
Uφ : �2(HG) → �2(HG) by

(Uφ u)((v,h)) = u(φ((v,h))) ∀(v,h) ∈ VG,

for u ∈ �2(VG) . Since a graph automorphism also provides a bijection of edges, we
have

ΔHG = Uφ ΔHGU∗
φ .

Let Aut(HG) denote the group of all automorphisms of the graph HG , and let

AutAnd(HG) = {φ ∈ Aut(HG) : Hω
HG

= Uφ Hω
HG

U∗
φ a.s.}

denote the group of automorphisms which fix the operator (3). The next theorem will
characterize the group AutAnd(HG) . But first, let us fix a notation, given an undirected
graph H and a set of vertices V , we will denote Aut(H |V ) to the group of automor-
phisms φ : H → H satisfying

φ(v) = v ∀v ∈V.

With the above notation in place, we can classify the group AutAnd(HG) .

THEOREM 2. Given a finite graph H = (V ,E ) along with vertices v−n, . . . ,v−1 ,
v1, . . . ,vn and a finitely generated group G with generators g1, . . . ,gn , define the graph
HG by definition 2 and the random operator Hω

HG
by (3) for i.i.d sequence of real

random variables {ωg}g∈G following a continuous distribution μ . Then the map

Θ : ∏
g∈G

Aut(H |{v−n, . . . ,v−1,v1, . . . ,vn}) → AutAnd(HG)

defined by

Θ((φg)g∈G)((v,h)) = (φh(v),h) ∀(v,h) ∈ VG,

for any (φg)g∈G ∈ ∏g∈G Aut(H |{v−n, . . . ,v−1,v1, . . . ,vn}) , is a group isomorphism.

REMARK 2. The only property used in the proof is

P[ωi = ω j∃i 	= j] = 0

for sequence of i.i.d random variables {ωi}i , following distribution μ . Hence μ can
have non-trivial singular continuous part.
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Proof. The definition of Θ automatically implies that Θ((φg)g∈G) is an element of
AutAnd(HG) for any (φg)g∈G ∈ ∏g∈G Aut(H |{v−n, . . . ,v−1,v1, . . . ,vn}) . The mapping
is a group homomorphism is also clear. We only need to show that it is a bijection.
Clearly, the map is an injection; so we only need to show that it is a surjection.

Let ψ ∈ AutAnd(HG) , then for any u : VG → C with supp(u)⊂ V ×{g} for some
g ∈ G , observe that

0 = [(Hω
HG

−UψHω
HG

U∗
ψ)u]((v,g)) = (ωg −ωπ(ψ((v,g))))u((v,g)),

for any v ∈ H , where π : VG → G is the map π((v,h)) = h for any (v,h) ∈ VG . So,
we get

π(ψ((v,g))) = g ∀(v,g) ∈ VG,

which implies ψ restricted to V ×{g} is a bijection and so is a graph isomorphism, for
any g∈G . Now let us focus on the edge {(v−i,g),(vi,ggi)} ∈ EG . Note that since ψ is
a graph automorphism, we have {ψ((v−i,g)),ψ((vi,ggi))} ∈ EG , which by the above
argument implies ψ((v j,h)) = (v j,h) for any h ∈ G and i ∈ {−n, . . . ,−1,1, . . . ,n} .
This gives us the surjection, completing the proof. �

The above result provides all the unitary operators which fix the operator (3) and arise
from an automorphism of the graph HG . The main reason to state the above theorem is
that now we can construct a graph HG such that AutAnd(HG) is trivial. We will focus
on this feature after the following result. In the following theorem, we will show that
the operators of the form (3) can have higher multiplicity for its pure point spectrum.

THEOREM 3. Consider a graph H such that for the adjacency matrix ΔH , there
exists E0 ∈ σ(ΔH ) of multiplicity at least l � 2 . Suppose there exist orthonormal
eigenvectors ψ1, . . . ,ψl for E0 and vertices x1, . . . ,xm ∈ V , for some m � 1 , satisfying

ψi(x j) = 0 ∀1 � i � l,1 � j � m.

For any π : {−n, . . . ,n} → {1, . . . ,m} , let HG = (VG,EG) be the graph defined by
definition 2 using the graph H with vi = xπ(i) for −n � i � n and the finitely gen-
erated group G with generators g1, . . . ,gn . Defining the operator Hω

G by (3), where
the random variables {ωg}g∈G are i.i.d real random variables following an absolutely
continuous distribution μ , we have

E0 + supp(μ) ⊂ σpp(Hω
G ) a.s.,

and the maximum multiplicity of point spectrum in E0 + supp(μ) is at least l .

Proof. The proof follows similar steps as the proof of Theorem 1. Fix a g ∈ G
and define

Ψg,i((v,h)) =
{

ψi(v) h = g
0 h 	= g

∀(v,h) ∈ VG,

then
[(Hω

G −E0−ωg)Ψg,i]((v,h)) = 0 ∀h 	= g,v ∈ V
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holds trivially. This is because, the only way a term like Ψg,i((·,g)) can show up is
through the adjacency operator ΔHG ; but then it will be Ψg,i((x j,g)) for some 1 � j �
m , which is zero. For any v ∈ V , we have

[(Hω
G −E0−ωg)Ψg,i]((v,g)) = [(ΔH −E0)ψi](v) = 0;

hence {Ψg,i}l
i=1 are eigenvectors of Hω

G for the eigenvalue E0 + ωg . They are or-
thonormal by the definition of {ψi}i ; hence the multiplicity of eigenvalue E0 + ωg for
the operator Hω

G is at least l .
Following the above steps, we get that {ωg +E0}g∈G are eigenvalues of Hω

G with
multiplicity at least l . Since {ωg}g∈G are i.i.d random variables, we have

E0 + supp(μ) = {E0 + ωg : g ∈ G} ⊂ σpp(Hω
G ),

which completes the proof. �

There are many examples of graph H which satisfies the hypothesis of the above
theorem. The following examples illustrate a constructive mechanism to create these
types of graphs.

EXAMPLE 1. Here we are constructing a graph H = (V ,E ) such that, there
exists an eigenvalue E0 for the adjacency matrix ΔH with multiplicity at least l , which
satisfies

ψi(x j) = 0 ∀1 � i � l,1 � j � m,

where {ψi}l
i=1 are some orthonormal eigenvectors corresponding to the eigenvalues E0

and x1, . . . ,xm ∈ V .
Given a sequence of finite undirected graphs H̃i = (Ṽi, Ẽi) for 1 � i � l +m such

that

E0 ∈
l+m⋂
i=1

σ(ΔH̃i
),

let {vi, j}m
j=1 be in Ṽi for each i (we are allowing the case vi, j = vi,k for some j 	= k ).

For the graph H , define the vertex set to be

V = {x j : 1 � j � m}∪
l+m⋃
i=1

Ṽi,

where {x j} j are new vertices, and the edge set is defined by

E =
l+m⋃
i=1

(
Ẽi∪{{x j,vi, j} : 1 � j � m}) .

Now, let ψi denote an eigenvector for the eigenvalue E0 for the adjacency matrix ΔH̃i
and define

Ψ(α)(w) =
{

αiψi(w) w ∈ Ṽi for some i
0 w = xi for some i

∀w ∈ V ,
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where {αi}l+m
i=1 satisfies

l+m

∑
i=1

αiψi(vi, j) = 0 ∀1 � j � m, (4)

and ∑i |αi|2 = 1. With this definition note that if w ∈ Ṽi for any i , then

[(ΔH −E0)Ψ(α)](w) = αi[(ΔH̃i
−E0)ψi](w) = 0.

And for w ∈ {x1, . . . ,xm} , we get

[(ΔH −E0)Ψ(α)](w) =
l+m

∑
i=1

αiψi(vi, j) = 0 ∃1 � j � m,

because of (4). Viewing equations (4) as matrix equation we get that there are at least l
orthonormal (α) which satisfy the equations. Hence, we get all the properties that we
desire for H .

In particular, we can look at a special case of a graph H for which the only automor-
phism which fixes xi for each i is identity.

EXAMPLE 2. In the earlier example take the graph H̃i to be

Ṽi = {n : 1 � n � 2pi−1} & Ẽi = {{n,n+1} : 1 � n < 2pi−1},
where pi is the ith prime starting from 2.

x1 x2
V1

V2

V3

V4

Figure 3: Example of H for K = 2.

It is easy to see that

σ(ΔH̃i
) =

{
2cos

π j
2pi

: 1 � j � 2pi−1

}
,

so {0} = ∩K+2
i=1 σ(ΔH̃i

) . By the construction, it should be clear that any automorphism
of H which fixes x1 and x2 is identity. Hence, as a consequence of Theorem 2 we get
that AutAnd(HG) is singleton group. But using this graph in Theorem 3, we obtain that
the operator Hω

G has non-trivial multiplicity. Hence we conclude that the multiplicity
of Hω

HG
is not arising from any automorphisms of HG .
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It should be noted that, the above example is nothing special and one can come up with
more examples of similar type. One could have started with Ṽi = {n : 1 � n � 3pi−1} ,
then ∩K

i=1σ(ΔH̃i
) =

{
2cos π

3 ,2cos 2π
3

}
.
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