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2–LOCAL ∗–LIE AUTOMORPHISMS OF SEMI–FINITE FACTORS

XIAOCHUN FANG, XINGPENG ZHAO ∗ AND BING YANG

(Communicated by P. Šemrl)

Abstract. Let M be a semi-finite von Neumann algebra factor on a complex Hilbert space H
with dimension greater than 3. Then every surjective 2-local ∗ -Lie automorphism Φ of M is of
the form Φ = Ψ + τ , where Ψ is a ∗ -automorphism or the negative of a ∗ -anti-automorphism
of M , and τ is a mapping from M into CI vanishing on every sum of commutators.

1. Introduction and preliminaries

Let A be an algebra over the complex field C . Recall that a linear map θ on
A is called a local isomorphism (respectively, local derivation) if for each A ∈ A ,
there exists an isomorphism (respectively, a derivation) θA , depending on A , such that
θ (A) = θA(A) . The local map problem was initiated by Kadison [1] and Larson and
Sourour [2] in 1990. In the past decades, the study of local maps has attracted much
attention of scholars. There exists a vast literature on local isomorphisms and local
derivations. Some results on them are contained in [3, 4, 5, 6, 7, 8].

In 1997, Šemrl [9] introduced the notion of 2-local maps. Recall that a (non-
necessarily linear) map θ on an algebra A is called a 2-local isomorphism (respec-
tively, 2-local derivation) if for any A,B ∈ A , there exists an isomorphism (respec-
tively, a derivation) θA,B , depending on A and B , such that θ (A) = θA,B(A) and
θ (B) = θA,B(B) . Recently, 2-local maps have been studied on different operator al-
gebras by many authors. In [9], Šemrl studied 2-local isomorphisms and 2-local deriva-
tions on the algebra of all bounded linear operators on an infinite dimensional separable
Hilbert space. Ayupov and Kudaybergenov [10] studied 2-local derivations and auto-
morphisms on B(H) and in [11] they described 2-local derivations on von Neumann
algebras. We can refer to [12, 13, 14, 15, 16] for more about 2-local maps.

Let A and B be Banach ∗ -algebras. Recall that a (non-necessarily linear) bijec-
tion φ : A → B is called a Lie ∗ -isomorphism if φ([A,B]) = [φ(A),φ(B)],φ(A∗) =
φ(A)∗ and called a ∗ -Lie isomorphism if φ([A,B∗]) = [φ(A),φ(B)∗] for A,B ∈ A ,
where [A,B] = AB− BA is the usual Lie product of A and B . Contrary to Lie ∗ -
isomorphisms, a ∗ -Lie isomorphism need not preserve Lie products nor involution. A
∗ -Lie isomorphism is more general and complicated than a Lie ∗ -isomorphism. There-
fore, in the process of dealing with details of a ∗ -Lie isomorphism, we need more skills
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and tools. Recently, Bai and Du [17, 18] studied the nonlinear ∗ -Lie isomorphism. Let
M and N be von Neumann algebra factors on a complex Hilbert space H with di-
mension greater than 3. Bai and Du [17] proved that if φ : M → N is a non-linear
∗ -Lie isomorphism, then φ is of the form σ + τ , where σ is a linear ∗ -isomorphism,
or a conjugate linear ∗ -isomorphism, or the negative of a linear ∗ -isomorphism, or the
negative of a conjugate linear ∗ -isomorphism of M onto N and τ is a mapping from
M into CI vanishing on every commutator. Li and Lu [19] studied 2-local ∗ -Lie iso-
morphisms. Recall that a map φ on an operator algebra A is called a 2-local ∗ -Lie
isomorphism if for each A,B ∈ A , there exists a linear ∗ -Lie isomorphism φA,B on
A such that φ(A) = φA,B(A) and φ(B) = φA,B(B) . Let H be a complex Hilbert space
of dimension greater than 3. Li and Lu [19] proved that every surjective 2-local ∗ -Lie
isomorphism Φ of B(H) has the form Φ = Ψ+τ , where Ψ is a ∗ -isomorphism or the
negative of a ∗ -anti-isomorphism of B(H) and τ is a homogeneous map from B(H)
into CI vanishing on every sum of commutators.

In this paper, we generalize the result of Li and Lu to semi-finite von Neumann
algebra factors on a complex Hilbert space H with dimension greater than 3. The main
result in the paper reads as follows. Let M be a semi-finite von Neumann algebra
factor on a complex Hilbert space H with dimension greater than 3. Then every sur-
jective 2-local ∗ -Lie automorphism Φ of M is of the form Φ = Ψ+ τ , where Ψ is a
∗ -automorphism or the negative of a ∗ -anti-automorphism of M , and τ is a homoge-
neous mapping from M into CI vanishing on every sum of commutators.

Throughout the paper, let Mτ be the set of all elements A∈M such that τ(|A|) <
∞ . Then Mτ is a ∗ -algebra, and moreover, Mτ is a two-sided ideal of M . Suppose
that P is an arbitrary projection in M , then we set P⊥ = I−P .

2. Main results

In this section, we characterize surjective 2-local ∗ -Lie automorphisms on semi-
finite von Neumann algebra factors on a complex Hilbert space with dimension greater
than 3. For this, we need some lemmata as follows.

Let M be a von Neumann algebra and let Φ : M → M be a 2-local ∗ -Lie auto-
morphism. For A,B ∈ M , the symbol ΦA,B stands for a ∗ -Lie automorphism of M
satisfying Φ(A) = ΦA,B (A) and Φ(B)=ΦA,B (B) .

LEMMA 2.1. Let M be a von Neumann algebra factor and let Φ : M → M be
a surjective 2-local ∗ -Lie automorphism. Then

(1) Φ is homogeneous and injective;

(2) Φ−1 is also a 2-local ∗ -Lie automorphism;

(3) Φ(0) = 0 and Φ(CI) = CI .

Proof.
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(1) Let λ ∈ C and A ∈ M . Then we have

Φ(λA) = ΦA,λA(λA) = λ ΦA,λA(A) = λ Φ(A).

Hence Φ is homogeneous.

If Φ(A) = Φ(B) , then ΦA,B(A) = ΦA,B(B) and so A = B . Hence Φ is injective.

(2) For any C,D ∈ M , there exist A,B ∈ M such that Φ(A) = C and Φ(B) = D .
Then there is a ∗ -Lie automorphism ΦA,B(A) : M → M such that C = Φ(A) =
ΦA,B(A) and D = Φ(B) = ΦA,B(B) . By (1), A = Φ−1(C) = Φ−1

A,B(C) and B =
Φ−1(D) = Φ−1

A,B(D) . Notice that Φ−1
A,B is also a ∗ -Lie automorphism of M .

Hence Φ−1 is a 2-local ∗ -Lie automorphism.

(3) By the homogeneity of Φ , it is clear that Φ(0) = 0. Let λ ∈ C and any A ∈ M ,
we have

[Φ(A),Φ(λ I)∗] =[Φλ I,A(A),Φλ I,A(λ I)∗] = Φλ I,A([A,λ I]) = 0.

Since Φ is surjective, it follows that Φ(λ I)∗C = CΦ(λ I)∗ for any C ∈ M .
Hence Φ(λ I) ∈ CI , which implies Φ(CI) ⊆ CI . Notice that Φ−1 is also a
surjective 2-local ∗ -Lie automorphism. Thus, Φ−1(CI) ⊆ CI . Hence Φ(CI) =
CI . �

LEMMA 2.2. [20, Theorem 6] Let M be a von Neumann algebra and T ∈ M .
Then T = P+ λ I for some idempotent P ∈ M and λ ∈ C , if and only if

[[[X ,T ],T ],T ] = [X ,T ]

for every X ∈ M .

LEMMA 2.3. [17, Main theorem] Let M ,N be von Neumann algebra factors
on a complex Hilbert space H with dimension greater than 3. If Φ : M → N is a
linear ∗ -Lie isomorphism, then Φ is of the form Φ = σ + τ , where σ is a linear ∗ -
isomorphism or the negative of a linear ∗ -anti-isomorphism, and τ is a linear map
from M into CI which maps commutators to zero.

LEMMA 2.4. [21, Proposition 8.5.3 and Theorem 8.5.7] Suppose that M is a von
Neumann algebra factor which is not type III, then there is a faithful normal semi-finite
tracial weight ρ on M and every such weight is a positive scalar multiple of ρ . In
particular, if M is a finite von Neumann algebra factor, then there is a unique state ρ0

on M and ρ0 is faithful and normal.

LEMMA 2.5. Let M be a semi-finite von Neumann algebra factor with a faithful
normal semi-finite trace τ and let Φ be a 2-local ∗ -Lie automorphism of M . Then for
any A ∈ M and B = PXP⊥ , where X ∈ Mτ and P is an arbitrary projection in M ,
there exists λ > 0 such that τ(Φ(A)Φ(B)) = λ τ(AB) . In particular, if M is a finite
von Neumann algebra factor, then τ(Φ(A)Φ(B)) = τ(AB) . Similarly, Φ−1 satisfies the
same conclusion.
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Proof. For A,B above, there exists a ∗ -Lie automorphism ΦA,B of M such that
Φ(A) = ΦA,B(A) and Φ(B) = ΦA,B(B) . Noticing that B ∈ Mτ is a commutator, by
Lemma 2.3, there exist a linear ∗ -automorphism or the negative of a linear ∗ -anti-
automorphism πA,B , and λ ∈ C such that ΦA,B(A) = πA,B(A) + λ I and ΦA,B(B) =
πA,B(B) .

Here, we claim that Φ(B),ΦA,B(B),πA,B(B) ∈ Mτ .
Indeed, either φ a ∗ -automorphism or a ∗ -anti automorphism, τ(φ(·)) is a faith-

ful normal semi-finite trace of M . By Lemma 2.4, there exists λ0 > 0 such that
τ(φ(·)) = λ0τ(·) . Notice that B∈Mτ . Hence τ(φ(B)) = λ0τ(B) < ∞ and then φ(B)∈
Mτ . Thus, if πA,B is a linear ∗ -automorphism, then τ(Φ(B)) = τ(πA,B(B)) < ∞ ; if
πA,B is the negative of a linear ∗ -anti-automorphism, then τ(Φ(B)) = τ(ΦA,B(B)) =
τ(πA,B(B)) = −τ(−πA,B(B)) < ∞ , which implies that Φ(B),ΦA,B(B),πA,B(B) ∈ Mτ .

Since Mτ is a two-sided ideal of M , there exists λ ∈ C such that

τ(Φ(A)Φ(B)) = τ(ΦA,B(A)ΦA,B(B)) = τ((πA,B(A)+ λ I)πA,B(B))
= τ(πA,B(A+ λ I)πA,B(B)),

where πA,B is either a linear ∗ -automorphism or the negative of a linear ∗ -anti-
-automorphism. So we shall discuss the equality by two cases.
Case 1. If πA,B is a linear ∗ -automorphism, then τ(Φ(A)Φ(B)) = τ(πA,B((A+λ I)B)) .
Notice that τ(πA,B(·)) is a faithful normal semi-finite trace of M .
Case 2. If πA,B is the negative of a linear ∗ -anti-automorphism, then τ(Φ(A)Φ(B))
= τ(−πA,B(B(A+λ I))) . Notice that τ(−πA,B(·)) is a faithful normal semi-finite trace
of M .

Hence, by Lemma 2.4, either Case 1 or Case 2, there exists λ > 0 such that
τ(Φ(A)Φ(B)) = λ τ(((A + λ I)B)) = λ τ(AB) . In particular, if M is a finite factor,
then λ = 1. It follows that τ(Φ(A)Φ(B)) = τ(AB). �

LEMMA 2.6. Let M be a von Neumann algebra factor and x ∈ M . Suppose
that Q is a fixed projection in M . If Q1QxQ = QxQQ1 for any Q1 ∈ P(M ) with
Q1 < Q, then QxQ ∈ CQ.

Proof. We observe that QMQ is also a von Neumann algebra with unit Q and
QxQ∈QMQ . By Q1QxQ = QxQQ1 , for any projection Q1 < Q , we can get that QxQ
commutes with all projections in QMQ . Since the linear span of all projections of
QMQ is norm dense in QMQ , it follows that QxQ is in the center of QMQ . Noticing
that M is a factor, it follows that the center of QMQ is CQ . Hence QxQ ∈ CQ . �

Our main result reads as follows.

THEOREM 2.7. Let M be a semi-finite von Neumann algebra factor on a com-
plex Hilbert space H with dimension greater than 3. Then every surjective 2-local ∗ -
Lie automorphism Φ of M is of the form Φ = Ψ+ τ , where Ψ is a ∗ -automorphism
or the negative of a ∗ -anti-automorphism of M , and τ is a homogeneous map from
M into CI vanishing on every sum of commutators.



2-LOCAL ∗ -LIE AUTOMORPHISMS OF SEMI-FINITE FACTORS 749

We will prove the theorem by checking several claims as follows.

Claim 1. Let M be a semi-finite von Neumann algebra factor. Suppose that
Φ : M → M is a surjective 2-local ∗ -Lie automorphism. Then Φ(A+C)−Φ(A)−
Φ(C) ∈ CI for any A,C ∈ M . Similarly, Φ−1 satisfies the same conclusion.

Let τ be a faithful normal semi-finite trace on M . Suppose that A,C ∈ M and
B = PXP⊥ , where X ∈ Mτ and P is an arbitrary projection in M . Now we claim that

τ(Φ(A+C)Φ(B)) = τ((Φ(A)+ Φ(C))Φ(B)).

It is obvious for B = 0. So we need to prove the case B �= 0. Notice that B is
a commutator. For A +C,B ∈ M , by Lemma 2.3, there exist a ∗ - automorphism
or the negative of a ∗ -anti-automorphism πA+C,B and λ ∈ C such that Φ(A +C) =
πA+C,B(A+C)+λ I and Φ(B) = πA+C,B(B) . We only prove the case in which πA+C,B(·)
is a linear ∗ -automorphism. The case in which πA+C,B(·) is the negative of a linear ∗ -
anti-automorphism is similar (we refer to the proof of Lemma 2.5).

We know from the proof of Lemma 2.5 that τ(πA+C,B(·)) is also a faithful normal
semi-finite trace on M and Φ(B),ΦA+C,B(B),πA+C,B(B) ∈ Mτ . Notice that Mτ is a
two-sided ideal of M . By Lemma 2.4 and Lemma 2.5, there exist λ (1),λ (2),λ (3) > 0
such that τ(πA+C,B(·)) = λ (1)τ(·) , τ(Φ(A)Φ(B)) = λ (2)τ(AB) and τ(Φ(C)Φ(B)) =
λ (3)τ(CB). It follows that

τ(Φ(A+C)Φ(B)) =τ(ΦA+C,B(A+C)ΦA+C,B(B)) = τ((πA+C,B(A+C)+ λ I)πA+C,B(B))

=τ(πA+C,B((A+C+ λ I)B)) = λ (1)τ((A+C+ λ I)B)

=λ (1)τ((A+C)B) = λ (1)τ(AB)+ λ (1)τ(CB)

=
λ (1)

λ (2) τ(Φ(A)Φ(B))+
λ (1)

λ (3) τ(Φ(C)Φ(B)).

For B = PXP⊥ �= 0, where X ∈ Mτ , we claim that λ (1) = λ (2) = λ (3) .
Indeed, for any X1,X2 ∈M and B = PXP⊥ �= 0, where X ∈Mτ , observing that B

is a commutator, then Φ(B) = ΦB,X1(B) = πB,X1(B) and Φ(B) = ΦB,X2(B) = πB,X2(B)
by Lemma 2.3, where πB,X1 is either a linear ∗ -automorphismor the negative of a linear
∗ -anti-automorphism and so is πB,X2 . Thus πB,X1(B) = πB,X2(B) , and πB,X1(B

∗) =
πB,X2(B

∗) . In the following, we will deal with the problem in four cases.
Case 1. If πB,X1 ,πB,X2 are both linear ∗ -automorphisms, then we have πB,X1(B

B∗) = πB,X2(BB∗) . Notice that τ(πB,X1(·)),τ(πB,X2(·)) are both faithful normal semi-
finite traces of M .

Case 2. If πB,X1 ,πB,X2 are both the negative of linear ∗ -automorphisms, then we
have −πB,X1(BB∗) = −πB,X2(BB∗) . Notice that τ(−πB,X1(·)),τ(−πB,X2(·)) are both
faithful normal semi-finite traces of M .

Case 3. If πB,X1 is a linear ∗ -automorphism and πB,X2 is the negative of a linear
∗ -automorphism, then we have πB,X1(B

∗B) = −πB,X2(BB∗) . Notice that τ(πB,X1(·)),
τ(−πB,X2(·)) are both faithful normal semi-finite traces of M .
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Case 4. If πB,X1 is the negative of a linear ∗ -automorphism and πB,X2 is a linear
∗ -automorphism, then we have −πB,X1(B

∗B) = πB,X2(BB∗) . Notice that τ(−πB,X1(·)),
τ(πB,X2(·)) are both faithful normal semi-finite traces of M .

We only discuss Case 1, and the rest cases are similar.
Notice that πB,X1(BB∗) , πB,X2(BB∗) ∈ Mτ from the proof of Lemma 2.5. It

follows that τ(πB,X1(BB∗)) = τ(πB,X2(BB∗)). Moreover, by Lemma 2.4, there exist
λ ′

,λ ′′
such that τ(πB,X1(BB∗)) = λ ′τ(BB∗) , and τ(πB,X2(BB∗)) = λ ′′τ(BB∗). Hence

λ ′τ(BB∗) = λ ′′τ(BB∗). Noticing B �= 0, we get λ ′
= λ ′′

. Then it follows that λ (1) =
λ (2) = λ (3) . Thus,

τ(Φ(A+C)Φ(B)) = τ(Φ(A)Φ(B))+ τ(Φ(C)Φ(B)) = τ((Φ(A)+ Φ(C))Φ(B)),

and then
τ((Φ(A+C)−Φ(A)−Φ(C))Φ(B)) = 0

for any A,C ∈ M and B = PXP⊥ , where X ∈ Mτ and P is an arbitrary projection in
M . By Lemma 2.5,

0 = τ((Φ(A+C)−Φ(A)−Φ(C))Φ(B)) = λ τ(Φ−1(Φ(A+C)−Φ(A)−Φ(C))B),

for some λ > 0. It follows that

τ(Φ−1(Φ(A+C)−Φ(A)−Φ(C))B) = 0.

Let Y = Φ−1(Φ(A+C)−Φ(A)−Φ(C)) , then τ(YPXP⊥) = 0. It follows that

τ(P⊥YPXP⊥) = 0.

Now take a monotone net {Pα} of projections in M with τ(Pα) < ∞ which converges
strongly to I . Since Mτ is an ideal and Pα ⊆ Mτ , the elements PαPY ∗ also belong to
Mτ . Hence, we obtain

τ(P⊥YPPα(P⊥YP)∗) = 0.

As τ is normal, τ(P⊥YPPα(P⊥YP)∗) → τ(P⊥YP(P⊥YP)∗) , which implies

τ(P⊥YP(P⊥YP)∗) = 0.

Since τ is faithful, P⊥YP = 0. By the arbitrariness of P , we also have PYP⊥ = 0.
The above two equations lead to PY = YP . As the linear span of all projections of M
is norm dense in M , it follows that AY = YA for all A ∈ M , that is, Y is in the center
of M . Noticing that M is a factor, we have Y ∈ CI . Hence Φ−1(Φ(A+C)−Φ(A)−
Φ(C)) ∈ CI . By Lemma 2.1, we get Φ(A+C)−Φ(A)−Φ(C)∈ CI .

Claim 2. Let M be a von Neumann algebra factor. Suppose that Φ : M →M is
a surjective 2-local ∗ -Lie automorphism. If E ∈P(M )\{0, I} , then Φ(E) = F +λEI ,
where λE ∈ C and F ∈P(M )\{0, I} . Moreover, the projection F and the scalar λE

are unique. Similarly, Φ−1 satisfies the same conclusion.
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Let E ∈ P(M )\ {0, I} . Since [[[T,E],E],E] = [T,E] for all T ∈ M , then

[[[ΦT,E(T ),ΦT,E(E)∗],ΦT,E (E)∗],ΦT,E(E)∗] = [ΦT,E(T ),ΦT,E (E)∗],

and thus
[[[Φ(T ),Φ(E)∗],Φ(E)∗],Φ(E)∗] = [Φ(T ),Φ(E)∗].

Noticing that Φ is surjective, it follows that

[[[S,Φ(E)∗],Φ(E)∗],Φ(E)∗] = [S,Φ(E)∗]

for all S ∈ M . By Lemma 2.2, we have

Φ(E)∗ = F + μEI,

where F is an idempotent in M and μE ∈ C . Morever,

0 = ΦE,E([E,E]) = [ΦE,E(E),ΦE,E(E)∗] = [Φ(E),Φ(E)∗] = [F,F∗], (2.1)

which implies that F is normal. Thus F = F∗ and then F ∈ P(M ) . We claim that
F �= 0 or I . Otherwise, Φ(E) = λEI or (λE +1)I for some λE ∈ C . Then by Lemma
2.1, we have E = 0 or I , which is a contradiction. Next we prove that F and λE are
unique. Suppose that Φ(E) = F + λEI = F

′
+ λ ′

EI, where F
′
is also a projection and

λ ′
E ∈ C . Then F = F

′
+ (λ ′

E − λE)I. Thus σ(F) = {0,1} = σ(F
′
+ (λ ′

E − λE)I) =
{λ ′

E −λE,λ ′
E −λE +1}. Hence λ ′

E = λE and F = F
′
.

By Claim 2, we can define a map Φ̂ : P(M ) \ {0, I} → P(M ) \ {0, I} by
Φ̂(E) = Φ(E)−λEI .

Claim 3. Φ̂ is bijective and Φ̂−1 = Φ̂−1 .

First, we prove that Φ̂ is bijective.
Let E,F ∈P(M )\{0, I} , then Φ̂(E) = Φ(E)−λEI and Φ̂(F) = Φ(F)−λFI. If

Φ̂(E) = Φ̂(F) , then Φ(E)−Φ(F) ∈ CI . By Claim 1, Φ(E −F) ∈ CI, which implies
E −F ∈ CI by Lemma 2.1. Then E = F + μI , and σ(E) = {0,1} = σ(F + μI) =
{μ ,1+ μ} for some μ ∈ C . Hence μ = 0 and then E = F , which implies that Φ̂ is
injective.

For any F ∈P(M )\{0, I} , by Claim 2, Φ−1(F)= E+λFI , where E ∈P(M )\
{0, I} and λF ∈ C , then F = Φ(E + λFI) . By Lemma 2.1 and Claim 1, there exists
μ ∈ C such that F = Φ(E + λFI) = Φ(E) + μI , then Φ(E) = F − μI . Thus by the
uniqueness in Claim 2, we get F = Φ̂(E) , which implies Φ̂ is surjective.

Finally, we prove that Φ̂−1 = Φ̂−1 .
Indeed, for any F ∈ P(M ) \ {0, I} , by Lemma 2.5, we observe that Φ−1(F) =

E + λFI , where E ∈ P(M ) \ {0, I} and λF ∈ C . Then Φ̂−1(F) = E . On the other
hand, since Φ−1(F) = E + λFI , then F = Φ(E + λFI) = Φ(E)+ λ I for some λ ∈ C

by 2.1(3) and Claim 1. By the uniqueness in Lemma 2.5, we have that F = Φ̂(E) and

Φ̂−1(F) = E . Hence Φ̂−1 = Φ̂−1 .
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Claim 4. Suppose that M is a semi-finite von Neumann algebra factor. If
P1,P2 ∈ P(M )\ {0, I} and P1 +P2 = I, then Φ̂(P1)+ Φ̂(P2) = I .

By Lemma 2.1 and Claim 1, we obtain that Φ(P1 +P2) = Φ(I) ∈ CI and Φ(P1 +
P2)−Φ(P1)−Φ(P2) ∈ CI . Thus Φ(P1)+ Φ(P2) ∈ CI and then Φ̂(P1)+ Φ̂(P2) ∈ CI .
Then there exists λ ∈C such that Φ̂(P1)+Φ̂(P2) = λ I . Observing that Φ̂(P1),Φ̂(P2)∈
P(M )\{0, I} , we have that σ(Φ̂(P1))= {0,1}= σ(λ I−Φ̂(P2))= {λ ,λ −1} . Hence
λ = 1, which implies that Φ̂(P1)+ Φ̂(P2) = I .

Let P1,P2 ∈P(M ) . We say P1 � P2 if P1P2 = P1 = P2P1 , and P1 < P2 if P1 � P2

and P1 �= P2 .

Claim 5. Let M be a von Neumann algebra factor and P1,P2 ∈ P(M ) with
0 < P1 < P2 < I . Set Qi = Φ̂(Pi), i = 1,2 . Then either 0 < Q1 < Q2 < I or 0 <
Q2 < Q1 < I . Moreover, let M be a semi-finite factor and P1,P2,P3 ∈ P(M ) with
0 < P1 < P2 < P3 < I . Set Qi = Φ̂(Pi), i = 1,2,3 . Then

(1) If Q1 < Q2 , then Q1 < Q2 < Q3 .

(2) If Q2 < Q1 , then Q1 > Q2 > Q3 .

First, we give the proof of the first part. By the definition of Φ̂ and Claim
2, P1,P2,P2 −P1 /∈ CI implies Q1,Q2,Q2 −Q1 /∈ CI , in particular Q2 �= Q1 . Since
[P1,P2] = 0, we have

0 =ΦP1,P2 [P1,P2] = [ΦP1,P2(P1),ΦP1,P2(P2)∗] = [Φ(P1),Φ(P2)∗] = [Φ̂(P1),Φ̂(P2)]
=[Q1,Q2],

which implies Q1Q2 = Q2Q1 . Then (Q2 −Q1)3 = Q2 −Q1 . Thus, if Q2 and Q1 are
not comparable, then σ(Q2−Q1) = {−1,1} or {−1,0,1} . On the other hand, noticing
that P2 −P1 ∈ P(M )\ {0, I} , then by Claim 2, we have Φ(P2 −P1) ∈ P(M )+CI .
Hence Q2−Q1 = Φ̂(P2)− Φ̂(P1) = Φ(P2)−λP2I−Φ(P1)+λP1 I = Φ(P2−P1)+λ I ∈
P(M )+ CI for some λ by Claim 1. Thus there exists a scalar μ such that σ(Q2 −
Q1) = {μ ,μ +1} , which is a contradiction. Hence 0 < Q1 < Q2 < I or 0 < Q2 < Q1 <
I .

Next we give the proof of the second part. We only prove the case Q1 < Q2 .
The case Q1 > Q2 is similar. Assume that Q1 < Q2 . The projections Q1,Q2,Q3 are
distinct and mutually comparable by the first part. By simple calculation, we have
that P1 +P3−P2 ∈ P(M ) and so Q1 +Q3 −Q2 ∈ P(M )+ CI by Claim 1. Hence
σ(Q1 +Q3−Q2) = {λ ,λ +1} for some λ ∈ C . If Q1 < Q3 < Q2 or Q3 < Q1 < Q2 ,
then (Q1 +Q3−Q2)3 = Q1 +Q3−Q2 . It follows that σ(Q1 +Q3−Q2) = {−1,0,1} ,
which is a contradiction.

REMARK 1. Similarly, Φ̂−1(= Φ̂−1) also satisfies the same conclusion of Claim
5.

In the following, from Claim 6 to Claim 12, let M be a semi-finite von Neumann
algebra factor on a complex Hilbert space H with dimension greater than 3 and let P1

be a fix projection. Set P2 = I −P1 and Qi = Φ̂(Pi), i = 1,2. Notice that Q1,Q2 ∈
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P(M )\ {0, I} and Q1 +Q2 = I by Claim 4. Let Mi j = PiMPj and Ni j = QiMQj ,
i, j = 1,2. Then M = ∑2

i, j=1 Mi j = ∑2
i, j=1 Ni j .

Claim 6.

(1) If there exists E1 ∈ P(M )\{0, I} such that E1 < P1 and Φ̂(E1) < Φ̂(P1) = Q1

or E1 > P1 and Φ̂(E1) > Φ̂(P1) = Q1 , then for any E ∈ P(M )\ {0, I},E < P1

implies Φ̂(E) < Q1 and E > P1 implies Φ̂(E) > Q1 . Moreover, E < P2 implies
Φ̂(E) < Q2 and E > P2 implies Φ̂(E) > Q2 .

(2) If there exists E1 ∈ P(M )\{0, I} such that E1 < P1 and Φ̂(E1) > Φ̂(P1) = Q1

or E1 > P1 and Φ̂(E1) < Φ̂(P1) = Q1 , then for any E ∈ P(M )\ {0, I},E < P1

implies Φ̂(E) > Q1 and E > P1 implies Φ̂(E) < Q1 . Moreover, E < P2 implies
Φ̂(E) > Q2 and E > P2 implies Φ̂(E) < Q2 .

We only prove (1). The proof of (2) is similar. Assume that there exists E1 ∈
P(M ) \ {0, I} such that E1 < P1 and Φ̂(E1) < Φ̂(P1) = Q1 . For any E ∈ P(M ) \
{0, I} , if E > P1 , then E1 < P1 < E . By Claim 5, we can get Φ̂(E1) < Q1 < Φ̂(E) . If
E < P1 , by Claim 5, either Φ̂(E) > Q1 or Φ̂(E) < Q1 . If Φ̂(E) > Q1 , then we have
Φ̂(E) > Q1 > Φ̂(E1) . By Remark 1, applying Φ̂−1 to Claim 5, we have E1 < P1 < E ,
which is a contradiction. Hence Φ̂(E) < Q1 . The case that there exists E1 ∈ P(M )\
{0, I} such that E1 > P1 and Φ̂(E1) > Φ̂(P1) = Q1 is dealt with in the same way.

If E < P2 , then I−E > P1 . By Claim 4 and the above proof, we have Φ̂(I−E) =
I− Φ̂(E) > Q1 . Hence Φ̂(E) < 1−Q1 = Q2 . The proof of the case E > P2 is similar.

REMARK 2. If Φ satisfies the assumption of Claim 6(1), then for any F ∈P(M )\
{0, I} , F < Q1 implies Φ̂−1(F) < P1 and F > Q1 implies Φ̂−1(F) > P1 . Similarly,
if Φ satisfies the assumption of Claim 6(2), then for any F ∈ P(M )\ {0, I} , F < Q1

implies Φ̂−1(F) > P1 and F > Q1 implies Φ̂−1(F) < P1 .
By Claim 6, we may extend the definition of Φ̂ to all of P(M ) by Φ̂(0) =

0,Φ̂(I) = I if Φ̂ satisfies Claim 6(1), and Φ̂(0) = I,Φ̂(I) = 0 if Φ̂ satisfies Claim 6(2).
Up to now, we have proved that, if Φ satisfies the assumption of Theorem 2.7,

then either Claim 6(1) or Claim 6(2) occurs. So we will prove Theorem 2.7 in two
cases.

Case 1. Assume that the case of Claim 6(1) occurs.

Claim 7. Let Φ be a surjective 2-local ∗ -Lie automorphism satisfying Claim 6(1).
Then Φ(Mi j) = Ni j , 1 � i �= j � 2 .

We only prove the case of i = 1, j = 2. The proof of the case of i = 2, j = 1 is
similar. For any A12 ∈ M12 , noticing that A12 = [A12,P2] , we have that

Φ(A12) =ΦA12,P2(A12) = ΦA12,P2([A12,P2]) = [ΦA12,P2(A12),ΦA12,P2(P2)∗]
=[Φ(A12),Φ(P2)∗] = [Φ(A12),Q2] = Q1Φ(A12)Q2 −Q2Φ(A12)Q1.

Multiplied by Q2 on the left and Q1 on the right hand side of the above equality, we
obtain Q2Φ(A12)Q1 = 0, which implies Φ(M12) ⊆ N12 .
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On the other hand, noticing that Φ̂−1 = Φ̂−1 by Claim 3 and applying the same
argument to Φ−1 , we can prove that N12 ⊆ Φ(M12) . Hence N12 = Φ(M12) .

Claim 8. Let M be a semi-finite von Neumann algebra factor on a complex
Hilbert space with dimension of H greater than 3 and let Φ be a surjective 2-local
∗ -Lie automorphism of M satisfying Claim 6(1). Then there exists a homogeneous
map fi : Mii → C such that Φ(Aii)− fi(Aii) ∈ Nii , for all Aii in Mii, i = 1,2 , and
fi is unique. Moreover, for each Bii ∈ N , there exists Aii ∈ Mii such that Φ(Aii) =
Bii + fi(Aii)I .

We only prove the case i = 1. The proof of the case i = 2 is similar.
Let Φ(A11) = B11 +B12 +B21 +B22 , for any A11 ∈ M11 . Then

0 = ΦA11,P1([A11,P1]) = [ΦA11,P1(A11),ΦA11,P1(P1)∗] = [Φ(A11),Φ(P1)∗] = [Φ(A11),Q1].

For the above equality, multiplied by Q1 on the left and Q2 on the right, it follows that
Q1Φ(A11)Q2 = 0, and similarly, Q2Φ(A11)Q1 = 0, which implies that B12 = B21 = 0.
Thus Φ(A11) = B11 +B22 . On the other hand, for each E ∈ P(M ) with E < P2 , by
Claim 6, we have Φ̂(E) < Q2 . Notice that [A11,E] = 0, then

0 =ΦA11,E([A11,E]) = [ΦA11,E(A11),ΦA11,E(E)∗] = [Φ(A11),Φ(E)∗] = [B11 +B22,Φ̂(E)]

=[B22,Φ̂(E)].

That is, B22Φ̂(E) = Φ̂(E)B22 for all projections E ∈ M with E < P2 . Combining
Φ̂(E) < Q2 with Lemma 2.6, we have B22 ∈ CQ2 . Thus there exists f1(A11) ∈ C such
that B22 = f1(A11)Q2 . Hence,

Φ(A11) = B11 + f1(A11)Q2 = B11− f1(A11)Q1 + f1(A11)I,

then Φ(A11)− f1(A11)I ∈ N11 .
We claim that f1 is unique. Otherwise, for any A11 ∈ M11 , suppose that

Φ(A11) = f1(A11)I +B11,Φ(A11) = f
′
1(A11)I +B

′
11.

Multiplied by Q2 on one side of the two above equalities, we can get f1(A11)Q2 =
f
′
1(A11)Q2 and then f1(A11) = f

′
1(A11) . It follows that f1 = f

′
1 .

It is obvious that f1 is homogeneous. Indeed, let A11 ∈ M11 and λ ∈ C . Then

Φ(A11)− f1(A11)I ∈ N11,Φ(λA11)− f1(λA11)I ∈ N11.

It follows that ( f1(λA11)−λ f1(A11))I ∈ N11 by the homogeneity of Φ . This forces
that f1(λA11) = λ f1(A11) .

Apply the preceding proof to Φ−1 for any B11 ∈ N11 . Thus for B11 ∈ N11 , there
exist A11 and λ ∈ C such that Φ−1(B11) = A11 + λ I and then Φ(A11 + λ I) = B11 .
By lemma 2.1 and Claim 1, we can get Φ(A11) = B11 + μI for some μ ∈ C . Hence
Φ(A11)− μI ∈ N11 . By the uniqueness of f1 , we have that μ = f1(A11) .

By the uniqueness of f1 and f2 in Claim 8, we can define a map Ψ : M →M by
Ψ(A) = ∑2

i, j=1 Φ(Ai j)− f1(A11)I− f2(A22)I for any A = ∑2
i, j=1 Ai j ∈ M .

Claim 9. For Ψ above, let Ai j ∈ Mi j,1 � i, j � 2 . Then
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(1) Ψ(Ai j) = Φ(Ai j),1 � i �= j � 2 ;

(2) Ψ(Mi j) = Ni j, i, j = 1,2 ;

(3) Ψ(Pi) = Qi, i = 1,2 ;

(4) Ψ(∑2
i, j=1 Ai j) = ∑2

i, j=1 Ψ(Ai j);

(5) Ψ is homogeneous and bijective;

(6) For any projection P ∈ M11
⋃

M22 , Ψ(P) = Φ̂(P) .

(1) and (4) can be easily obtained. For (2), if 1 � i �= j � 2, the equality is clear
by (1) and Claim 7. Otherwise, we only prove the case i = j = 1. The case i = j = 2
is similar. Let A11 ∈ M11 , by Claim 8, Ψ(A11) = Φ(A11)− f1(A11)I ∈ N11 . On the
contrary, also by Claim 8, for any B11 ∈ N11 , there exist A11 ∈ M and μ ∈ C such
that Φ(A11) = B11 + μI . Hence, by the uniqueness in Claim 8, Ψ(A11) = B11 .

For (3), by Claim 8, Φ(Pi) = Ψ(Pi)+ fi(Pi)I . On the other hand, by the definition
of Φ̂ , we have Φ(Pi) = Φ̂(Pi) + λPiI = Qi + λPi I . Noticing that Qi ∈ Mii , by the
uniqueness in Claim 8 , we get Ψ(Pi) = Qi, i = 1,2.

For (5), the homogeneity of Ψ can be obtained directly by the homogeneity of
Φ, f1 and f2 . We only need to prove that Ψ is injective. Let A,B ∈ M and Ψ(A) =
Ψ(B) . By the definition of Ψ , we have

Ψ(A) = (Φ(A11)− f1(A11)I)+ Φ(A12)+ Φ(A21)+ (Φ(A22)− f2(A22)I),

and

Ψ(B) = (Φ(B11)− f1(B11)I)+ Φ(B12)+ Φ(B21)+ (Φ(B22)− f2(B22)I).

Multiplied by Q1 on the left and Q2 on the right of the above equalities, we get

Q1Ψ(A)Q2 = Q1Φ(A12)Q2,Q1Ψ(B)Q2 = Q1Φ(B12)Q2.

Since Ψ(A) = Ψ(B) , Q1(Φ(A12)−Φ(B12))Q2 = 0. By Claim 7, Φ(A12)−Φ(B12) ∈
N12 , and then Φ(A12)−Φ(B12) = 0. Since Φ is bijective, A12 = B12 . Similarly,
A21 = B21 . Multiplied by Q1 on the two sides of the above equalities, we get

Φ(A11)− f1(A11)I = Φ(B11)− f1(B11)I.

Then Φ(A11)−Φ(B11) = λ I for some λ ∈ C . By Claim 1, Φ(A11 −B11) = μI for
some μ ∈ C . It follows that A11 −B11 ∈ CI ∩M11 by Lemma 2.1. This forces that
A11 = B11 . Similarly, A22 = B22 . Hence A = B .

Finally, we prove that Ψ is surjective. Indeed, for any B ∈ M ,B = B11 +B12 +
B21 +B22 , where Bi j = QiBQj ∈ Ni j . By Claim 8, for Bii ∈ Nii, i = 1,2, there exists
Aii ∈ Mii such that Φ(Aii) = Bii + fi(Aii)I and then Bii = Φ(Aii)− fi(Aii)I . For Bi j ,
1 � i �= j � 2, there exists Ai j ∈ Mi j such that Φ(Ai j) = Bi j . Let A = A11 +A12 +
A21 +A22 ∈ M by Claim 7. It follows that Ψ(A) = (Φ(A11)− f1(A11)I)+ Φ(A12)+
Φ(A21)+ (Φ(A22)− f2(A22)I) = B11 +B12 +B21 +B22 = B .
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For (6), we only prove the case P ∈ M11 . The case P ∈ M22 is similar. For
any projection P ∈ M11 , Ψ(P) = Φ(P)− f1(P)I = Φ̂(P)+ λ I− f1(P)I for some λ ∈
C . Then Ψ(P) = Φ̂(P)+ μI for some μ ∈ C . We observe that Ψ(P) ∈ N11 , thus
Φ̂(P)Q2 = −μQ2 . Noticing that P � P1 , by Claim 6, Φ̂(P) � Q1 , then Φ̂(P)Q2 = 0.
It follows that μ = 0. Hence Ψ(P) = Φ̂(P) .

Claim 10. Ψ is linear.

By Claim 9 (4) and (5), we only need to prove that Ψ is additive on Mi j for
i, j = 1,2. Let A12,B12 ∈ M12 . By Claim 1 and Claim 9(1),(2), we have that

Ψ(A12 +B12)−Ψ(A12)−Ψ(B12) = Φ(A12 +B12)−Φ(A12)−Φ(B12) = λ I = C12

for some λ ∈ C and C12 ∈ M12 . This forces λ = 0, which implies Ψ(A12 +B12) =
Ψ(A12)+ Ψ(B12) . Hence Ψ is additive on M12 . Similarly, Ψ is additive on M21 .
Let A11 and B11 ∈ M11 . By Claim 1 and Claim 9(2), we obtain that

Ψ(A11 +B11)−Ψ(A11)−Ψ(B11)
=Φ(A11 +B11)− f1(A11 +B11)I−Φ(A11)+ f1(A11)I−Φ(B11)+ f1(B11)I = λ I = C11

for some λ ∈ C and C11 ∈ M11 . This forces λ = 0, which implies Ψ(A11 +B11) =
Ψ(A11)+ Ψ(B11) . Hence Ψ is additive on M11 . Similarly, Ψ is additive on M22 .

Claim 11. Ψ(A∗) = Ψ(A)∗ for any A ∈ M and Ψ preserves the commutativity.

First, we prove Ψ(A∗) = Ψ(A)∗ for any A ∈ M .
Indeed, by Claim 10, we only need to prove that Ψ(A∗

i j) = Ψ(Ai j)∗ for i, j =
1,2. Let A12 ∈ M12 . By Lemma 2.3, ΦA12,A

∗
12

= ±σ + τ , where σ commutes with
∗ . Notice that A12 is a commutator. Hence, we obtain that Ψ(A∗

12) = Φ(A∗
12) =

ΦA12,A∗
12

(A∗
12) = σ(A∗

12) = σ(A12)∗ = ΦA12,A∗
12

(A12)∗ = Φ(A12)∗ = Ψ(A12)∗. Similarly,
Ψ(A∗

21) = Ψ(A21)∗ .
Let A11 ∈ M11 . By Lemma 2.3, ΦA11,A∗

11
= ±σ + τ , where σ commutes with ∗ .

Thus, Φ(A∗
11)−Φ(A11)∗ = τ(A∗

11)−τ(A11)∗ ∈CI . It follows that Ψ(A∗
11)−Ψ(A11)∗ =

τ(A∗
11)− τ(A11)∗ + f1(A11)I − f1(A∗

11)I ∈ CI . Let Ψ(A∗
11)−Ψ(A11)∗ = λ I = C11 for

some λ ∈ C and C11 ∈M11 , This forces λ = 0. Hence Ψ(A∗
11) = Ψ(A11)∗ . Similarly,

Ψ(A∗
22) = Ψ(A22)∗ .
In the following, we prove that Ψ preserves the commutativity.
Let A,B ∈ M with AB = BA . Since Ψ(A∗) = Ψ(A)∗ for any A ∈ M , then

0 =ΦA,B∗([A,B]) = [ΦA,B∗(A),ΦA,B∗(B∗)∗] = [Φ(A),Φ(B∗)∗] = [Ψ(A),Ψ(B∗)∗]
=[Ψ(A),Ψ(B)]

which implies Ψ(A)Ψ(B) = Ψ(B)Ψ(A) .

Claim 12. Ψ is a ∗ -automorphism.
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Since Ψ is a bijective ∗ -linear map preserving the commutativity, it follows from
[22, Theorem 2] that

Ψ = αφ + τ1,

where α ∈ C \ {0} , φ is an automorphism or anti-automorphism of M , and τ1 is a
linear map from M to CI . Next, we shall prove the claim in three steps.
Step 1. We prove that α = 1.

For i = 1,2, we have that

Qi = Ψ(Pi) = αφ(Pi)+ βiI,

for some βi ∈ C . Noticing that Qi and φ(Pi) are idempotents, we have that

αφ(Pi)+ βiI = (α2 +2αβi)φ(Pi)+ β 2
i I.

Thus,
(α −α2−2αβi)φ(Pi) = (β 2

i −βi)I.

Noticing that φ(Pi) ∈ P(M ) and φ(Pi) /∈ CI , we have α −α2−2αβi = 0 and β 2
i −

βi = 0. Hence, α = 1,βi = 0, i = 1,2 or α = −1,βi = 1, i = 1,2.
We claim that α = 1,βi = 0, i = 1,2. Otherwise α = −1,βi = 1, i = 1,2. Let

E ∈ P(M )\ {0, I} with E < P2 . By Claim 6 and Claim 9(6), we obtain that

−φ(E)+ γI = Ψ(E) = Φ̂(E) < Φ̂(P2) = Ψ(P2) = −φ(P2)+ I,

for some γ ∈ C . Noticing that Φ̂(E),Φ̂(P2) ∈ P(M )\ {0, I} , we have that

(−φ(E)+ γI)(−φ(P2)+ I) = −φ(E)+ γI.

By the simple computation, we can get that φ(E) = φ(γP2) . Thus E = γP2 , which is a
contradiction. Hence α = 1,βi = 0 and Qi = φ(Pi), i = 1,2.
Step 2. We will prove that φ is an automorphism.

Otherwise, let A12 be a non-zero element in M12 . If φ is an anti-automorphism,
then by Claim 9(2),

Ψ(A12) = Q1Ψ(A12)Q2 = Q1φ(A12)Q2 = φ(P1)φ(A12)Q2 = φ(A12P1)Q2 = 0.

Thus A12 = 0, which is a contradiction. Hence φ is an automorphism.
Up to now, we have proved that Ψ = φ + τ1 and φ(Pi) = Qi , where φ is an

automorphism of M and τ1 is a map from M to CI .
Step 3. We will show that τ1 ≡ 0.

Indeed, φ(Ai j) = φ(Pi)φ(Ai j)φ(Pj) = Qiφ(Ai j)Qj ∈ Ni j for all Ai j ∈ Mi j, i, j =
1,2. On the other hand, Ψ(Ai j) = φ(Ai j)+ τ1(Ai j) ∈ Ni j, i, j = 1,2. This forces that
τ1(Ai j) = 0 for all Ai j ∈Mi j, i, j = 1,2. Then Ψ(A) = φ(A) for any A∈M . It follows
that τ1 ≡ 0.

Hence, Ψ is a ∗ -automorphism.
Finally, we shall prove Theorem 2.7 in two cases.

Case 1. Assume that Φ satisfies Claim 6(1).
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For any A ∈ M , we define τ(A) = Φ(A)−Ψ(A) . Then Φ = Ψ + τ . We get the
homogeneity of τ directly by the the homogeneity of Φ and Ψ . Moreover, by the
definition of Ψ , it follows that τ is a map from M into CI . In the following, we will
prove that τ vanishes on very sum of commutators.

Since M is a semi-finite von Neumann algebra factor on a complex Hilbert space
H with dimension greater than 3, then there exist three non-trivial projections P1,P2,P3 ∈
M such that P1+P2+P3 = I and P1P2 = P1P3 = P2P3 = 0. Now let P0 = P1+2P2+4P3

and let E ∈ M be a sum of commutators. Then by the definition of 2-local ∗ -Lie au-
tomorphism and Lemma 2.3, we have

Φ(E) = ΦP0,E(E) = πP0,E(E),Φ(P0) = ΦP0,E(P0) = πP0,E(P0)+ λ I

for some λ ∈ C , where πP0,E is a ∗ -automorphism or the negative of a ∗ -anti-
-automorphism of M . On the other hand,

Φ(E) = Ψ(E)+ τ(E),Φ(P0) = Ψ(P0)+ τ(P0),

where Ψ is a ∗ -automorphism and τ is a homogeneous map from M into CI . Thus,

Ψ(P0)+ τ(P0) = Φ(P0) = πP,E(P0)+ λ I,Ψ(E)+ τ(E) = Φ(E) = πP0,E(E).

If πP0,E is the negative of an anti-automorphism, taking the spectrum, we have σ(P0) =
−σ(P0)+ μ for some μ ∈ C , that is, {1,2,4} = {−1+ μ ,−2+ μ ,−4+ μ} , which is
a contradiction. So πP0,E must be an automorphism. Moreover, σ(E) + ν = σ(E) ,
where τ(E) = νI , which implies that ν = 0. Hence τ(E) = 0.

Up to now, we proved that τ is a homogeneous map from M into CI vanishing
on very sum of commutators.
Case 2. Assume that Φ satisfies Claim 6(2). Then Φ = −Ψ+ τ , where Ψ is a linear
∗ -anti-automorphism of M , and τ is a homogeneous map from M into CI vanishing
on very sum of commutators.

Similar arguments to those given in the proof of Case 1 are valid for the proof of
Case 2. Combining Case 1 with Case 2, we give the proof of Theorem 2.7.

Acknowledgement. This work is partially supported by National Natural Science
Foundation of China (11871375) and Fundamental Research Funds for the Central Uni-
versities.

RE F ER EN C ES

[1] R. V. KADISON, Local derivations, J. Algebra. 130 (1990), no. 2,494–509.
[2] D. R. LARSON, A. R. SOUROUR, Local derivations and local automorphisms of B(X), Proc. Sympos.

Pure Math. 51 (1990),187–194.
[3] R. L. CRIST, Local derivations on operator algebras, J. Funct. Anal. 135 (1996), no. 1, 76–92.
[4] A. B. A. ESSALEH, A. M. PERALTA, M. I. RAMÍREZ, Weak-local derivations and homorphisms on
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