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UNIFORM LOCAL LIPSCHITZ CONTINUITY OF EIGENVALUES

WITH RESPECT TO THE POTENTIAL IN L1[a,b]

XIAO CHEN AND JIANGANG QI ∗

(Communicated by J. Behrndt)

Abstract. The present paper shows that the eigenvalue sequence {λn(q)}n�1 of regular Sturm-
Liouville eigenvalue problem with certain monotonic weights is uniformly Lipschitz continuous
with respect to the potential q on any bounded subset of L1([a,b],R) .

1. Introduction

Consider the regular Sturm-Liouville eigenvalue problem associated to the second
order differential equation

− (p(x)y(x)′)′ +q(x)y(x) = λ ω(x)y(x) on [a,b] (1.1)

with the self-adjoint separated boundary conditions

y(a)cosα +(py′)(a)sinα = 0, y(b)cosβ +(py′)(b)sinβ = 0, (1.2)

where α, β ∈ [0,π), λ is the spectral parameter,

1
p
, q, ω ∈ L1([a,b],R), p, ω > 0 a.e. on [a,b]. (1.3)

Here L1[a,b] denotes the Banach space of all Lebesgue integrable, complex valued
functions on the closed interval [a,b]⊂R equipped with the canonical L1 -norm ‖·‖L1 .
The subspace of real valued functions of L1[a,b] is denoted by L1([a,b],R) .

Under the natural condition (1.3), the eigenvalue problem, (1.1) and (1.2), admits
only countably infinite number of real eigenvalues which are isolated, bounded below
and unbounded above by the spectral theory of differential operators.

Fix p and ω , let λn(q) be the n th eigenvalue with respect to the potential function
q . It is well known that

−∞ < λ1(q) < λ2(q) < · · · < λn(q) < · · · , (1.4)
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and
λn(q) → ∞ as n → ∞. (1.5)

Moreover, λn(q) can be viewed as a functional on L1([a,b],R) for every n � 1. It
is also known that λn(q) is continuous, and even differentiable, with respect to q in
L1[a,b] (see e.g. [9] as well as [3], [6] and [8]).

The continuity and differentiability of eigenvalues provide efficient tools in the
study of properties of eigenvalues and eigenfunctions as well as in other related fields.
In the recent years, Professor Meirong Zhang and his collaborators have obtained fruit-
ful results on weak and strong continuity of eigenvalues and eigenvalue-pairs of several
kinds of eigenvalue problems (see e.g. [16], [12], [2], [15], [13] and [14] as well as [4]
and [5]).

The main topic of this paper is the study of a new continuity, called uniform local
Lipschitz continuity, of the eigenvalue sequence {λn(q)}n�1 with respect to the poten-
tial function q in L1([a,b],R) .

DEFINITION 1.1. The eigenvalue sequence {λn(q)}n�1 of (1.1)-(1.2) is said to be
uniformly locally Lipschitz continuous with respect to the potential q in L1([a,b],R) ,
if, for any L1 -norm bounded subset Ω ⊂ L1([a,b],R) , there exists a positive number
C(Ω) such that

|λn(q1)−λn(q2)| � C(Ω)‖q1−q2‖L1 (1.6)

for all n � 1 , q1,q2 ∈ Ω .

Note that C(Ω) is independent of the index n of the eigenvalues {λn(q)}n�1 ,
and hence this local Lipschitz continuity is uniform for all n � 1. This is exactly the
meaning of the word “uniformly” in the definition above.

The present paper shows that, under some appropriate conditions, the eigenvalue
sequence {λn(q)}n�1 has the desired continuity above. This result will provide a new
tool or idea for the further study of Sturm-Liouville eigenvalue problem.

The paper is structured as follows. In Section 2, we present in Section 2.1 the
content of the main theorem, and introduce some notations in Section 2.2 as well as
recalling some known facts as preliminary which are crucial for the proof of our results.
In Section 3, we conclude the proofs of some auxiliary lemmas, and further prove the
main theorem.

2. The main theorem and preliminary

Throughout this paper, we denote by R the field of real numbers.
The symbol L2

ω [a,b] denotes the weighted Hilbert space of all Lebesgue mea-
surable, complex valued functions f on [a,b] satisfying

∫ b
a ω | f |2 < ∞ with the norm

‖ f‖ω = (
∫ b
a ω | f |2) 1

2 and the inner product 〈 f ,g〉ω =
∫ b
a ω f g .

We denote by L∞[a,b] the Banach space of all essentially bounded, complex
valued functions on [a,b] equipped with the canonical essential norm ‖·‖∞ , and by
AC[a,b] the space of all absolutely continuous, complex valued functions on [a,b] .
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2.1. The main theorem

Since p > 0 a.e. and 1/p∈ L1([a,b],R) , it is easily seen that, under the following
transformation L of independent variables, called Liouville transformation (see e.g.
[11, Page 2293]),

s =
∫ x

a

1
p(t)

dt := L (x), ỹ(s) = y(L −1(s)), (2.1)

the problem (1.1) and (1.2) for y(x) is rewritten as the problem for ỹ(s) in the form

− ỹ′′(s)+ q̃(s)ỹ(s) = λ ω̃(s)ỹ(s) on [0,c], c =
∫ b

a

1
p(t)

dt, (2.2)

ỹ(0)cosα + ỹ′(0)sinα = 0, ỹ(c)cosβ + ỹ′(c)sinβ = 0, (2.3)

where α, β ∈ [0,π), q̃(s)= p(L −1(s))q(L −1(s)) and ω̃(s)= p(L −1(s))ω(L −1(s)) .
It is not difficult to check that q̃ , w̃ and ỹ satisfy the corresponding condition (1.3)

with [a,b] replaced by [0,c] . More importantly, the eigenvalues of (1.1)-(1.2) are the
same as those of (2.2)-(2.3).

Furthermore, for any common eigenvalue λ of both (1.1)-(1.2) and (2.2)-(2.3),
denote by Eλ and Ẽλ the spaces of eigenfunctions associated to λ , respectively. Then
the map y(x) 
→ ỹ(s) sets up an isometry from Eλ ⊂ L2

ω [a,b] onto Ẽλ ⊂ L2
ω̃ [0,c] , and

ỹ(s) on [0,c] has the same range as that of y(x) on [a,b] .
Hence, for simplicity, in the following theorem, we consider the equation (1.1) for

the case p ≡ 1 on the unit interval [0,1] , i.e., the eigenvalue problem

− y′′(x)+q(x)y(x) = λ ω(x)y(x) on [0,1], (2.4)

y(0)cosα + y′(0)sinα = 0, y(1)cosβ + y′(1)sinβ = 0, (2.5)

where
α, β ∈ [0,π), q, ω ∈ L1([0,1],R), ω > 0 a. e. on [0,1],

instead of the problem (1.1) and (1.2). Furthermore, we present two hypotheses for the
weight function ω of (2.4)-(2.5) below:

H1: ω(x) is monotonic on [0,1] ;

H2: infx∈[0,1] ω(x) > 0.

In the present paper, we mainly prove the following result.

THEOREM 2.1. Suppose that the weight function ω of the eigenvalue problem
(2.4) and (2.5) satisfies both of two hypothesises H1 and H2 above. Then the eigenvalue
sequence {λn(q)}n�1 of (2.4)-(2.5) is uniformly locally Lipschitz continuous, in the
sense of Definition 1.1, with respect to the potential q in L1([0,1],R) .
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2.2. Notations and preliminary

For the benefit of the reader, we recall some well-known facts needed later.

2.2.1. Differentiability of eigenvalues with respect to potential functions

In this paper, by a normalized eigenfunction of (1.1)-(1.2) with a non-negative
weight function ω we mean an eigenfunction ϕ satisfying ‖ϕ‖ω = 1.

The following theorem shows the differentiability of eigenvalues of (1.1)-(1.2)
with respect to the potential functions.

THEOREM 2.2. For any integer n � 1 and q0 ∈ L1([0,1],R) , there exists a neigh-
borhood U(q0) of q0 such that, the map

λn : U → R, q ∈U 
→ λn(q) ∈ R

is differentiable at q0 , and its Fréchet derivative is the bounded linear functional given
by

∂λn(q)
∂q

∣∣∣
q=q0

·h =
∫ 1

0
ϕ2

n (x;λn(q0))h(x)dx, (2.6)

where h ∈ L1([0,1],R) , and ϕn is a normalized eigenfunction associated to λn(q0) of
(1.1)-(1.2).

Theorem 2.2 can be viewed as a special case of a well-known theorem [3, Theorem
4.2(6)] provided by Kong and Zettl. For more details about the differentiability of
eigenvalues, the reader also may refer to [9, Theorem 3.6.1] and [6].

2.2.2. Prüfer transformation

Prüfer transformation is an important tool in the study of Sturm-Liouville problem,
and has several variants (see e.g. [9] as well as [1], [10] and [16]). In the following, we
introduce the elliptic Prüfer transformation.

Consider the problem (2.4) and (2.5). Set

ρ(x;λ ) =
√

λy2(x;λ )+ (y′)2(x;λ ), θ (x;λ ) = arctan

√
λy(x;λ )
y′(x;λ )

, (2.7)

λ � 0, θ (0;λ ) ∈ R, ρ(0;λ ) > 0.

Then

θ ′(x;λ ) =
√

λ
(
cos2 θ (x;λ )+ ω(x)sin2 θ (x;λ )

)− 1√
λ

q(x)sin2 θ (x;λ ) (2.8)

is independent of ρ . The equation (2.8) is usually called the Prüfer equation, and ρ
satisfies

ρ ′(x;λ ) =

√
λ
2

(
1−ω(x)+

1
λ

q(x)
)

ρ(x;λ )sin2θ (x;λ ). (2.9)
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3. The proof of Theorem 2.1

To prove our main theorem, we need to prove some lemmas and propositions as
preparation. At first, consider the initial value problem

− y′′(x) = λ ω(x)y(x) on [0,1], y(0) = c1, y′(0) = c2, (3.1)

where c1 � 0, c2 ∈ R , ω ∈ L1([0,1],R) and ω > 0 a.e. on [0,1] .
Applying Prüfer transformation in Section 2.2.2 to (3.1), we obtain the Prüfer

equation for the case q ≡ 0 as follows:

θ ′(x;λ ) =
√

λ (cos2 θ (x;λ )+ ω(x)sin2 θ (x;λ )) (3.2)

with the initial condition θ (0;λ ) = arctan
√

λc1
c2

∈ [0,π) , and ρ satisfies

ρ ′(x;λ ) =

√
λ
2

ρ(x;λ )(1−ω(x))sin2θ (x;λ ), ρ(0;λ ) =
√

λc2
1 + c2

2 ∈ (0,+∞). (3.3)

Consequently, the solution y(x;λ ) of (3.1) has the following expression:

y(x;λ ) =
1√
λ

ρ(x;λ )sinθ (x;λ ), (3.4)

where
ρ(x;λ ) = ρ(0;λ ) · e

√
λ

2
∫ x
0 (1−ω(t))sin2θ(t;λ )dt . (3.5)

Set

H(x;λ ) :=

√
λ
2

∫ x

0
h(t)sin2θ (t;λ )dt, (3.6)

where h(t) = 1−ω(t) .

LEMMA 3.1. Let θ be defined as in (3.2) and ω(x) be in L1[0,1] . If ω(x) � 0
a.e. on [0,1] and

∫ 1
0 ω(x)dx > 0 , then

lim
λ→+∞

θ (1;λ ) = +∞, (3.7)

and θ (x;λ ) is nondecreasing on [0,1] for any fixed λ � 0 .

Proof. Since ω(x) � 0 a.e. on [0,1] and
∫ 1
0 ω(x)dx > 0, the limit equation fol-

lows from

θ(1;λ )−θ(0;λ )=
√

λ
∫ 1

0

(
cos2 θ(x;λ )+ω(x)sin2 θ(x;λ )

)
dx�

√
λ
∫ 1

0
min{ω(x),1}dx.

Immediately, the remainder is proved, since the Prüfer equation (3.2), together with
ω � 0, shows that

θ ′(x;λ ) � 0

for any x ∈ [0,1] and λ � 0. �
The following is the key lemma for the main theorem in this paper.
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LEMMA 3.2. Let θ be defined as in (3.2). Assume that both of two hypotheses
H1 and H2 hold. If g(x) : [0,1] → R is a function whose total variation on [0,1] is
finite, then ∫ c

0
g(x)sin2θ (x;λ )dx = O

(
1√
λ

)
, (3.8)

and ∫ c

0
g(x)cos2θ (x;λ )dx = O

(
1√
λ

)
, (3.9)

for any c ∈ [0,1] .

Proof. Here we only prove this lemma when ω is increasing. For the case that ω
is decreasing, by using the transform t = 1− x , we can keep the eigenvalues invariant,
and obtain the proof in the same way.

Since every function of bounded variation is the difference of two bounded mono-
tonic functions, we may further assume that g(x) is monotonic.

When c = 0, the proof is trivial.
First, we begin to prove (3.8) for c > 0.
Set

G(c;λ ) =

√
λ

2

∫ c

0
g(x)sin2θ (x;λ )dx, c ∈ (0,1]. (3.10)

Case 1 : assume that g(x) is decreasing and non-negative on [0,1] .

By Lemma 3.1, for any fixed x ∈ (0,1] and sufficiently large λ > 0 , we can find
two finite sequences

{xi}m
i=0, {s j}m−1

j=1 ⊆ [0, x ],

such that
0 = x0 < x1 < s1 < · · · < xm � x ,

satisfying for any 1 � k � m, 1 � j � m−1,

θ (xk;λ ) = kπ , θ (s j;λ ) = jπ +
π
2

, mπ � θ (x;λ ) � (m+1)π ,

and ensuring that for any x ∈ (x0,x1),

0 � θ (x;λ ) < π ,

which means that x1 is the smallest one of those x satisfying θ (x;λ ) = π . Since
g is decreasing, we know that, for any integer j ∈ {1,2, ...,m−1} ,

g(s j) � g(x) � g(x j), ω(x j) � ω(x) � ω(s j), x ∈ [x j,s j]; (3.11)

and

g(x j+1) � g(x) � g(s j), ω(s j) � ω(x) � ω(x j+1), x ∈ [s j,x j+1]. (3.12)
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Moreover, by the monotonicity of θ in Lemma 3.1, we have that

jπ � θ (x;λ ) � jπ +
π
2

, x ∈ [x j,s j],

and
jπ +

π
2

� θ (x;λ ) � ( j +1)π , x ∈ [s j,x j+1].

Hence,
sin2θ (x;λ ) � 0, x ∈ [x j,s j], (3.13)

and
sin2θ (x;λ ) � 0, x ∈ [s j,x j+1]. (3.14)

For simplicity, hereafter we denote θ (x;λ ) by θ (x) . Combining the inequali-
ties (3.11)-(3.14) and nonnegativity of h and w , we obtain that∫ s j

x j

g(s j)sin2θ (x)
cos2 θ (x)+ ω(s j)sin2 θ (x)

dθ (x)

�
∫ s j

x j

g(x)sin2θ (x)
cos2 θ (x)+ ω(x)sin2 θ (x)

dθ (x)

�
∫ s j

x j

g(x j)sin2θ (x)
cos2 θ (x)+ ω(x j)sin2 θ (x)

dθ (x), (3.15)

and ∫ x j+1

s j

g(s j)sin2θ (x)
cos2 θ (x)+ ω(s j)sin2 θ (x)

dθ (x)

�
∫ x j+1

s j

g(x)sin2θ (x)
cos2 θ (x)+ ω(x)sin2 θ (x)

dθ (x)

�
∫ x j+1

s j

g(x j+1)sin2θ (x)
cos2 θ (x)+ ω(x j+1)sin2 θ (x)

dθ (x). (3.16)

Define an auxiliary function as follows:

f (t) =
∫ π

2

0

g(t)sin2u

cos2 u+ ω(t)sin2 u
du, t ∈ [0,1]. (3.17)

Then, substituting θ (x) for u , by the periodicity of sin2u , we have that

f (t) =
∫ s j

x j

g(t)sin2θ (x)
cos2 θ (x)+ ω(t)sin2 θ (x)

dθ (x)

= −
∫ x j+1

s j

g(t)sin2θ (x)
cos2 θ (x)+ ω(t)sin2 θ (x)

dθ (x). (3.18)

So, it follows from (3.15)-(3.16) that

f (s j) �
∫ s j

x j

g(x)sin2θ (x)
cos2 θ (x)+ ω(x)sin2 θ (x)

dθ (x) � f (x j) (3.19)
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and

− f (s j) �
∫ x j+1

s j

g(x)sin2θ (x)
cos2 θ (x)+ ω(x)sin2 θ (x)

dθ (x) � − f (x j+1), (3.20)

where 1 � j � m−1. Adding together the two inequalities above, we have that

0 �
∫ x j+1

x j

g(x)sin2θ (x)
cos2 θ (x)+ ω(x)sin2 θ (x)

dθ (x) � f (x j)− f (x j+1), (3.21)

where 1 � j � m− 1. For the last interval [xm, x ] , it can be known, from the
similar argument as above, that⎧⎪⎨
⎪⎩

f (x) �
∫ x
xm

g(x)sin2θ(x)
cos2 θ(x)+ω(x)sin2 θ(x)

dθ (x) � f (xm), if mπ � θ (x) � mπ + π
2 ;

0�
∫ x
xm

g(x)sin2θ(x)
cos2 θ(x)+ω(x)sin2 θ(x)

dθ (x)� f (xm)− f (x), if mπ+ π
2 <θ (x)�(m+1)π.

(3.22)
From monotonicity and non-negativity of h and ω , it is apparent that f (t) is
non-negative and decreasing on [0,1] , and so

0 � f (t) � f (0) =
∫ π

2

0

g(0)sin2u

cos2 u+ ω(0)sin2 u
du < +∞, (3.23)

where the finiteness of the integral in (3.23) owes to ω(0) > 0. Then, it follows
from (3.21)–(3.22) that, for the x arbitrarily given above,

0 �
(

m−1

∑
j=1

∫ x j+1

x j

+
∫ x

xm

)
g(x)sin2θ (x)

cos2 θ (x)+ ω(x)sin2 θ (x)
dθ (x) � f (x1) � f (0).

(3.24)
Moreover, since ω(0) > 0, we also have that∣∣∣∣

∫ x1

x0

g(x)sin2θ (x)
cos2 θ (x)+ ω(x)sin2 θ (x)

dθ (x)
∣∣∣∣� πg(0)

min{ω(0),1} . (3.25)

Notice that

G(x ;λ ) =

√
λ

2

∫ x

0
g(x)sin2θ (x;λ )dt

=

√
λ

2

(∫ x1

x0

+
m−1

∑
j=1

∫ x j+1

x j

+
∫ x

xm

)
g(x)sin2θ (x)dx

=
1
2

(∫ x1

x0

+
m−1

∑
j=1

∫ x j+1

x j

+
∫ x

xm

)
g(x)sin2θ (x)

cos2 θ (x)+ ω(x)sin2 θ (x)
dθ (x).

(3.26)

Set

G0 := f (0)+
πg(0)

min{ω(0),1} .
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Therefore, from (3.24)–(3.26) and the arbitrariness of x , we can derive that, for
any c ∈ [0,1] and sufficiently large λ > 0, one has

|G(c;λ )| � G0

2
< +∞, (3.27)

which implies (3.8) in Case 1.

Case 2 : assume that g(x) is decreasing on [0,1] , but is not needed to be non-negative.

Let u(x) = g(x)− g(1) and v(x) ≡ 1. Then u(x) is non-negative and also de-
creasing on [0,1] , and g(x) = u(x)+g(1)v(x) . So, for any c ∈ [0,1] , we have∫ c

0
g(x)sin2θ (x;λ )dx =

∫ c

0
u(x)sin2θ (x;λ )dx+g(1)

∫ c

0
v(x)sin2θ (x;λ )dx.

Applying the result in Case 1 to the functions u and v , we obtain (3.8) in Case
2.

Case 3 : assume that g(x) is increasing on [0,1] .

Set u(x) = g(1)− g(x) and v(x) ≡ 1. So g(x) = g(1)v(x)− u(x) , and u(x) is
decreasing on [0,1] . Then (3.8) follows from the trick similar to that in Case 2.

From the argument above, the proof of (3.8) is done.
For (3.9), the proof is similar to that of (3.8). Set

G̃(c;λ ) =

√
λ

2

∫ c

0
g(x)cos2θ (x;λ )dx, c ∈ (0,1]. (3.28)

By Lemma 3.1, for any fixed x ∈ (0,1] and sufficiently large λ > 0 , we also can find
two finite sequences

{xi}m
i=0, {s j}m−1

j=1 ⊆ [0, x ],

such that
0 = x0 < x1 < s1 < · · · < xm � x,

satisfying for any 1 � k � m, 1 � j � m−1,

θ (xk;λ ) = kπ +
π
4

, θ (s j;λ ) = jπ +
3π
4

, mπ +
π
4

� θ (x ;λ ) � (m+1)π +
π
4

,

and ensuring that for any x ∈ (x0,x1),

0 � θ (x;λ ) <
5π
4

,

which means that x1 is the smallest one of those x satisfying θ (x;λ ) = 5π
4 . Then

G̃(x ;λ ) =
1
2

(∫ x1

x0

+
m−1

∑
j=1

∫ x j+1

x j

+
∫ x

xm

)
g(x)cos2θ (x)

cos2 θ (x)+ ω(x)sin2 θ (x)
dθ (x). (3.29)
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Moreover, it can be clearly seen that

jπ +
π
4

� θ (x;λ ) � jπ +
3π
4

, x ∈ [x j,s j],

and

jπ +
3π
4

� θ (x;λ ) � ( j +1)π +
π
4

, x ∈ [s j,x j+1].

Hence,
cos2θ (x;λ ) � 0, x ∈ [x j,s j], (3.30)

and
cos2θ (x;λ ) � 0, x ∈ [s j,x j+1]. (3.31)

Similar to (3.18), we define the corresponding auxiliary function as follows:

f̃ (t) =
∫ 3π

4

π
4

g(t)cos2u

cos2 u+ ω(t)sin2 u
du, t ∈ [0,1]. (3.32)

Note that f (t)∈ L∞[0,1] . Under the above setting (3.28)-(3.32), from lines of argument
similar to those of (3.8), it can be shown that, when g(x) is decreasing and non-negative
on [0,1] , for any c ∈ [0,1] and sufficiently large λ > 0, one has

∣∣G̃(c;λ )
∣∣� 1

2

(
| f (0)|+ 5π

4
· g(0)
min{ω(0),1}

)
, (3.33)

which implies (3.9) in Case 1. Similarly, (3.9) in both of Case 2 and Case 3 also can
be obtained.

This lemma is proved. �
The following result is a direct consequence of Lemma 3.2.

LEMMA 3.3. If both of H1 and H2 hold, then H(x;λ ) in (3.6) is uniformly bounded
for all sufficiently large λ > 0 .

The next lemma can be considered as an analogue of Riemann-Lebesgue lemma.

LEMMA 3.4. Let θ be defined as in (3.2). Assume that H1 holds. If g(x) is an
arbitrary element in L1([0,1],R) , then

lim
λ→+∞

∫ c

0
g(x)sin2θ (x;λ )dx = 0, (3.34)

and

lim
λ→+∞

∫ c

0
g(x)cos2θ (x;λ )dx = 0, (3.35)

for any c ∈ [0,1] .
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Proof. First, we claim that both of (3.34) and (3.35) hold when g(x) ∈ AC[0,1]
and ω satisfies both of two hypotheses H1 and H2. Since every absolutely continuous
function has bounded variation, this claim is obviously true because of Lemma 3.2.

Next, we retain H1 but remove H2. Set ωn = ω + 1
n . Since all of absolutely

continuous functions are dense in L1[0,1] , we can deduce by the above claim that
(3.34)-(3.35) hold for every ωn and any g(x)∈L1[0,1] . Consequently, (3.34)-(3.35) are
true for any non-negative monotonic weight ω and integrable function g(x) , since ωn

is uniformly convergent to ω on [0,1] and the Prüfer argument θ depends continuously
on its weight function (see [9, Theorem 4.5.1]). �

By the above lemmas, we can establish, on any bounded subset of L1([0,1],R) ,
the uniform boundedness of the normalized eigenfunctions of the eigenvalue problem
(2.4)-(2.5).

PROPOSITION 3.5. Consider the eigenvalue problem (2.4)-(2.5), and suppose that
the weight function ω satisfies H1–H2. Then, for any L1 -norm bounded subset Ω of
L1([0,1],R) , there exists a positive number M(Ω) such that, for any normalized eigen-
function ϕn(x;λn(q)) of (2.4)-(2.5), one has

|ϕn(x;λn(q))| � M(Ω)

for all n � 1 , q ∈ Ω and x ∈ [0,1] .

Proof. Consider the initial value problem as follows:

− y′′(x)+q(x)y(x) = λ ω(x)y(x) on [0,1], y(0) = C1, y′(0) = C2, (3.36)

where q, ω ∈ L1([0,1],R) , ω > 0 a.e. on [0,1] and C1, C2 are two arbitrary fixed real
numbers satisfying

C1 cosα +C2 sinα = 0, y(1)cosβ + y′(1)sinβ = 0 (3.37)

where α and β are given in the boundary condition (2.5).
We may as well assume that C1 �= 0.
Choose two linearly independent solutions φ and ψ of (3.1), such that φ(0) =

0, φ ′(0) = 1 and ψ(0) = 1, ψ ′(0) = 0. Clearly, Wronskian determinant

W [ψ ,φ ] = det

(
ψ(x) φ(x)
ψ ′(x) φ ′(x)

)

of ψ and φ equals to 1.
We may choose ψ and φ as follows:{

φ(x;λ ) = 1√
λ
r(x;λ )sinν(x;λ ), r(0;λ ) = 1, ν(0;λ ) = 0;

ψ(x;λ ) = μ(x;λ )sinσ(x;λ ), μ(0;λ ) = 1, σ(0;λ ) = π
2 .

(3.38)

where (r,ν) and (μ ,σ) satisfies the corresponding equation (3.5).
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So, by Prüfer transformation, we obtain that{
φ ′(x;λ ) = r(x;λ )cosν(x;λ ), φ(0;λ ) = 0, φ ′(0;λ ) = 1;
ψ ′(x;λ ) =

√
λ μ(x;λ )cosσ(x;λ ), ψ(0;λ ) = 1, ψ ′(0;λ ) = 0.

(3.39)

For the initial condition in (3.36), using the formula of variation of constant, we
can derive that the unique solution y(x;λ ) of (3.36) satisfies the integral equation

y(x;λ ) = C1ψ(x;λ )+C2φ(x;λ )+
∫ x

0
[φ(x;λ )ψ(t;λ )−φ(t;λ )ψ(x;λ )]q(t)y(t;λ )dt.

(3.40)
Putting (3.38) into (3.40), we have

y(x;λ )=C1μ(x;λ )sinσ(x;λ )+C2
1√
λ

r(x;λ )sinν(x;λ )+
1√
λ

∫ x

0
R(x; t;λ )q(t)y(t;λ )dt,

(3.41)
where R(x; t;λ)=r(x;λ)sinν(x;λ)μ(t;λ)sinσ(t;λ)−r(t;λ)sinν(t;λ)μ(x;λ)sinσ(x;λ) .

Because (r,ν) and (μ ,σ) satisfy the corresponding equation (3.5), it is easily
known from Lemma 3.3 that, there exists positive numbers M0 and K such that, for
any λ � K ,

|r(x;λ )sinν(x;λ )| � M0, (3.42)

and
|μ(x;λ )sinσ(x;λ )| � M0, (3.43)

and then,
|R(x;t;λ )| � 2M2

0 . (3.44)

Set
B(Ω) := sup{‖q‖L1 | q ∈ Ω}.

By the inequalities (3.41)-(3.44) and Gronwall inequality (see e.g. [9, Theorem 1.4.1(i)]
and [7, Theorem 1.3.2]), it is apparent that, for any λ � max{1,K} ,

|y(x;λ )| � |C1μ sinσ |+ |C2r sinν|√
λ

+
∫ x

0

|R(x; t;λ )q(t)|√
λ

y(t;λ )dt,

� (|C1|+ |C2|)M0 +
∫ x

0
|R(x;t;λ )q(t)|y(t;λ )dt

� (|C1|+ |C2|)M0 · e
∫ x
0 |R(x;s;λ )q(s)|ds � (|C1|+ |C2|)M0 · e2M2

0B(Ω), (3.45)

which implies that∣∣∣∣
∫ x

0
R(x;t;λ )q(t)y(t;λ )dt

∣∣∣∣� (|C1|+ |C2|)M0(e2M2
0B(Ω)−1). (3.46)

By (3.41), (3.42) and (3.46), it can be seen that, for any λ � max{1,K} ,

y(x;λ ) = C1μ(x;λ )sinσ(x;λ )+O(
1√
λ

). (3.47)
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And then, there exists a positive number M1 such that, for any λ � max{1,K} ,

C2
1 μ2(x;λ )sin2 σ(x;λ )−|y(x;λ )|2 � M1√

λ
. (3.48)

Let {λn}n�1 be the eigenvalue sequence of the eigenvalue problem (2.4)-(2.5).
Then the unique solution y(x;λn) of the initial value problem (3.36) is also a eigen-
function of (2.4)-(2.5) corresponding to λn . So we can find a number β (λn) such that

ϕn(x;λn) = β (λn)y(x;λn)

satisfying ∫ 1

0
ω(x) |ϕn(x;λn)|2 dx = 1.

Thereupon, we have

β 2(λn)
∫ 1

0
ω(x) |y(x;λn)|2 dx = 1. (3.49)

Since λn → +∞ as n → +∞ , there exists a sufficiently large positive integer N0

such that λn � max{1,K} for any n � N0 .
Hence, by (3.48) and (3.49), we have

β 2(λn)
∫ 1

0
ω(x)μ2(x;λn)sin2 σ(x;λn)dx � 1

C2
1

+
M1 ‖ω‖L1

C2
1

√
λn

β 2(λn), (3.50)

for any n � N0 .
Since (μ ,σ) satisfies the corresponding equation (3.5), the equation (3.50), to-

gether with μ(0;λ ) = 1, yields that,

β 2(λn)
∫ 1

0
ω(x)e2H(x;λn) sin2 σ(x;λn)dx � 1

C2
1

+
M1 ‖ω‖L1

C2
1

√
λn

β 2(λn), (3.51)

for any n � N0 .
Lemma 3.3 tells us that, there exists a positive number H0 and a sufficiently large

N1 � N0 such that

e−
H0
2 � eH(x;λn) � e

H0
2 , for any x ∈ [0,1] and n � N1 . (3.52)

Then, for any n � N1 , we have

β 2(λn)
∫ 1

0
ω(x)sin2 σ(x;λn)dx � eH0

C2
1

+
eH0M1 ‖ω‖L1

C2
1

√
λn

β 2(λn), (3.53)

that is,

β 2(λn)
∫ 1

0
ω(x)

1− cos2σ(x;λn)
2

dx � eH0

C2
1

+
eH0M1 ‖ω‖L1

C2
1

√
λn

β 2(λn). (3.54)
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So, by Lemma 3.4 and (1.5), for any fixed γ ∈ (0,1) , we can choose a sufficiently
large integer N � N1 , such that, as long as n � N , one has

∫ 1

0
ω(x)cos2σ(x;λn)dx � γ

∫ 1

0
ω (3.55)

and
eH0M1

C2
1

√
λn

<
(1− γ)

4
. (3.56)

Consequently, by the inequalities (3.54)-(3.56), we have

|β (λn)| < 1
|C1|

2e
H0
2√

(1− γ)‖ω‖L1

. (3.57)

Set

M(Ω) := max

{
M0e

2M2
0B(Ω)

(
1+
∣∣∣∣C2

C1

∣∣∣∣
)

2e
H0
2√

(1− γ)‖ω‖L1

, ‖ϕ1‖∞ , ...,‖ϕN−1‖∞

}
,

where ϕi is the unique normalized eigenfunction corresponding to the i th eigenvalue
λi .

Hence, it follows from (3.45) and (3.57) that, for any n � 1,

|ϕn(x;λn)| = |β (λn)y(x;λn)| � M(Ω).

The proof is finished. �
Now, it’s time to give the proof of Theorem 2.1.

Proof of Theorem 2.1. Set BM := {q ∈ L1[0,1] | ‖q‖L1 � M} , which is convex.
For any L1 -norm bounded subset Ω of L1([0,1],R) , set B(Ω) := sup{‖q‖L1 | q ∈ Ω} .
It is easily seen that Ω ⊂ BB(Ω) . Hence we only need to prove our result holds for
convex sets.

Let Ω be an arbitrary convex L1 -norm bounded subset of L1([0,1],R) . For any
two q1, q2 ∈ Ω and Δq = q2−q1 , set

qt(x) = q1(x)+ t ·Δq(x)

and
λ̃n(t) = λn(qt), t ∈ [0,1].

Let ϕn(x; t) be the unique normalized eigenfunction of λ̃n(t) . By Theorem 2.2, it
is apparent that

∂λn(qt)
∂qt

= ϕ2
n (x;t) (3.58)

as a bounded linear functional on L1([0,1],R) .
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Then, by (3.58), we obtain that

|λn(q2)−λn(q1)| =
∣∣∣λ̃n(1)− λ̃n(0)

∣∣∣= ∣∣∣∣
∫ 1

0

dλn(qt)
dt

dt

∣∣∣∣=
∣∣∣∣
∫ 1

0

∂λn(q)
∂q

∣∣∣
q=qt

· d(qt)
dt

dt

∣∣∣∣
=
∣∣∣∣
∫ 1

0

∂λn(q)
∂q

∣∣∣
q=qt

·Δq(x)dt

∣∣∣∣=
∣∣∣∣
∫ 1

0

∫ 1

0
ϕ2

n (x; t)Δq(x)dxdt

∣∣∣∣
�
∫ 1

0

∫ 1

0
ϕ2

n (x;t) |Δq(x)| dxdt. (3.59)

Finally, due to Proposition 3.5 and (3.59), the proof is done. �
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