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APPROXIMATE EQUIVALENCE OF REPRESENTATIONS OF AF

ALGEBRAS INTO SEMIFINITE VON NEUMANN ALGEBRAS

SHILIN WEN, JUNSHENG FANG AND RUI SHI ∗

(Communicated by H. Bercovici)

Abstract. In this paper, we extend the “compact operator” part of Voiculescu’s theorem on ap-
proximate equivalence of unital ∗ -homomorphisms of an AF algebra when the range is in a
countably decomposable, semifinite, properly infinite von Neumann factor. We also extend a re-
sult of Hadwin for approximate summands of representations into a finite von Neumann factor.

1. Introduction

For the past several decades, many contributions have been made in the field of
operator theory relative to general von Neumann algebras. Among them, Hadwin,
Zsidó, Kaftal, and many other people considered the Weyl-von Neumann theorem [12,
21,8,13,14], and its non-commutative versions [6,3] in general von Neumann algebras.

Inspired by the ten problems in Hilbert space proposed by Halmos [9], it is natural
to ask whether reducible operators in a von Neumann algebra R form a norm-dense
subset of R? An operator T ∈ R is said to be reducible in R , if there exists a non-
trivial projection P in R such that TP = PT . In 1976, Voiculescu gave an affirmative
answer to this question for the case R = B(H) , by proving the non-commutativeWeyl-
von Neumann theorem [18]. Enlightened by this, we obtained a series of results around
the extended Weyl-von Neumann theorem in the setting of semifinite von Neumann
algebras [8, 13, 14], recently. In the current paper, we continue to study the preceding
Voiculescu’s theorem (short for the Voiculescu’s non-commutative Weyl-von Neumann
theorem) for ∗ -homomorphisms of AF algebras into countably decomposable, properly
infinite, semifinite von Neumann algebras R .

Let H be a complex separable Hilbert space and B(H) be the set of the bounded
linear operators on H . Recall that two representations φ and ψ of a C∗ -algebra A on
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H are said to be approximately (unitarily) equivalent, denoted by φ ∼a ψ , if there
exists a net {Uλ}λ∈Λ of unitary operators in B(H) such that the limit

lim
λ∈Λ

∥∥U∗
λ φ (A)Uλ −ψ (A)

∥∥= 0 (1.1)

holds for every operator A in A .
When A is separable, the net {Uλ}λ∈Λ can be chosen to be a sequence. Let K(H)

denote the set of the compact operators in B(H) . We say that two representations φ
and ψ of a separable C∗ -algebra A into B(H) are approximately unitarily equiva-
lent (relative to K(H)), denoted by φ ∼A ψ mod K(H) , if there exists a sequence
{Un}∞

n=1 of unitary operators in B(H) satisfying (1.1) and

U∗
n φ (A)Un−ψ (A) ∈ K(H)

for every n and every A ∈ A .

The Weyl-von Neumann theorem, due to Weyl [20] and von Neumann [15], states
that a bounded self-adjoint operator A∈B(H) can be written as a diagonal operator, by
adding a compact operator (in the proof of Weyl in 1909) or, for each ε > 0, there ex-
ists a Hilbert-Schmidt operator H ∈ K(H) with the Hilbert-Schmidt norm ‖H‖2 < ε ,
such that the difference A−H is diagonal (in the proof of von Neumann in 1935).
Later in 1971, Berg [2] extended the result for bounded normal operators up to com-
pact perturbations. As a corollary of his main result in [19], Voiculescu proved that a
bounded normal operator can be written as a diagonal operator up to an arbitrarily small
Hilbert-Schmidt perturbation.

In 1976, not only as an important technique for [19] but also for the Brown-
Douglas-Fillmore theory, Voiculescu [18] proved a non-commutative version of the
Weyl-von Neumann theorem characterizing approximate equivalence of two unital rep-
resentations φ ,ψ : A → B(H) , where A is a separable unital C∗ -algebra and H is a
complex separable Hilbert space. Precisely, the theorem is as follows:

THEOREM 1.1. Suppose A is a separable unital C*-algebra, H is a separable
Hilbert space and φ ,ψ : A → B(H) are unital ∗ -homomorphisms. The following are
equivalent:

1. φ ∼a ψ ;

2. φ ∼A ψ mod K(H);

3. kerφ = kerψ , φ−1 (K(H)) = ψ−1 (K(H)) , and the nonzero parts of the restric-
tions φ |φ−1(K(H)) and ψ |ψ−1(K(H)) are unitarily equivalent.

In 1977, Arveson [1] introduced quasicentral approximate units for C∗ -algebras
and gave a different proof of the Voiculescu’s theorem. Later in [7], Hadwin gave a dif-
ferent characterization of approximate equivalence of ∗ -homomorphisms. In the same
paper, Hadwin (Lemma 2.3 of [7]) proved an analogue for approximate summands. Re-
call that, for T ∈B(H) , let rank(T ) denote the Hilbert-space dimension of the closure
of the range, ran(T ) , of T .
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THEOREM 1.2. (Lemma 2.3 of [7]) Suppose A is a separable unital C*-algebra,
H and K are Hilbert spaces, and φ : A →B(H) , ψ : A →B(K) are unital represen-
tations. The following are equivalent:

1. There is a representation γ : A → B(K1) for some Hilbert space K1 such that

ψ ⊕ γ ∼a φ ;

2. For every A ∈ A ,
rank(ψ (A)) � rank(φ (A)) .

In her 1994 doctoral dissertation (see also [6]), Huiru Ding extended some of the
results in [7] to the case in which B(H) is replaced by a von Neumann algebra R . The
following are some terms adopted in the current paper.

Suppose that R is a von Neumann algebra. Let S and T be two operators in R .
We define the R-rank of T (denoted by R-rank(T ) ) to be the Murray-von Neumann
equivalence class of the projection onto the closure of ran(T ) . If there exists a projec-
tion E in R-rank(T ) and a projection F in R-rank(S) such that E is a subprojection
of F , denoted by E � F , then define

R-rank(T ) � R-rank(S) . (1.2)

In Chapter 6 of [11], the relation “�” in (1.2) is verifed to be a partial order. Suppose
that A is a unital C∗ -algebra. Let φ and ψ be unital ∗ -homomorphisms of A into R .
The homomorphisms φ and ψ are said to be approximately equivalent in R (denoted
by φ ∼a ψ in R), if there exists a net {Uλ}λ∈Λ of unitary operators in R such that,
for every A ∈ A ,

lim
λ∈Λ

∥∥U∗
λ φ (A)Uλ −ψ (A)

∥∥= 0.

THEOREM 1.3. (Corollary 3 of [6]) Suppose that A is a unital C*-algebra that
is a direct limit of finite direct sums of commutative C*-algebras tensored with matrix
algebras, and R is a von Neumann algebra acting on a separable Hilbert space. If
φ ,ψ : A → R are unital ∗ -homomorphisms, then the following are equivalent:

1. φ ∼a ψ in R;

2. For every A ∈ A ,
R-rank(φ (A)) = R-rank(ψ (A)) .

Another interesting result based on generalizations of the Voiculescu’s theorem is
proved in [3], where the authors characterized properly infinite injective von Neumann
algebras and nuclear C∗ -algebras by using a uniqueness theorem.

Enlightened by the preceding results, in the current paper, we concentrate on the
non-commutative Weyl-von Neumann theorem for representations of AF algebras into
countably decomposable, semifinite, infinite von Neumann factors. In Section 2, we
extend the concept of approximate equivalence modulo the “compact” operators in the
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setting of semifinite von Neumann algebras. In Section 3, relative to finite von Neu-
mann algebras, we characterize the approximate summands of a ∗ -homomorphism of
an AF algebra. Note that, if R mentioned in Theorem 1.3 is a von Neumann factor with
a faithful normal tracial weight τ , then, for every A ∈ A , it follows that:

R-rank(φ (A)) � R-rank(ψ (A)) ⇔ τ(R(φ (A))) � τ(R(ψ (A))). (1.3)

Thus, the main theorem in Section 3 is as follows.

THEOREM 1.4. Let A be a unital AF algebra and R be a type II1 factor with
a faithful normal tracial state τ . If P is a projection in R , π : A → R is a unital
∗ -homomorphism and ρ : A → PRP is a unital ∗ -homomorphism such that

τ(R(ρ (X))) � τ(R(π (X))), ∀X ∈ A,

then there exists a unital ∗ -homomorphism γ : A → P⊥RP⊥ such that

γ ⊕ρ ∼a π in R.

In Section 4, for two ∗ -homomorphisms φ and ψ of an AF algebra into a count-
able decomposable, semifinite, infinite von Neumann factor R with a faithful normal
semifinite tracial weight τ , the main theorem states that the approximately unitary
equivalence of φ and ψ in R implies that these two ∗ -homomorphisms are approxi-
mately equivalent modulo the “compact” ideal K(R,τ) . Precisely, Theorem 4.10 is as
follows.

THEOREM 1.5. Let R be a countably decomposable, infinite, semifinite factor
with a faithful normal semifinite tracial weight τ . Suppose that A is an AF subalgebra
of R with an identity IA .

If φ and ψ are unital ∗ -homomorphisms of A into R , then the following are
equivalent:

(i) φ ∼a ψ in R , namely, φ and ψ are approximately unitarily equivalent in R;

(ii) φ ∼A ψ mod K(R,τ) , namely, φ and ψ are strongly-approximately-unitarily-
equivalent over A , (based on Definition 2.4,which comes later in Section 2) .

Since a separable C∗ -algebra of “compact” operators in a semifinite von Neumann
algebra may contain no minimal projection, we can not apply some classical results
about compact operators of B(H) to general cases in the setting of semifinite von
Neumann algebras. Therefore, we develop a series of new techniques in Section 4.

2. Preliminaries

In the setting of von Neumann algebras. The compact ideal K(H) of B(H) can be
extended in the following way. In this section, we let R be a countably decomposable,
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properly infinite, semifinite von Neumann algebra with a faithful normal semifinite
tracial weight τ . Let

PF(R,τ) = {P : P = P∗ = P2 ∈ R and τ(P) < ∞},
F(R,τ) = {XPY : P ∈ PF(R,τ) and X ,Y ∈ R},
K(R,τ) = ‖ · ‖-norm closure of F(R,τ) in R,

(2.1)

be the sets of finite rank projections, finite rank operators, and compact operators in
(R,τ) , respectively.

For a von Neumann algebra R , we denote by K(R) the ‖ · ‖ -norm closed ideal
generated by finite projections in R . In general, K(R,τ) is a subset of K(R) . That
is because a finite projection might not be a finite rank projection with respect to τ .
However, if R is a factor with a faithful, normal, semifinite tracial weight τ , then
Proposition 8.5.2 of [11] entails the equality

K(R,τ) = K(R).

To extend the definition of approximate equivalence of two unital
∗ -homomorphisms of a separable C∗ -algebra A into R (relative to K(R,τ)), we need
to develop the following notation and definitions.

Let H be a complex infinite dimensional separable Hilbert space and let B(H)
be the set of bounded linear operators on H . Suppose that {Ei, j}∞

i, j=1 is a system of
matrix units of B(H) .

For a countably decomposable, properly infinite von Neumann algebra R with a
faithful normal semifinite tracial weight τ , there exists a sequence {Vi}∞

i=1 of partial
isometries in R such that

ViV
∗
i = IR,

∞

∑
i=1

V ∗
i Vi = IR, and VjV

∗
i = 0 when i �= j.

DEFINITION 2.1. (Definition 2.2.1 of [13]) Let R⊗B(H) be a von Neumann al-
gebra tensor product of R and B(H) . For all X ∈ R and all ∑∞

i, j=1 Xi, j ⊗ Ei, j ∈
R⊗B(H) , define

φ : R → R⊗B(H) and ψ : R⊗B(H) → R

by

φ(X) =
∞

∑
i, j=1

(ViXV ∗
j )⊗Ei, j and ψ(

∞

∑
i, j=1

Xi, j ⊗Ei, j) =
∞

∑
i, j=1

V ∗
i Xi, jVj.

By Lemma 2.2.2 of [13], both φ and ψ are normal ∗ -homomorphisms satisfying

ψ ◦φ = idR and φ ◦ψ = idR⊗B(H).

DEFINITION 2.2. (Definition 2.2.3 of [13]) Define a mapping τ̃ : (R⊗B(H))+ →
[0,∞] to be

τ̃(y) = τ(ψ(y)), ∀ y ∈ (R⊗B(H))+.
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By the above definitions, the following are proved in Lemma 2.2.4 of [13]:

(i) τ̃ is a faithful, normal, semifinite tracial weight of R⊗B(H) ;

(ii) τ̃(
∞

∑
i, j=1

Xi, j ⊗Ei, j) =
∞

∑
i=1

τ(Xi,i) for all
∞

∑
i, j=1

Xi, j ⊗Ei, j ∈ (R⊗B(H))+ ;

(iii)
PF(R⊗B(H), τ̃) = φ(PF(R,τ)),
F(R⊗B(H), τ̃) = φ(F(R,τ)),
K(R⊗B(H), τ̃) = φ(K(R,τ)).

REMARK 2.3. It shows that τ̃ is a natural extension of τ from R to R⊗B(H) .
If no confusion arises, τ̃ will be also denoted by τ . By Proposition 2.2.9 of [13],
the ideal K(R⊗B(H), τ̃) is independent of the choice of the system of matrix units
{Ei, j}∞

i, j=1 of B(H) and the choice of the family {Vi}∞
i=1 of partial isometries in R .

Let A be a separable C∗ -subalgebra of R with an identity IA . Suppose that ψ is
a positive mapping from A into R such that ψ(IA) is a projection in R . Then for all
0 � X ∈ A , we have 0 � ψ(X) � ‖X‖ψ(IA) . Therefore, it follows that

ψ(X)ψ(IA) = ψ(IA)ψ(X) = ψ(X)

for all positive X ∈ A . In other words, ψ(IA) can be viewed as an identity of ψ(A) .
Or, ψ(A) ⊆ ψ(IA)Rψ(IA) .

DEFINITION 2.4. (Definition 2.3.1 of [13]) Suppose that {Ei, j}i, j�1 is a system
of matrix units of B(H) . Let M,N ∈N∪{∞} . Suppose that ψ1, . . . ,ψM and φ1, . . . ,φN

are positive mappings from A into R such that ψ1(IA), . . . ,ψM(IA) , φ1(IA), . . . ,φN(IA)
are projections in R .

(a) Let F ⊆ A be a finite subset and ε > 0. Say ψ1⊕·· ·⊕ψM is (F,ε)-strongly-
-approximately-unitarily-equivalent to φ1 ⊕·· ·⊕φN over A , denoted by

ψ1 ⊕ψ2⊕·· ·⊕ψM ∼(F,ε)
A φ1 ⊕φ2⊕·· ·⊕φN mod K(R,τ)

if there exists a partial isometry V in R⊗B(H) such that:

(i) V ∗V =
M

∑
i=1

ψi(IA)⊗Ei,i and VV ∗ =
N

∑
i=1

φi(IA)⊗Ei,i ;

(ii)
M

∑
i=1

ψi(X)⊗Ei,i−V ∗
(

N

∑
i=1

φi(X)⊗Ei,i

)
V ∈K(R⊗B(H),τ) for all X ∈A ;

(iii) ‖
M

∑
i=1

ψi(X)⊗Ei,i−V ∗
(

N

∑
i=1

φi(X)⊗Ei,i

)
V‖ < ε for all X ∈ F .
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(b) Say ψ1 ⊕·· ·⊕ψM is strongly-approximately-unitarily-equivalent to φ1 ⊕·· ·⊕
φN over A , denoted by

ψ1⊕ψ2⊕·· ·⊕ψM ∼A φ1⊕φ2⊕·· ·⊕φN mod K(R,τ)

if, for any finite subset F ⊆ A and ε > 0,

ψ1⊕ψ2⊕·· ·⊕ψM ∼(F,ε)
A φ1⊕φ2⊕·· ·⊕φN mod K(R,τ).

In the above definitions, if R = B(H) , then the strongly-approximately-unitary-
-equivalence of representations φ and ψ of A into B(H) coincides with the
approximately-unitarily-equivalence of representations φ and ψ relative to K(H) .

REMARK 2.5. Recall that a (separable) C∗ -algebra A is approximately finite
dimensional or AF if it is the norm-closure of an increasing union of finite dimensional
subalgebras An . If A is unital, then we assume that each An contains the identity of
A .

AF algebras are an important collection of (separable) C∗ -algebras. People de-
veloped rich results about AF algebras in the past several decades. In the current paper,
we mainly consider AF subalgebras of a semifinite von Neumann factor with separable
predual. The reader is referred to Chapter III of [4] for the definition of an AF algebra.
For more details about inductive limit C∗ -algebras, the reader is referred to Chapter 6
of [16].

3. Representations relative to finite von Neumann algebras

In this section, (R,τ) is always assumed to be a type II1 factor with separable
predual, where τ denotes the faithful normal tracial state. Recall that two
∗ -homomorphisms ρ and π of a C∗ -algebra A into R are said to be unitarily equiv-
alent, denoted by ρ � π in R , if there exists a unitary operator U in R such that the
equality U∗ρ(A)U = π(A) holds for every A in A .

The main theorem in this section is to express a ∗ -homomorphism π of an AF
algebra A into R as an “approximate direct sum” by a natural hypothesis. For an AF
algebra A , it is convenient to assume that there exists an increasing sequence {An}∞

n=1
of finite-dimensional C∗ -subalgebras such that

A = ∪∞
n=1An

‖·‖
. (3.1)

LEMMA 3.1. Let A be a unital finite-dimensional C∗ -algebra and (R,τ) be a
type II1 factor. Suppose that P is a projection in R .

If π : A → R is a unital ∗ -homomorphism and ρ : A → PRP is a unital
∗ -homomorphism such that:

τ(R(ρ (X))) � τ(R(π (X))), ∀X ∈ A,
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then there exists a unital ∗ -homomorphism γ : A → P⊥RP⊥ such that

γ ⊕ρ � π in R.

Furthermore, if γ ′
: A → P⊥RP⊥ is another ∗ -homomorphism satisfying

γ
′ ⊕ρ � π in R,

then γ ′ � γ in P⊥RP⊥ .

Proof. Let IR be the unit of R . We may assume that the projection P is nontrivial.
Let A be in the form

A = ⊕n
l=1Mkl (C),

where l,n,kl are positive integers. For each l � 1, let {El
i j}1�i, j�kl be the canonical

system of matrix units for Mkl (C) , i.e., El
i j is a kl -by-kl matrix with the (i, j)-th entry

1 and others 0. Denote by

Bl
i j = ρ(El

i j), Al
i j = π(El

i j), for 1 � i, j � kl.

Hence, we have
n

∑
l=1

kl

∑
i=1

Bl
ii = P,

n

∑
l=1

kl

∑
i=1

Al
ii = IR.

By the hypothesis, we have that

τ(Bl
ii) � τ(Al

ii) and τ(Bl
i j) = τ(Al

i j) = 0, for i �= j, 1 � i, j � kl, 1 � l � n.

Thus, there exists a system of matrix units {Fl
i j}1�i, j�kl of P⊥RP⊥ for 1 � l � n , such

that
n

∑
l=1

kl

∑
i=1

Fl
ii = P⊥, τ(Bl

ii)+ τ(Fl
ii) = τ(Al

ii), and τ(Fl
i j) = 0,

for i �= j , 1 � i, j � kl , 1 � l � n .
Define a linear mapping γ by

γ : A → P⊥RP⊥, γ(El
i j) = Fl

i j, for 1 � i, j � kl, 1 � l � n.

It is routine to verify that γ is a ∗ -homomorphism. The equality τ(ρ(A)+ γ(A)) =
τ(π(A)) holds for every A ∈ A . Thus, we obtain that γ ⊕ρ � π in R .

If γ ′ : A→P⊥RP⊥ is another ∗ -homomorphism satisfying γ ′⊕ρ � π in R , then,
the equality

τ(R(γ(A))) = τ(R(γ ′(A)))

holds for every A ∈ A . This implies that γ ′ � γ in P⊥RP⊥ . �
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THEOREM 3.2. Let A be a unital AF algebra and (R,τ) be a type II1 factor. If
P is a projection in R , π : A → R is a unital ∗ -homomorphism, and ρ : A → PRP is
a unital ∗ -homomorphism such that

τ(R(ρ (X))) � τ(R(π (X))), ∀X ∈ A,

then there exists a unital ∗ -homomorphism γ : A → P⊥RP⊥ such that

γ ⊕ρ ∼a π in R.

Proof. Since A is AF, as in (3.1), A can be written in the form

A = ∪∞
n=1An

‖·‖
.

Consider the restrictions of π and ρ on An , denoted by πn and ρn , respectively. By
Lemma 3.1, there exists a unital ∗ -homomorphism ϕn : An → P⊥RP⊥ such that

ϕn⊕ρn � πn in R, ∀n � 1. (3.2)

Define γ1 = ϕ1 on A1 . By applying (3.2), we have

ϕ2|A1 ⊕ρ1 � π1 in R, on A1.

Thus, by using Lemma 3.1, there exists a unitary operator U2 ∈ P⊥RP⊥ such that

U2(ϕ2|A1)U
∗
2 = γ1.

Note that
U2ϕ2U

∗
2 ⊕ρ2 � ϕ2⊕ρ2 � π2 in R, on A2.

Define γ2 = U2ϕ2U∗
2 on A2 . Then γ2 ⊕ρ2 � π2 in R , on A2 , and γ2|A1 = γ1 on A1 .

Similarly, for every n � 2, we can define a unital ∗ -homomorphism γn : An → P⊥RP⊥
such that:

1. the relation γn ⊕ρn � πn in R holds for every operator in An ;

2. γn|An−1 = γn−1 : An−1 → P⊥RP⊥ .

For every X in A , the definition for AF algebras as in (3.1) guarantees that there exists
a sequence {Xn : Xn ∈ An}n�1 of operators in A such that

lim
n→∞

‖X −Xn‖ = 0. (3.3)

Note that γm(Xn) = γn(Xn) for m � n . Thus the inequality

‖γn+k(Xn+k)− γn(Xn)‖ = ‖γn+k(Xn+k)− γn+k(Xn)‖ � ‖Xn+k −Xn‖ (3.4)

ensures that {γn(Xn)}n�1 is a Cauchy sequence. Hence, by using (3.3) and (3.4), we
can define a unital ∗ -homomorphism γ : A → P⊥RP⊥ by

γ(X) = lim
n→∞

γn(Xn), ∀ X ∈ A, (3.5)
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where {Xn : Xn ∈ An}n�1 is as in (3.3). This γ is well-defined, since γ(X) is indepen-
dent of the Cauchy sequence {γn(Xn)}n�1 . It follows that γ|An = γn and γ|An ⊕ρn �
πn in R , on An .

Since A is AF, there exists an increasing finite subsets F1 ⊆ F2 ⊆ ·· · of A such
that ∪k�1Fk is dense in A .

For every n � 1, the relation γn⊕ρn � πn in R implies that there exists a unitary
operator Vn in R such that

Vn(γn(A)⊕ρn(A))V ∗
n = πn(A), ∀A ∈ An. (3.6)

Given Fk and 1/k , there exists an Ank such that for every A in Fk there exists a B in
Ank with ‖A−B‖< 1/k . Thus, for every A in Fk , equalities (3.5) and (3.6) yield that

‖π(A)−Vnk(γ(A)⊕ρ(A))V ∗
nk
‖ � 2/k+‖πnk(B)−Vnk(γnk (B)⊕ρnk(B))V ∗

nk
‖ = 2/k.

Hence, the mapping γ : A→ P⊥RP⊥ is the required unital ∗ -homomorphism such that

γ ⊕ρ ∼a π in R.

This completes the proof. �

4. Representations relative to semifinite infinite von Neumann algebras

In this section, suppose that R is a countably decomposable, infinite, semifinite
von Neumann factor with a faithful, normal, semifinite tracial weight τ . Recall that the
notation PF(R,τ) , F(R,τ) , and K(R,τ) are the sets of finite rank projections, finite
rank operators, and compact operators in (R,τ) , respectively, which are introduced
in (2.1). For each T ∈ R , denote by R(T ) the range projection onto the closure of
the range of T . By Theorem 6.8.3 of [11], the norm-closed two-sided ideal K(R,τ)
introduced in (2.1) can be also viewed in the following way:

K(R,τ) = ‖ · ‖-norm closure of {T ∈ R : τ(R(T )) < ∞}. (4.1)

The following two lemmas from [8] are useful in the proof of the main theorem in this
section.

LEMMA 4.1. (Lemma 3.1 of [8]) For an operator A in R , the following are equiv-
alent:

1. A is in K(R,τ);

2. |A| is in K(R,τ);

3. for every ε > 0 , τ(χ[0,ε)(|A|)) = ∞ and τ(χ[ε,∞)(|A|)) < ∞;

4. for every ε > 0 , τ(χ[0,ε](|A|)) = ∞ and τ(χ(ε,∞)(|A|)) < ∞ .
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LEMMA 4.2. (Lemma 3.2 of [8]) Let R be a countably decomposable, infinite,
semifinite factor with a faithful normal semifinite tracial weight τ . Suppose that A is
a unital C∗ -algebra. If φ and ψ : A → R are two unital ∗ -homomorphisms such that

φ ∼a ψ in R,

then it follows that

φ(A) ∈ K(R,τ) ⇔ ψ(A) ∈ K(R,τ), ∀ A ∈ A.

REMARK 4.3. Recall that a separable C∗ -algebra A is “AF” (short for approxi-
mately finite-dimensional), if A is an inductive limit of an increasing sequence {An}∞

n=1
of finite-dimensional C∗ -algebras with respect to the norm topology. In the rest of this

paper, for a ∗ -algebra B , denote the closure of B in the operator norm by B
‖·‖

.
For an AF subalgebra A of (R,τ) , it is convenient to assume that there exists an

increasing sequence {An}∞
n=1 of finite-dimensional C∗ -subalgebras such that

A = ∪∞
n=1An

‖·‖
. (4.2)

By applying Lemma 3.4.1 of [4], we have

A∩K(R,τ) = ∪∞
n=1(An ∩K(R,τ))

‖·‖
. (4.3)

Note that each An ∩K(R,τ) is ∗ -isomorphic to a finite-dimensional C∗ -algebra.
Hence, for each positive operator F in the unit ball of An ∩K(R,τ) , the spectrum
of F is a finite subset {λ1, . . . ,λk} in [0,1] . Lemma 4.1 entails that F belongs to
An∩F(R,τ) . Thus, we have

An ∩F(R,τ) = An∩K(R,τ).

It follows that the increasing sequence {F1/m}m�1 converges in the norm topology. By
applying Lemma 5.1.5 of [10], the uniqueness of the limit implies that R(F) is the limit
of {F1/m}m�1 . Therefore, R(F) also belongs to the finite-dimensional C∗ -algebra
An ∩K(R,τ) . Moreover, there exists a sequence {Kn}n�1 of finite rank operators in
the unit ball of A∩F(R,τ) , which is norm-dense in A∩K(R,τ) .

DEFINITION 4.4. Let PK(A,τ) be a projection defined as

PK(A,τ) :=
∨

K∈A∩K(R,τ)
R(K),

where A is an AF subalgebra of (R,τ) .

LEMMA 4.5. Let R be a countably decomposable, infinite, semifinite factor with
a faithful normal semifinite tracial weight τ . Suppose that A is an AF subalgebra of
R . Let {Kn}∞

n=1 be a sequence of positive finite rank operators in A+∩F(R,τ) , which
is norm-dense in A+ ∩K(R,τ) and P := ∨n�1R(Kn) . Then the following are true:
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1. P = PK(A,τ) ;

2. the equality PX = XP holds for every X ∈ A .

Proof. Assume that (R,τ) acts on a complex separable Hilbert space H . Remark
4.3 guarantees the existence of a norm-dense subset of finite rank operators in A∩
K(R,τ) . For each K in A∩K(R,τ) , there exists a subsequence {Kni}∞

i=1 of {Kn}∞
n=1

such that
limi→∞ ‖|K∗|−Kni‖ = 0.

Let K = |K∗|V be the polar decomposition of K , by Theorem 6.1.2 of [11]. Then for
each x in H , it follows that

‖Kx−KniVx‖ � ‖|K∗|−Kni‖‖x‖→ 0, (as i → ∞).

Since PKniVx = KniVx , it follows that PK = K holds for every K in A∩K(R,τ) . This
means that P = PK(A,τ) . Specially, if P is trivial in R , then it is evident that P reduces
A .

In the following, assume contrarily that there exists an operator A in A such that
P⊥AP �= 0. Then there exists a vector x ∈ ran P such that P⊥Ax �= 0. There is also
a sequence of vectors {Jnxn}n�1 ⊂ ran P with compact operators Jn ’s in A∩K(R,τ)
such that

limn→∞ ‖Jnxn− x‖ = 0.

Since each P⊥AJnxn = 0, we obtain P⊥Ax = 0. This is a contradiction. Thus for each
A in A , we have P⊥AP = 0. It follows that PAP⊥ = 0 for each A in A . Therefore, P
reduces A . This completes the proof. �

DEFINITION 4.6. Let R be a countably decomposable, properly infinite, semifi-
nite von Neumann algebra with a faithful normal semifinite tracial weight τ . Suppose
that A is an AF subalgebra of R . By Lemma 4.5, the projection PK(A,τ) reduces A .
Define

id0(A) := APK(A,τ) and ide(A) := AP⊥
K(A,τ) ∀A ∈ A. (4.4)

Then id0 and ide are well-defined ∗ -homomorphisms of A into APK(A,τ) and
AP⊥

K(A,τ) , respectively.
Let ρ be a unital ∗ -isomorphism of A into R . Define

ρ0(A) := id0(ρ(A)) and ρe(A) := ide(ρ(A)) ∀A ∈ A. (4.5)

Then ρ0 and ρe are well-defined ∗ -homomorphisms of A into ρ(A)PK(ρ(A),τ) and
ρ(A)P⊥

K(ρ(A),τ) , respectively.

In terms of the classical method to prove the Voiculescu’s Theorem, if id and ρ
are approximately unitarily equivalent ∗ -homomorphisms of A into R , then we first
concern the strongly-approximate-equivalence of id0 and ρ0 relative to K(R,τ) , as in
Definition 2.4. Next, we apply Theorem 5.3.1 of [13] to complete the proof of the main
result.
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THEOREM 4.7. Let R be a countably decomposable, infinite, semifinite factor
with a faithful normal semifinite tracial weight τ . Suppose that A is an AF subalgebra
of (R,τ) . Let id and ρ be approximately unitarily equivalent ∗ -homomorphisms of
A into R . Then the ∗ -homomorphisms id0 and ρ0 (as in Definition 4.6) are strongly-
approximately-unitarily-equivalent over A (see Definition 2.4) , i.e.

id0 ∼A ρ0 mod K(R,τ). (4.6)

Proof. For the AF algebra A , the existence of a norm-dense subset of positive
finite rank operators in the unit ball of A+ ∩K(R,τ) , is verified in Remark 4.3. Fur-
thermore, Lemma 4.5 guarantees that id0 and ρ0 are ∗ -homomorphisms of A into
PRP and QRQ , respectively. Let {Kn}n�1 be a sequence of positive finite rank op-
erators in the unit ball of (∪n�1An)∩F(R,τ) , which is norm-dense in the unit ball of
A+∩K(R,τ) . Define projections P and Q as

P := ∨n�1R(Kn) and Q := ∨n�1R(ρ(Kn)). (4.7)

Then, by applying Lemma 4.2 and Lemma 4.5, we have

P = PK(A,τ) and Q = PK(ρ(A),τ).

Let F1 ⊆ F2 ⊆ ·· · be a monotone increasing sequence of finite subsets of the
unit ball of ∪n�1An such that ∪n�1Fn is norm dense in the unit ball of A . Define
F0 := F1 . Note that the approximate equivalence of id and ρ also implies that they are
both injective.

In the following, we construct at most countably many, mutually orthogonal, finite
rank projections Ei ’s in ∪n�1An such that ∑i�1 Ei = P .

Choose n1 � 1 such that F1 ∪{K1} ⊂ An1 . Let P1 be the central support of K1

in the center Z(An1) of An1 . Thus, AP1 = P1A for each A in F1 . Since An1 is finite-
dimensional, we have that P1 ∈ An1 . Moreover, we obtain that

τ(R(K1)) < ∞ ⇒ τ(P1) < ∞.

Note that P1 � P . If P1 = P , then P ∈ A+ ∩K(R,τ) and we complete the con-
struction. Otherwise, P1 < P . In this case, we let J1 = K1 and J2 be the first el-
ement after J1 in {Kn}n�1 such that (P − P1)J2 �= 0. Choose n2 � n1 such that
F2 ∪ {J1,J2} ⊂ An2 . Note that P1 is also in An2 . Let P2 be the central support of
P1∨R(J2) in the center Z(An2) of An2 . Thus, AP2 = P2A for each A in F2 . We define

E1 := P1 and E2 := P2−P1.

Since P2 > P1 , E2 is also a projection. Furthermore, AEi = EiA for each A in F1 and
i = 1,2. Since An2 is finite dimensional, it follows that

τ(R(J2)∨P1) < ∞ ⇒ τ(P2) < ∞.

If P2 = P , then we complete the construction. Otherwise, P2 < P and we continue the
construction.
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In general, assume that we obtain Jk and Pk for a certain k � 1. If Pk = P ,then
we complete the construction. Otherwise, Pk < P and we let Jk+1 be the first element
after Jk in {Kn}n�1 such that (P−Pk)Jk+1 �= 0. Choose nk+1 � nk such that Fk+1 ∪
{J1, . . . ,Jk+1} ⊂ Ank+1 . Note that P1, . . . ,Pk are also in Ank+1 . Let Pk+1 be the central
support of Pk ∨R(Jk+1) in the center Z(Ank+1) of Ank+1 . Then APk+1 = Pk+1A for
each A in Fk+1 . Also, τ(Pk+1) < ∞ . Define

Ek+1 := Pk+1−Pk.

It follows that
AEi = EiA (4.8)

for each A in F j and i = j+1, . . . ,k+1, where j � 0. If Pk+1 = P , then we complete
the construction. Otherwise, we continue to construct Pk+2 .

By this inductive construction, we obtain at most countably many, mutually or-
thogonal, finite rank projections {Ei}1�i�N ⊂ (∪n�1An)∩F(R,τ) such that ∑1�i�N Ei

= P , where N ∈ N∪{∞} .
Note that EiAniEi is also a finite-dimensional ∗ -subalgebra, for 1 � i � N . The

approximate equivalence of id and ρ guarantees the equality

τ(E) = τ(ρ(E)) < ∞ (4.9)

for each projection E in EiAniEi . As a similar technique applied in Lemma 3.1, for
1 � i � N , there exists a partial isometry Wi in R such that

Ei = W ∗
i Wi, ρ(Ei) = WiW

∗
i and ρ(A) = WiAW

∗
i , ∀A ∈ EiAniEi. (4.10)

Another quick application of (4.9) implies that ∑1�i�N ρ(Ei) = Q .
For each vector x in the underlying Hilbert space H , we have that

‖∑1�i�N
Wix‖2 = ∑1�i�N

‖Wix‖2 = ∑1�i�N
(Eix,x) = ‖Px‖2.

It follows that W := ∑1�i�N Wi is a well-defined partial isometry in R such that

W ∗W = P and WW ∗ = Q. (4.11)

Note that if j and k are two different integers strictly greater than i , then by applying
(4.8), for each A in Fi , we have

WjAW
∗
k = WjEjAEkW

∗
k = WjEjEkAW

∗
k = 0. (4.12)

By (4.10), (4.11) and (4.12), we have:

1. for each A in F0 ,

Wid0(A)W ∗ = WAPW ∗ = (∑
i�1

Wi)A(∑
i�1

Wi)∗ = ∑
i�1

WiAW
∗
i + ∑

j �=k

WjAW
∗
k

= ∑
i�1

WiAW
∗
i = ∑

i�1

ρ(AEi) = ρ(A)Q = ρ0(A);
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2. in the case N < ∞ , we have W ∈ F(R,τ) . Thus, for each i � 0 and each A in
Fi , we obtain that

WAW ∗ −ρ(A)Q ∈ F(R,τ);

3. in the case N = ∞ , for each i � 0 and each A in Fi ,

WAW ∗ −ρ(A)Q =(
i

∑
j=1

Wj)A(
i

∑
j=1

Wj)∗ + ∑
j>i

WjAW
∗
j + ∑

k,l>i
k �=l

WkAW
∗
l

+ ∑
k>i

(
WkA(

i

∑
j=1

W ∗
j )

)
+∑

l>i

(
(

i

∑
j=1

Wj)AW ∗
l

)
−ρ(APi)

−∑
j>i

ρ(AEj)

=(
i

∑
j=1

Wj)A(
i

∑
j=1

Wj)∗ + ∑
j>i

WjAW
∗
j −ρ(APi)−∑

j>i
ρ(AEj)

=(
i

∑
j=1

Wj)A(
i

∑
j=1

Wj)∗ −ρ(APi) ∈ F(R,τ).

For each fixed j � 1, write {Ei = Fi+ j−1}i�1 . We can iterate the preceding argu-
ments to construct a partial isometry Vj in R with respect to {Ei}i�1 such that:

1. for every A in ∪i�1Fi and j � 1,

V ∗
j id0(A)Vj −ρ0(A) ∈ F(R,τ);

2. for each A in E1(= F j) ,

‖V ∗
j id0(A)Vj −ρ0(A)‖ = 0.

Note that ∪i�1Fi is norm-dense in the unit ball of A . Thus, for each A in A , we obtain
that

lim j→∞ ‖V ∗
j id0(A)Vj −ρ0(A)‖ = 0 and V ∗

j id0(A)Vj −ρ0(A) ∈ K(R,τ).

This completes the proof of (4.6). �

REMARK 4.8. Let R be a countably decomposable, infinite, semifinite factor
with a faithful normal semifinite tracial weight τ . The following facts are useful:

1. Suppose that A is an AF subalgebra of R . For each ∗ -homomorphism ρ of A

into R , it follows that ρ(A) is also AF;



792 S. WEN, J. FANG AND R. SHI

2. Suppose that φ and ψ are approximately equivalent ∗ -homomorphisms of A

into R . Thus, we have kerφ = kerψ . Define a mapping ρ of φ(A) onto ψ(A)
by

ρ(T ) := ψ ◦φ−1(T ), ∀T ∈ φ(A).

Since kerφ = kerψ , we obtain that ρ is well-defined and injective. Hence this
follows that ρ is a ∗ -isomorphism of φ(A) onto ψ(A) . Therefore, φ and ψ are
approximately equivalent if and only if ρ and idφ(A) are approximately equiva-
lent.

As another useful tool, we cite Theorem 5.3.1 of [13] as follows. Note that, in the
remainder, the symbol “∼A ” follows from Definition 2.4.

THEOREM 4.9. Let R be a countably decomposable, infinite, semifinite factor
with a faithful normal semifinite tracial weight τ , and let K(R,τ) be the set of compact
operators in (R,τ) . Suppose that A is a separable nuclear C∗ -subalgebra of R with
an identity IA .

If ρ : A → R is a ∗ -homomorphism satisfying ρ(A∩K(R,τ)) = 0 , then

idA ∼A idA ⊕ρ mod K(R,τ).

We are ready for our main theorem.

THEOREM 4.10. Let R be a countably decomposable, infinite, semifinite factor
with a faithful normal semifinite tracial weight τ , and let K(R,τ) be the set of compact
operators in (R,τ) . Suppose that A is an AF subalgebra of R with an identity IA .

If φ and ψ are unital ∗ -homomorphisms of A into R , then the following are
equivalent:

(i) φ and ψ are approximately unitarily equivalent in R;

(ii) φ and ψ are strongly-approximately-unitarily-equivalent over A , i.e.

φ ∼A ψ mod K(R,τ).

Proof. Note that the direction (ii) ⇒ (i) is easy by Definition 2.4. Thus, we only
need to prove that (i) ⇒ (ii) .

Remark 4.8 entails that both φ(A) and ψ(A) are AF, and the ∗ -isomorphism

ρ : φ(A) → ψ(A), defined by ρ(B) := ψ(φ−1(B)), ∀ B ∈ φ(A)

is well-defined. Moreover, the following are equivalent:

1. φ ∼A ψ mod K(R,τ) ;

2. idφ(A) ∼φ(A) ρ mod K(R,τ) .
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Since φ(A) is AF, as in Remark 4.3, there exists a sequence {Kn}n�1 of positive
finite rank operators in the unit ball of φ(A)+ ∩F(R,τ) , norm-dense in the unit ball of
φ(A)∩K(R,τ) . Similarly, as in (4.7), define P and Q as

P := ∨n�1R(Kn) and Q := ∨n�1R(ρ(Kn)). (4.13)

By Lemma 4.5, P equals the union of the range projections of operators in φ(A)∩
K(R,τ) , and φ(A) is reduced by P . Thus, the identity mapping id on φ(A) can be
decomposed in the form

id = id0⊕ ide, (4.14)

where id0 is the restriction of id(·)P on ranP , and ide is the restriction of id(·)P⊥ on
ranP⊥ . We also write that

id0(φ(A)) = φ0(A) and ide(φ(A)) = φe(A).

It is easy to verify that ide(φ(A)∩K(R,τ)) = 0 .
On the other hand, we have that Q equals the union of the range projections of

operators in ψ(A)∩K(R,τ) , and ψ(A) is reduced by Q . Thus, the ∗ -isomorphism ρ
of φ(A) can be decomposed in the form

ρ = ρ0⊕ρe, (4.15)

where ρ0(A) = ρ(A)Q|ranQ and ρe(A) = ρ(A)Q⊥|ranQ⊥ for every A in φ(A) . We also
write that

ρ0(φ(A)) = ψ0(A) and ρe(φ(A)) = ψe(A).

Note that ρe(φ(A)∩K(R,τ)) = 0 . Furthermore, by applying Theorem 4.7, there exists
a partial isometry W in R such that P = W ∗W and Q = WW ∗ .

It is worth pointing out that operators in φ0(A) might not belong to φ(A) ∩
K(R,τ) in general. Moreover, for a positive operator φ(A) in φ(A)∩K(R,τ) , the
weight τ(R(φ(A))) might be arbitrarily small. Then, we can not apply the classical
tools developed in B(H) directly. This is the motivation to develop Theorem 4.7.

By (4.2), there exists a monotone increasing sequence F1 ⊆ F2 ⊆ ·· · of finite
subsets of the unit ball of ∪k�1Ak such that ∪k�1Fk is norm-dense in the unit ball of
A . Likewise, the union ∪k�1φ(Fk) (resp. ∪k�1ψ(Fk)) is norm-dense in the unit ball
of φ(A) (resp. ψ(A)). By applying Theorem 4.7, there exists a partial isometry Vk in
(R,τ) such that the inequality

‖V ∗
k φ0(A)Vk −ψ0(A)‖ <

1
2k

holds for every A in Fk .
Furthermore, for every A in A , we have that V ∗

k φ0(A)Vk −ψ0(A) belongs to the
ideal K(R,τ) . Therefore, there exists a sequence {Vk}k�1 of partial isometries in R

such that:

1. limk→∞ ‖V ∗
k φ0(A)Vk −ψ0(A)‖ = 0, for every A in A ;
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2. V ∗
k φ0(A)Vk −ψ0(A) belongs to K(R,τ) for every A in A and k � 1.

Notice that
ide(φ(A)∩K(R,τ)) = ρe(φ(A)∩K(R,τ)) = 0.

Thus, by applying Theorem 4.9, Theorem 4.7, and the decompositions in (4.14) and
(4.15), it follows that

φ = (id0 ◦φ)⊕ (ide ◦φ) ∼A (id0 ◦φ)⊕ (ide ◦φ)⊕ (ρe ◦φ) mod K(R,τ)
= φ0⊕φe ⊕ψe

∼A ψ0⊕ψe⊕φe mod K(R,τ)
= (ρ0 ◦φ)⊕ (ρe ◦φ)⊕ (ide ◦φ)
= (ρ ◦φ)⊕ (ide ◦φ) ∼A (ρ ◦φ) = ψ mod K(R,τ)

This completes the proof. �
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