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Abstract. In this study, we give characterization of the matrix classes (|C−1|k ,X) , where the
spaces |C−1|k ,k � 1 have been defined and studied by Hazar and Sarıgöl in [15] and X =
{c0,c,�∞}. Also, we determine the Hausdorff measures of noncompactness of certain matrix

operators on the spaces |C−1|k and apply our results to characterize some classes of compact
operators on those spaces. So, we extend some well known results.

1. Background, notations and preliminaries

Let ω be the set of all complex sequences. Any vector subspace of ω is called
a sequence space. We shall write �∞,c, c0, and φ for the spaces of all bounded, con-
vergent, null and finite sequences, respectively. Also by cs and �k (k � 1, �1 = �) , we
denote the spaces of all convergent and k -absolutely convergent series, respectively.
Let A = (an j) be an arbitrary infinite matrix of complex numbers and An be the se-
quence in the n -th row of A, that is, An = (anν)∞

ν=0 for every n ∈ N, and also let X
and Y be subspaces of w .

By Ax = (An (x)) , we denote the A-transform of the sequence x = (x j) , i.e.,

An (x) =
∞

∑
j=0

an jx j,

provided that the series is convergent for each n ∈ N. Further, we say that A defines a
matrix transformation from X into Y , and it is denoted by A ∈ (X ,Y ) or A : X → Y if
sequence Ax exists and Ax = (An(x)) ∈ Y for every sequence x ∈ X and also the sets
Xβ = {ε = (εv) ∈ w : εx = (εvxv) ∈ cs for all x = (xv) ∈ X} and

XA = {x ∈ w : Ax ∈ X} (1.1)

are said to be the β - dual of X and the domain of the matrix A in X , respectively. Thus
A ∈ (X ,Y ) if and only if An = (anv)∞

v=0 ∈ Xβ for each n and Ax ∈ Y for all x ∈ X .
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An infinite matrix A = (anv) is called a triangle if ann �= 0, and anv = 0 for v > n,
which has a unique inverse [39]. Throughout paper k∗ denotes the conjugate of k > 1,

i.e., 1/k+1/k∗ = 1, and 1/k∗ = 0 for k = 1.
The theory of BK - spaces has a special importance in the characterization of ma-

trix transformation between sequence spaces due to the various properties which they
have.

A BK - space is a Banach space with continuous coordinates Pn : X → C defined
by Pn (x) = xn for n � 0, where C denotes the complex field. Also, a BK - space X ⊃ φ
has AK if every sequence x = (xv) ∈ X has a unique representation x = ∑∞

v=0 xve(v),
where e(n) is the sequence whose only non-zero term is 1 in the n th place for each
n ∈ N [1, p. 225]. For example, the sequence spaces �∞,c and c0 are BK -spaces with
the same sup-norm given by ‖x‖�∞ = supν |xv| , where the supremum is taken over all
v ∈ N. Further, the space �k is a BK -space with respect to the natural norm

‖x‖�k
=

(
∞

∑
v=0

|xv|k
)1/k

(1 � k < ∞) .

Moreover, �k (1 � k < ∞) and c0 have AK [25, Examples 1.13;1.20].
Let X and Y be normed spaces. Then, a linear operator A : X → Y is called

bounded if there exists a constant M � 0 such that

‖Ax‖Y � M ‖x‖X for all x ∈ X .

The collection of all bounded linear operators from X into Y is denoted by B (X ,Y ) .
If A ∈ B (X ,Y ) , then the norm of A is defined by

‖A‖(X ,Y ) = sup{‖Ax‖ : ‖x‖ � 1} .

If X ⊃ φ is a BK - space and a = (aν) ∈ w, then we write

‖a‖∗X = sup
x∈SX

∣∣∣∣∣
∞

∑
v=0

avxv

∣∣∣∣∣ (1.2)

provided the expression on the right is defined and finite which is the case whenever
a ∈ Xβ , where SX denotes the unit sphere in X , that is SX = {x ∈ X : ‖x‖ = 1} [24, p.
35].

We need following important results for our investigation.

LEMMA 1.1. ( [25, Theorem 1.29]) Let 1 < k < ∞. Then, we have �
β
∞ = cβ = cβ

0 =
�1, �

β
1 = �∞ and �

β
k = �k∗ . Furthermore, let X denote any of the spaces �∞,c,c0, �1

and �k. Then, we have ‖a‖∗X = ‖a‖Xβ for all a ∈ Xβ , where ‖.‖Xβ is the natural norm
on the dual space Xβ .

LEMMA 1.2. ( [25, Theorem 1.23(a)]) Let X and Y be BK spaces. Then, we have
(X ,Y ) ⊂ B (X ,Y ) , that is, every matrix A ∈ (X ,Y ) defines an operator LA ∈ B (X ,Y )
by LA (x) = Ax for all x ∈ X .
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LEMMA 1.3. ( [25, Lemma 2.2]) Let X ⊃ φ be a BK space and Y be any of the
spaces �∞,c,c0. If A ∈ (X ,Y ) , then ‖LA‖ = ‖A‖(X ,�∞) = supn ‖An‖∗X < ∞.

LEMMA 1.4. ( [33]) Let 1 < k < ∞. Then, A ∈ (�k, �) if and only if

‖A‖′(�k,�) =

⎧⎨
⎩

∞

∑
v=0

(
∞

∑
n=0

|anv|
)k∗
⎫⎬
⎭

1/k∗

< ∞,

and there exists 1 � ξ � 4 such that ‖A‖′(�k,�) = ξ ‖A‖(�k,�) .

LEMMA 1.5. ( [22]) Let 1 � k < ∞. Then, A ∈ (�,�k) if and only if

‖A‖(�,�k) = sup
v

{
∞

∑
n=0

|anv|k
}1/k

< ∞.

If S and H are subsets of a metric space (X ,d) and ε > 0 then S is called an ε -
net of H , if, for every h∈H, there exists s ∈ S such that d (h,s) < ε; if S is finite, then
the ε -net S of H is called a finite ε -net of H . By MX , we denote the collection of
all bounded subsets of X . If Q ∈MX , then the Hausdorff measure of noncompactness
of Q is defined by

χ(Q) = inf{ε > 0 : Q has a finite ε-net in X} .

The function χ : MX → [0,∞) is called the Hausdorff measure of noncompactness
[31].

Note that if X and Y are Banach spaces then a linear operator L : X → Y is said
to be compact if its domain is all of X and for every bounded sequence x = (xn) ∈ X ,
the sequence (L(xn)) has convergent subsequence in Y. We denote the class of such
operators by C (X ,Y ) .

The most effective way to characterize compact operators between Banach spaces
is to apply the Hausdorff measure of noncompactness, which is achieved as follows.

LEMMA 1.6. ( [25]) Let X and Y be Banach spaces, L ∈ B (X ,Y ) . Then, the
Hausdorff measure of noncompactness of L, denoted by ‖L‖χ , is defined by

‖L‖χ = χ (L(SX)) ,

and L is compact iff ‖L‖χ = 0.

2. The absolute Cesàro spaces and matrix operators

Throughout this paper, let Σxn be an infinite series with partial sums sn and σα
n

be the nth Cesàro mean (C,α) of order α > −1 of the sequence (sn) , i.e.,

σα
n =

1
Aα

n

n

∑
v=0

Aα−1
n−v sv,
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where
Aα

0 = 1, Aα
n =

(α+n
n

)
, Aα

−n = 0, n � 1.

Then, the series Σxn is said to be summable |C,α|k with index k � 1 if (see [11])

∞

∑
n=1

nk−1
∣∣σα

n −σα
n−1

∣∣k < ∞,σα
−1 = 0.

More recently, Sarıgöl has defined the series space |Cα |k for α > −1, as the set of
all series summable by the method |C,α|k , and studied its some properties and related
matrix mappings in [32]. Also some compact operators on it are investigated in [16].

Note that this method does not work for α =−1 while Cesàro summability (C,α)
is studied usually for α � −1 (see [12]), and so, Thorpe separately [38] defined that if
the series to sequence transformation

Tn =
n−1

∑
ν=0

xν +(n+1)xn (2.1)

tends to a finite number s as n tends to infinity, then the series Σxn is summable by
Cesàro summability (C,−1) to the number s [38].

Also, Hazar and Sarıgöl [15] have introduced the space |C−1|k as the set of all
series summable of the method |C,−1|k , as follows.

|C−1|k =

{
x = (xν ) :

∞

∑
n=1

nk−1 |Tn−Tn−1|k < ∞

}
,

where (Tn) is defined by (2.1) , or

|C−1|k =

{
x = (xν) :

∞

∑
n=1

nk−1 |(n+1)xn− (n−1)xn−1|k < ∞

}
.

The β - duals of the space |C−1|k have been determined and some related matrix classes
have been characterized. We refer the reader to [13,15] for the most recent work on this
topic. Also, independently of these studies, some sequence spaces have been generated
and examined by several authors (see [1,2,3,4,5,6,7,8,9,10], [14], [17,18,19,20,21],
[23], [26, 27, 28, 29], [34, 35, 36]).

In this study, we give the characterization of the classes of infinite matrices
(|C−1|k ,X) for X = {c0,c, �∞}, establish estimates for the norms and the Hausdorff
measures of noncompactness of bounded linear operators defined by those matrix map-
pings, and characterize the corresponding subclasses of compact operators.

Now, we may remind some properties of the space |C−1|k , they can be found in
detail [15].

We may restate |C−1|k = (�k)T (k) in view of the identity (1.1) , where the matrix

T (k) = (t(k)nv ) is defined by t(k)00 = 1 and

t(k)nv =

⎧⎨
⎩

−n1/k∗ (n−1), v = n−1,

n1/k∗ (n+1), v = n,
0, otherwise.

(2.2)
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Since the matrix T (k) = (t(k)nv ) is triangle, there exists the inverse matrix S(k) = (s(k)nv )
defined by s(k)00 = 1 and

s(k)nv =

⎧⎨
⎩

v1/k

n(n+1)
, 1 � v � n,

0, v > n.

(2.3)

For any sequence x = (xv) ∈ |C−1|k , if we define the associated sequence y = T (k) (x)
as

T (k)
0 (x) = x0,T

(k)
n (x) = n1/k∗ [(n+1)xn− (n−1)xn−1] ,n � 1,x−1 = 0 (2.4)

then, it is seen that x ∈ |C−1|k if and only if y ∈ �k, furthermore, if x ∈ |C−1|k , then
‖x‖|C−1|k = ‖y‖�k

. In fact, the linear operator T (k) (x) : |C−1|k → �k , which maps every
sequence x ∈ |C−1|k to its associated sequence y∈ �k, is bijective and norm preserving.

Thus, we can note that |C−1|k is a BK -space with respect to the norm [15]

‖x‖|C−1|k =
∥∥∥T (k) (x)

∥∥∥
�k

. (2.5)

Finally, we define the following notations:

D1 =
{

ε = (εv) ∈ w :
∞

∑
v=r

εv

ν (ν +1)
converges, r � 1

}
,

D2 =
{

ε = (εv) ∈ w : sup
m,r

∣∣∣∣r m

∑
v=r

εv

ν (ν +1)

∣∣∣∣< ∞,r � 1

}
,

D3 =

{
ε = (εv) ∈ w : sup

m

m

∑
r=1

∣∣∣∣r1/k
m

∑
v=r

εv

ν (ν +1)

∣∣∣∣
k∗

< ∞

}
.

The following results play an important role in our study.

LEMMA 2.1.

a) A ∈ (�,c) ⇔ (i) limn anv exists, v � 0 , (ii) supn,v |anv| < ∞.

b) A ∈ (�,�∞) ⇔ (ii) holds.

c) If 1 < k < ∞ , then, A ∈ (�k,c) ⇔ (i) holds, (iii) supn ∑∞
v=0 |anv|k∗ < ∞.

d) If 1 < k < ∞ , then, A ∈ (�k, �∞) ⇔ (iii) holds.

e) If 1 < k < ∞, then, A ∈ (�k,c0) ⇔ (iii) holds, (iv) limn anv = 0 , v � 0 .

f) A ∈ (�,c0) ⇔ (ii) and (iv) holds [37].
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LEMMA 2.2. Let 1 � k < ∞ . If a = (aν) ∈ (|C−1|k)β , then ã(k) =
(
ã(k)

ν

)
∈ �k∗(

ã(1) ∈ �∞, for k = 1
)

and we have

∞

∑
v=1

avxv =
∞

∑
v=1

ã(k)
ν yv (2.6)

for every x = (xk) ∈ |C−1|k with y = T (k) (x) , where

ã(k)
ν = v1/k

∞

∑
r=v

ar

r (r+1)
=

∞

∑
r=v

ars
(k)
rv . (2.7)

By Lemma 2.2, we deduce following lemma.

LEMMA 2.3. |C−1|βk = D1∩D3 for 1 < k < ∞ and (|C−1|)β = D1∩D2 for k = 1
[15].

LEMMA 2.4. If 1 < k < ∞ , then, we have ‖a‖∗|C−1|k =
∥∥∥ã(k)

∥∥∥
�k∗

and if k = 1, then,

we have ‖a‖∗|C−1| =
∥∥∥ã(1)

∥∥∥
�∞

, for all a ∈ (|C−1|k)β , where ã(k) =
(
ã(k)

ν

)
is defined by

(2.7).

Proof. Let 1 < k < ∞ and a ∈ (|C−1|k)β be given . Then it follows from Lemma

2.2 that ã(k) =
(
ã(k)

ν

)
∈ �k∗ and the equality (2.6) holds for all sequences x ∈ |C−1|k

and y∈ �k which are connected by the relation y = T (k) (x) . Also, by (2.5) , x∈ S|C−1|k
if and only if y ∈ S�k . So, we get from (1.2) and (2.6) that

‖a‖∗|C−1|k = sup
x∈S|C−1|k

∣∣∣∣∣
∞

∑
v=1

avxv

∣∣∣∣∣= sup
y∈S�k

∣∣∣∣∣
∞

∑
v=1

ã(k)
ν yv

∣∣∣∣∣=
∥∥∥ã(k)

∥∥∥∗
�k

which completes the proof. �
For k = 1, since it can be similarly proved, we omit detail.
Throughout this paper we use following notation.

For an infinite matrix A = (anv) , we define the associated matrix Ã(k) =
(
ã(k)

nv

)
by

ã(k)
nv = v1/k

∞

∑
r=v

anr

r (r+1)
=

∞

∑
r=v

anrs
(k)
rv (2.8)

provided the series on the right converges for all n,v � 1.

LEMMA 2.5. Let Z be a sequence space, A = (anv) an infinite matrix and 1 �
k < ∞ . If A ∈ (|C−1|k ,Z) , then Ã(k) ∈ (�k,Z) such that Ax = Ã(k)y for all x ∈ |C−1|k
and y ∈ �k which are connected by (2.4) , where Ã(k) associated matrix is defined by
(2.8) .

Proof. This is immediate by Lemma 2.2. �
Finally, we complete this section with following Lemmas on operator norms.
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LEMMA 2.6. Let A = (anv) be an infinite matrix and Ã(k) associated matrix de-
fined by (2.8) . If A is in any of the classes (|C−1|k ,c0) ,(|C−1|k ,c) and (|C−1|k , �∞)
then, we have for 1 < k < ∞ ,

‖LA‖ = ‖A‖(|C−1|k,�∞) = sup
n

∥∥∥Ã(k)
n

∥∥∥
�k∗

and for k = 1 ,

‖LA‖ = ‖A‖(|C−1|,�∞) = sup
n

∥∥∥Ã(1)
n

∥∥∥
�∞

.

Proof. It is deduced by combining Lemmas 1.2, 1.3 and 2.4. �

LEMMA 2.7. Let A = (anv) be an infinite matrix and Ã(k) =
(
ã(k)

nv

)
associated

matrix defined by (2.8) . Then, we have

a) If A ∈ (|C−1| , �k) , then for k � 1,

‖LA‖ = ‖A‖(|C−1|,�k) =
∥∥∥Ã(1)

∥∥∥
(�,�k)

.

b) If A ∈ (|C−1|k , �) , then for 1 < k < ∞, there exists 1 � ξ � 4 such that

‖LA‖ = ‖A‖(|C−1|k,�) =
∥∥∥Ã(k)

∥∥∥
(�k,�)

=
1
ξ

∥∥∥Ã(k)
∥∥∥′

(�k,�)
.

Proof. It is immediate by combining Lemmas 1.2, 1.4, 1.5 and 2.5. �

3. Some compact and matrix operators on |C−1|k
In this section, we give characterization of the matrix classes (|C−1|k ,X) , where

k � 1,X = {c0,c, �∞}. Also, we determine the Hausdorff measures of noncompactness

of certain matrix operators on the spaces |C−1|k and apply our results to characterize
some classes of compact operators on those spaces. So, we extend some well known
results .

Now, we prove our first main result related to characterization of matrix classes.

THEOREM 3.1. Let A = (anr) be an infinite matrix of complex numbers for all

n,r � 1 , the associated matrix Ã(1) =
(
ã(1)

nr

)
and the matrix S(1) = (s(1)

nv ) be defined

by (2.8) and (2.3) , for k = 1, respectively.

a) Then, A ∈ (|C−1| , �∞) if and only if
∞

∑
v=r

s(1)
vr anv converges, for all n,r � 1, (3.1)

sup
m,r

∣∣∣∣ m

∑
v=r

s(1)
vr anv

∣∣∣∣< ∞, for all n,r � 1, (3.2)

sup
n,r

∣∣∣ã(1)
nr

∣∣∣< ∞. (3.3)
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b) Then, A ∈ (|C−1| ,c) if and only if (3.1),(3.2),(3.3) hold and

lim
n

ã(1)
nr exists for each r. (3.4)

c) Then, A ∈ (|C−1| ,c0) if and only if (3.1),(3.2),(3.3) hold and

lim
n

ã(1)
nr = 0, for each r. (3.5)

Proof.

a) A ∈ (|C−1| , �∞) iff (anv)
∞
v=1 ∈ (|C−1|)β and Ax ∈ �∞ for every x ∈ |C−1| , and

also by Lemma 2.3, (anv)∞
v=1 ∈ (|C−1|)β iff (3.1) and (3.2) hold. Moreover, the

series Σanvxv converges uniformly in n and so

lim
n

An(x) =
∞

∑
v=1

lim
n

anvxv. (3.6)

Now to prove necessity and sufficiency of condition (3.3) , consider the operator
T (1) : |C−1| → � defined by (2.2) with k = 1. It is clear that this operator is
bijection and the matrix corresponding to this operator is triangle. Further, let
x ∈ |C−1| be given. Then T (1)(x) = y ∈ � iff x = S(1) (y) , where S(1) is the
inverse of T (1) and it is defined by (2.3) with k = 1. We can write that

m

∑
v=1

anvxv =
m

∑
j=1

(
m

∑
v= j

anvs
(1)
v j

)
y j =

m

∑
j=1

r(n)
mj y j

where the matrix R(n) =
(
r(n)
mj

)
, for j,m = 1,2, ..., is defined by

r(n)
mj =

{
∑m

v= j anvs
(1)
v j , 1 � j � m

0, j > m.

Also, by (3.1) and (3.2) , by applying the matrix R(n) =
(
r(n)
mj

)
to (3.6) , we

obtain that

An(x) = lim
m

m

∑
j=1

r(n)
mj y j =

∞

∑
j=1

(
∞

∑
v= j

anvs
(1)
v j

)
y j =

∞

∑
j=1

ã(1)
n j y j = Ã(1)

n (y)

converges for all n � 1, and Ã(1) =
(
ã(1)

nr

)
is defined by (2.8) for k = 1.This

gives us that the mapping sequence Ax = (An(x)) exists. So, it can be written
that A : |C−1| → �∞ iff Ã(1) : �→ �∞, and also it is easily seen that Ã(1) = AoS(1) .
Thus, it follows by applying Lemma 2.1 with the matrix Ã(1) that Ã(1) : � → �∞
iff (3.3) holds, which completes the proof of the part of a).

Since b) and c) are proved easily as in a), so we omit the detail. �
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THEOREM 3.2. Let A = (anr) be an infinite matrix of complex numbers for all

n,r � 1 and the associated matrix Ã(k) =
(
ã(k)

nr

)
and the matrix S(k) = (s(k)nv ) be defined

by (2.8) and (2.3) , respectively, and 1 < k < ∞. Then,

a) A ∈ (|C−1|k , �∞) if and only if (3.1) holds, and

sup
m

m

∑
r=1

∣∣∣∣ m

∑
v=r

s(k)vr anv

∣∣∣∣
k∗

< ∞, n � 1, (3.7)

sup
n

∞

∑
r=1

∣∣∣ã(k)
nr

∣∣∣k∗ < ∞. (3.8)

b) A ∈ (|C−1|k ,c) if and only if (3.1) ,(3.7) ,(3.8) hold, and

lim
n

ã(k)
nr exists for each r. (3.9)

c) A ∈ (|C−1|k ,c0) if and only if (3.1) ,(3.7) ,(3.8) hold, and

lim
n

ã(k)
nr = 0 for each r. (3.10)

Proof.

a) A ∈ (|C−1|k , �∞) iff (anv)∞
v=1 ∈ |C−1|βk and Ax ∈ �∞ for every x ∈ |C−1|k . Also,

by Lemma 2.3, (anv)
∞
v=1 ∈ |C−1|βk iff (3.1) and (3.7) hold. Moreover, the series

Σanvxv converges uniformly in n and so (3.6) holds.

To obtain (3.8) , as in the proof of Theorem 3.1 consider the operator T (k) :
|C−1|k → �k given by (2.2) . Then, the inverse matrix S(k) of T (k) is given by

(2.3) . Also, by (3.1) and (3.7) , by applying the matrix B(n) =
(
b(n)

mj

)
to (3.6) ,

we obtain that

An(x) = lim
m

m

∑
j=1

b(n)
mj y j =

∞

∑
j=1

(
∞

∑
v= j

anvs
(k)
v j

)
y j =

∞

∑
j=1

ã(k)
n j y j = Ã(k)

n (y)

converges for all n � 1,where, for j,m = 1,2, ...,

b(n)
mj =

{
∑m

v= j anvs
(k)
v j , 1 � j � m,

0, j > m,

and Ã(k) =
(
ã(k)

nr

)
is defined by (2.8), also A : |C−1|k → �∞ if and only if Ã(k) :

�k → �∞. Further, it can be easily calculated that Ã(k) = AoS(k). Thus, by Lemma
2.1, we get that Ã(k) : �k → �∞, i.e., equivalently, (3.8) holds, and this proves
the part of a). �

We may state the following lemma to characterize some classes of compact oper-
ators on the spaces |C−1|k .



818 G. C. HAZAR GÜLEÇ

LEMMA 3.3. ( [30, Theorem 3.7]) Let X ⊃ φ be a BK space. Then, we have:

a) If A ∈ (X , �∞) , then
0 � ‖LA‖χ � lim

n→∞
sup‖An‖∗X .

b) If A ∈ (X ,c0) , then
‖LA‖χ = lim

n→∞
sup‖An‖∗X .

c) If X has AK or X = �∞ and A ∈ (X ,c) , then

1
2

lim
n→∞

sup‖An−α‖∗X � ‖LA‖χ � lim
n→∞

sup‖An−α‖∗X ,

where α = (αv) with αv = limn→∞ anν for all ν ∈ N .

Now, if we take X = �k, which has AK, in Lemma 3.3, we deduce the following
result by combining Lemmas 2.4, 2.5 and 3.3.

THEOREM 3.4. Let A = (anv) be an infinite matrix and Ã(k) =
(
ã(k)

nv

)
the associ-

ated matrix defined by (2.8) . Then, we have for k � 1

a) If A ∈ (|C−1|k , �∞) , then

0 � ‖LA‖χ � lim
n→∞

sup
∥∥∥Ã(k)

n

∥∥∥∗
�k

(3.11)

and

LA is compact if lim
n→∞

∥∥∥Ã(k)
n

∥∥∥∗
�k

= 0. (3.12)

b) If A ∈ (|C−1|k ,c0) , then

‖LA‖χ = lim
n→∞

sup
∥∥∥Ã(k)

n

∥∥∥∗
�k

, (3.13)

LA is compact if and only if lim
n→∞

∥∥∥Ã(k)
n

∥∥∥∗
�k

= 0. (3.14)

c) If A ∈ (|C−1|k ,c) , then

1
2

lim
n→∞

sup
∥∥∥Ã(k)

n − α̃
∥∥∥∗

�k

� ‖LA‖χ � lim
n→∞

sup
∥∥∥Ã(k)

n − α̃
∥∥∥∗

�k

, (3.15)

LA is compact if and only if lim
n→∞

∥∥∥Ã(k)
n − α̃

∥∥∥∗
�k

= 0, (3.16)

where α̃ = (α̃v) with α̃v = limn→∞ ã(k)
nν for all ν � 1.
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Proof. From Lemma 1.6, it is obvious that (3.12) , (3.14) and (3.16) are the re-
sults of (3.11),(3.13) and (3.15) , respectively. Then, we may show that the conditions
(3.11),(3.13) and (3.15) hold.

(3.11) and (3.13) are obtained by combining parts a) and b) of Lemma 3.3, re-
spectively and Lemma 2.4, since |C−1|k ,k � 1 is a BK-space.

Now we may prove that the condition (3.16) is satisfied. Let A ∈ (|C−1|k ,c) be

given and Ã(k) =
(
ã(k)

nv

)
be the associated matrix defined by (2.8) , then it follows from

Lemma 2.5 that Ã(k) ∈ (�k,c) . Considering part c) of Lemma 3.3 we get

1
2

lim
n→∞

sup
∥∥∥Ã(k)

n − α̃
∥∥∥∗

�k

�
∥∥LÃ(k)

∥∥
χ � lim

n→∞
sup
∥∥∥Ã(k)

n − α̃
∥∥∥∗

�k

, (3.17)

where α̃ = (α̃v) with α̃v = limn→∞ ã(k)
nν for all ν � 1.

On the otherhand, since Ax = Ã(k)y by Lemma 2.5, it can be written that x∈ S|C−1|k
if and only if y ∈ S�k . So, this gives us

‖LA‖χ = χ
(
AS|C−1|k

)
= χ

(
Ã(k)S�k

)
=
∥∥LÃ(k)

∥∥
χ , (3.18)

by Lemma 1.2, Lemma 1.6 and Lemma 2.5, which concludes the proof. �
The following result is most powerful tool to compute the Hausdorff measure of

noncompactness of a bounded subset of the BK space �k (1 � k < ∞) .

LEMMA 3.5. ( [31]) Let Q be a bounded subset of the normed space X , where
X = �k for 1 � k< ∞. If Pn : X →X is the operator defined by Pr (x)= (x0,x1, ...,xr,0, ...)
for all x ∈ X , then

χ(Q) = lim
r→∞

sup
x∈Q

‖(I−Pr)(x)‖�k
,

where I is the identity operator on X .

Using Lemma 3.5, we can state following result.

THEOREM 3.6. Let A = (anv) be an infinite matrix and Ã(k) =
(
ã(k)

nv

)
the associ-

ated matrix defined by (2.8) .

a) If A ∈ (|C−1| , �k) , then for 1 � k < ∞,

‖LA‖χ = lim
r→∞

sup
v

(
∞

∑
n=r+1

∣∣∣ã(1)
nv

∣∣∣k
)1/k

(3.19)

and

LA is compact iff lim
r→∞

sup
v

∞

∑
n=r+1

∣∣∣ã(1)
nv

∣∣∣k = 0. (3.20)

b) If A ∈ (|C−1|k , �) , then for k > 1, there exists 1 � ξ � 4 such that

‖LA‖χ =
1
ξ

lim
r→∞

⎛
⎝ ∞

∑
v=1

(
∞

∑
n=r+1

∣∣∣ã(k)
nv

∣∣∣
)k∗
⎞
⎠

1/k∗
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and

LA is compact iff lim
r→∞

∞

∑
v=1

(
∞

∑
n=r+1

∣∣∣ã(k)
nv

∣∣∣
)k∗

= 0.

Proof.

a) Let S = {x ∈ |C−1| : ‖x‖ = 1} . Then, using Lemma 1.5, 1.6, 2.5 and 3.5, we
obtain

‖LA‖χ = χ (AS) = χ
(
Ã(1)T (1)S

)

= lim
r→∞

sup
y∈T (1)S

∥∥∥(I−Pr) Ã(1) (y)
∥∥∥

�k

= lim
r→∞

sup
v

(
∞

∑
n=r+1

∣∣∣ã(1)
nv

∣∣∣k
)1/k

where Pr : �k → �k is defined by Pr (y) = (y0,y1, ...,yr,0, ...) , which completes
the asserted.

Also, from Lemma 1.6, it is obvious that the condition (3.20) is the consequence
of (3.19).

b) Since (b) is proved easily as in (a) using Lemma 1.4 instead of 1.5, so we omit
the detail. �
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[19] KARA, E. E., BAŞARIR, M. AND MURSALEEN, M., Compactness of matrix operators on some
sequence spaces derived by Fibonacci numbers, Kragujevac J. Math., (2015) 39(2), 217–230.
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