MAPS PRESERVING EQUIVALENCE BY PRODUCTS OF INVOLUTIONS

Gordana Radić

(Communicated by H. Radjavi)

Abstract

Let $\mathscr{B}(\mathscr{X})$ be the algebra of bounded linear operators on a complex Banach space \mathscr{X}. Two operators A and $B \in \mathscr{B}(\mathscr{X})$ are said to be equivalent by products of involutions, if $A=T B S$ for T and S being a products of finitely many involutions. We will give description of linear bijective maps ϕ on $\mathscr{B}(\mathscr{X})$ satisfying that $\phi(A)$ and $\phi(B)$ are equivalent (i.e. $A=T B S$ for some invertible $T, S \in \mathscr{B}(\mathscr{X})$) whenever A and B are equivalent by products of involutions.

1. Introduction and the main result

Let \mathscr{X} be, if not stated otherwise, a complex Banach space of dimension at least two, \mathscr{X}^{\prime} its topological dual, $\operatorname{ker} f$ the kernel of $f \in \mathscr{X}^{\prime}, \mathscr{B}(\mathscr{X})$ the algebra of all bounded linear operators on \mathscr{X} and $\mathscr{F}(\mathscr{X})$ the ideal of all finite rank operators.

Over the past decades, there has been a considerable interest in the study of linear or merely additive maps on operator algebras that leave certain relations invariant. A lot of interest, among others, has been devoted to the similarity relation (operators A and B are similar, if $B=S A S^{-1}$ for some invertible operator S) and to the classification of similarity-preserving linear or additive maps ϕ (i.e. if operators A and B are similar, then $\phi(A)$ and $\phi(B)$ are similar as well), for instance $[2,3,4,6,7,10,11,13,16]$. Although a lot of results regarding similarity relation exist, let us expose the result due to Lu and Peng, [11]. They proved that if \mathscr{X} is an infinite-dimensional complex Banach space and $\phi: \mathscr{B}(\mathscr{X}) \rightarrow \mathscr{B}(\mathscr{X})$ is a surjective similarity-preserving linear map, then there exist either a non-zero $c \in \mathbb{C}$, an invertible $T \in \mathscr{B}(\mathscr{X})$ and a similarity-invariant linear functional h on $\mathscr{B}(\mathscr{X})$ with $h(I) \neq-c$ such that

$$
\begin{equation*}
\phi(X)=c T X T^{-1}+h(X) I, \quad \text { for every } X \in \mathscr{B}(\mathscr{X}) \tag{1}
\end{equation*}
$$

or there exist a non-zero $c \in \mathbb{C}$, invertible bounded linear operator $T: \mathscr{X}^{\prime} \rightarrow \mathscr{X}$ and a similarity-invariant linear functional h on $\mathscr{B}(\mathscr{X})$ with $h(I) \neq-c$ such that

$$
\begin{equation*}
\phi(X)=c T X^{\prime} T^{-1}+h(X) I, \quad \text { for every } X \in \mathscr{B}(\mathscr{X}) \tag{2}
\end{equation*}
$$

[^0]where X^{\prime} stands for the adjoint of the operator X, and a similarity-invariant functional h means that $h(A)=h(B)$ whenever A is similar to B. Qin and Lu, [19], modified the problem and presented it in another way.

An operator $J \in \mathscr{B}(\mathscr{X})$ is called an involution if $J^{2}=I$, the identity operator on \mathscr{X}. By P-Inv (\mathscr{X}) we denote the set of all finite products of involutions. Obviously, $\mathrm{P}-\operatorname{Inv}(\mathscr{X})$ is a subset of $\mathscr{G}(\mathscr{X})$, the multiplicative group of all invertible operators in $\mathscr{B}(\mathscr{X})$. Moreover, due to Radjavi [15] it is known that P-Inv $(\mathscr{X})=$ $\{A \in \mathscr{B}(\mathscr{X}) \mid \operatorname{det} A= \pm 1\}$ in the case of finite dimensional space \mathscr{X}, and P-Inv $(\mathscr{X})=$ $\mathscr{G}(\mathscr{X})$ if \mathscr{X} is an infinite-dimensional complex Hilbert space. In a general infinitedimensional complex Banach space \mathscr{X} the problem whether P-Inv (\mathscr{X}) coincides with $\mathscr{G}(\mathscr{X})$ is connected with the existence of a non-trivial multiplicative functional $f \in \mathscr{X}^{\prime}$. As stated in $[1,12,17,20]$ there exists a Banach space \mathscr{X} having a non-trivial multiplicative $f \in \mathscr{X}^{\prime}$, so P-Inv (\mathscr{X}) can be a proper subset of $\mathscr{G}(\mathscr{X})$.

Two operators A and B are called p-similar, if $B=S A S^{-1}$ for some $S \in \mathrm{P}-\operatorname{Inv}(\mathscr{X})$, and a linear map $\phi: \mathscr{B}(\mathscr{X}) \rightarrow \mathscr{B}(\mathscr{X})$ is said to be p-similarity preserving if $\phi(A)$ and $\phi(B)$ are similar whenever A is p-similar to B. Note that similarity preserving is stronger assumption than p-similarity preserving with which Qin and Lu were occupied. They proved that a linear bijection $\phi: \mathscr{B}(\mathscr{X}) \rightarrow \mathscr{B}(\mathscr{X})$ being only a p-similarity preserving is (as in the similarity-preserving case) either of the form (1) or of the form (2).

We now define another equivalence relations on $\mathscr{B}(\mathscr{X})$. Two operators A and $B \in \mathscr{B}(\mathscr{X})$ are said to be equivalent, denoted by $A \sim B$, if $A=T B S$ for some $T, S \in$ $\mathscr{G}(\mathscr{X})$, and are equivalent by products of involutions, denoted by $A \sim_{p} B$, if $A=T B S$ for some $T, S \in \mathrm{P}-\operatorname{Inv}(\mathscr{X})$.

The aim of this note is to refine the result stated in [14], where linear bijection $\phi: \mathscr{B}(\mathscr{X}) \rightarrow \mathscr{B}(\mathscr{X})$ with $A \sim B \Rightarrow \phi(A) \sim \phi(B)$ were determined. It was proved that in the case of \mathscr{X} being an infinite-dimensional reflexive complex Banach space either there exist $T, S \in \mathscr{G}(\mathscr{X})$ such that $\phi(X)=T X S$ for every $X \in \mathscr{B}(\mathscr{X})$, or there exist bounded bijective linear operators $T: \mathscr{X}^{\prime} \rightarrow \mathscr{X}$ and $S: \mathscr{X} \rightarrow \mathscr{X}^{\prime}$ such that $\phi(X)=T X^{\prime} S$ for every $X \in \mathscr{B}(\mathscr{X})$.

Our main result reads as follows.
THEOREM 1. Let \mathscr{X} be a complex Banach space of dimension at least two and $\phi: \mathscr{B}(\mathscr{X}) \rightarrow \mathscr{B}(\mathscr{X})$ a surjective linear map such that

$$
A \sim_{p} B \quad \Rightarrow \quad \phi(A) \sim \phi(B)
$$

for every $A, B \in \mathscr{B}(\mathscr{X})$. Then one and only one of the following statements holds.
(i) $\phi(F)=0$, for every $F \in \mathscr{F}(\mathscr{X})$.
(ii) There exist invertible $T, S \in \mathscr{B}(\mathscr{X})$ such that

$$
\phi(X)=T X S, \quad \text { for every } X \in \mathscr{B}(\mathscr{X})
$$

(iii) There exist invertible bounded linear operators $T: \mathscr{X}^{\prime} \rightarrow \mathscr{X}$ and $S: \mathscr{X} \rightarrow \mathscr{X}^{\prime}$ such that

$$
\phi(X)=T X^{\prime} S, \quad \text { for every } X \in \mathscr{B}(\mathscr{X})
$$

where X^{\prime} stands for the adjoint of the operator X.
Case (iii) can only occur if \mathscr{X} is reflexive.
Let us remark that the problem stated in Theorem 1 is not of any general type of LPPs. We actually determine those surjective linear maps where from equivalence by products of involutions of A and B follows that $\phi(A)$ is equivalent to $\phi(B)$ and not equivalent by products of involutions as we would expect.

2. Preliminaries

Every rank-one operator can be written as $x \otimes f$ for some non-zero vector $x \in \mathscr{X}$ and some non-zero functional $f \in \mathscr{X}^{\prime}$, and is defined by $(x \otimes f) z=f(z) x$ for every $z \in \mathscr{X}, A(x \otimes f)=A x \otimes f$ and $(x \otimes f) A=x \otimes A^{\prime} f$ for every $A \in \mathscr{B}(\mathscr{X})$, where A^{\prime} stands for the adjoint operator of A; operator $x \otimes f$ is idempotent if $f(x)=1$ and it is nilpotent if $f(x)=0$.

It is obvious that all rank-one operators are mutually equivalent. But, when we are speaking about equivalence orbit of a rank-one operator under equivalence by products of involutions, the problem is a little bit more complicated. With the following Proposition and some subsequent Lemmas we will be able to determine all operators that are equivalent by products of involutions to a fixed rank-one operator in $\mathscr{B}(\mathscr{X})$.

Proposition 1. [19, Proposition 2.1] Let $N \in \mathscr{B}(\mathscr{X})$ be a non-zero finite-rank operator with $N^{2}=0$. Then $I+N$ is a product of two involutions.

Lemma 1. Let $0 \neq x \in \mathscr{X}$ and $0 \neq f \in \mathscr{X}^{\prime}$. Then $x \otimes f \sim_{p} y \otimes f$ for every non-zero $y \in \mathscr{X}$.

Proof. Take any non-zero $y \in \mathscr{X}$. If y is linearly independent of x, then there exist $g_{1}, g_{2} \in \mathscr{X}^{\prime}$ such that $g_{1}(x)=1=g_{2}(y)$ and $g_{1}(y)=0=g_{2}(x)$. Let it be $N=(x-y) \otimes\left(g_{1}+g_{2}\right)$. As $N \neq 0$ and $N^{2}=0$, the operator $I+N$ is a product of two involutions by Proposition 1. Thus

$$
\begin{equation*}
y \otimes f \sim_{p}(I+N)(y \otimes f)=\left(I+(x-y) \otimes\left(g_{1}+g_{2}\right)\right) y \otimes f=x \otimes f \tag{3}
\end{equation*}
$$

as desired. Next, let x and y be linearly dependent. As $\operatorname{dim} \mathscr{X} \geqslant 2$, there exists a nonzero $z \in \mathscr{X}$ such that x, z and y, z are linearly independent, respectively. Apply (3) to get $x \otimes f \sim_{p} z \otimes f$ and $y \otimes f \sim_{p} z \otimes f$. By the transitivity we have $x \otimes f \sim_{p} y \otimes f$.

Lemma 2. Let $0 \neq x \in \mathscr{X}$ and $0 \neq f \in \mathscr{X}^{\prime}$. Then $x \otimes f \sim_{p} x \otimes g$ for every non-zero $g \in \mathscr{X}^{\prime}$.

Proof. Take any non-zero $g \in \mathscr{X}^{\prime}$. If $\operatorname{ker} g=\operatorname{ker} f$, then g is linearly dependent on $f: g=\alpha f$ for some $\alpha \neq 0$. In turn we have

$$
x \otimes g=x \otimes \alpha f=\alpha x \otimes f \sim_{p} x \otimes f
$$

by Lemma 1. Otherwise, when $\operatorname{ker} g \neq \operatorname{ker} f$, there exist linearly independent $y_{1}, y_{2} \in$ \mathscr{X} such that $f\left(y_{1}\right)=1=g\left(y_{2}\right)$ and $f\left(y_{2}\right)=0=g\left(y_{1}\right)$. By setting $N=\left(y_{1}+y_{2}\right) \otimes$ $(f-g)$ we can see that $N \neq 0$ and $N^{2}=0$. Therefore, by Proposition 1, we obtain $x \otimes g \sim_{p}(x \otimes g)(I+N)=x \otimes f$.

Proposition 2. All rank-one operators in $\mathscr{B}(\mathscr{X})$ are mutually equivalent by products of involutions.

Proof. Take any non-zero $x, y \in \mathscr{X}$ and any non-zero $f, g \in \mathscr{X}^{\prime}$. The straightforward consequence of Lemmas 1 and 2 is that $x \otimes f \sim_{p} y \otimes f \sim_{p} y \otimes g$. By the transitivity we complete the proof.

Our first step will be reducing the problem to the case of rank-one preserving map, i.e. if $A \in \mathscr{B}(\mathscr{X})$ is of rank one, then $\phi(A)$ is of rank one too. We will use a result due to Kuzma regarding rank-one-non-increasing additive mappings.

THEOREM 2. [8, Theorem 2.3] Let $\phi: \mathscr{F}(\mathscr{X}) \rightarrow \mathscr{F}(\mathscr{X})$ be an additive map, which maps rank-one operators to operators of rank at most one. Then one and only one of the following statements holds.
(i) There exist an $f_{0} \in \mathscr{X}^{\prime}$ and an additive map $\tau: \mathscr{F}(\mathscr{X}) \rightarrow \mathscr{X}$, such that

$$
\phi(X)=\tau(X) \otimes f_{0}, \quad \text { for every } X \in \mathscr{F}(\mathscr{X})
$$

(ii) There exist an $x_{0} \in \mathscr{X}$ and an additive map $\varphi: \mathscr{F}(\mathscr{X}) \rightarrow \mathscr{X}^{\prime}$, such that

$$
\phi(X)=x_{0} \otimes \varphi(X), \quad \text { for every } X \in \mathscr{F}(\mathscr{X})
$$

(iii) There exist additive maps $T: \mathscr{X} \rightarrow \mathscr{X}$ and $S: \mathscr{X}^{\prime} \rightarrow \mathscr{X}^{\prime}$ such that

$$
\phi(x \otimes f)=T x \otimes S f, \quad \text { for every } x \in \mathscr{X} \text { and every } f \in \mathscr{X}^{\prime}
$$

(iv) There exist additive maps $T: \mathscr{X}^{\prime} \rightarrow \mathscr{X}$ and $S: \mathscr{X} \rightarrow \mathscr{X}^{\prime}$ such that

$$
\phi(x \otimes f)=T f \otimes S x, \quad \text { for every } x \in \mathscr{X} \text { and every } f \in \mathscr{X}^{\prime}
$$

REMARK 1. If ϕ is in addition linear, it is easy to verify that τ and φ from (i) and (ii) as well as T and S from (iii) and (iv) are linear maps.

We will close the section with two simple Lemmas applying invertible operators.
Lemma 3. [18, Lemma 3.3] Let $x \in \mathscr{X}$ and $f \in \mathscr{X}^{\prime}$. Then $I-x \otimes f$ is invertible in $\mathscr{B}(\mathscr{X})$ if and only if $f(x) \neq 1$.

Lemma 4. [11, Lemma 2.5] Let $x, y \in \mathscr{X}$ and $f, g \in \mathscr{X}^{\prime}$. Then $I-(x \otimes f+y \otimes g)$ is invertible if and only if $(f(x)-1)(g(y)-1) \neq f(y) g(x)$.

3. Proof of the main result

Let \mathscr{X} be a complex Banach space with $\operatorname{dim} \mathscr{X} \geqslant 2$ and $\phi: \mathscr{B}(\mathscr{X}) \rightarrow \mathscr{B}(\mathscr{X})$ a surjective linear map such that $A \sim_{p} B$ implies $\phi(A) \sim \phi(B)$ for every $A, B \in \mathscr{B}(\mathscr{X})$.

If \mathscr{X} is finite-dimensional, then $\mathrm{P}-\operatorname{Inv}(\mathscr{X})$ is equal to $\{A \in \mathscr{B}(\mathscr{X}) \mid \operatorname{det} A= \pm 1\}$ and by [5, Theorem 4.1] the proof is completed. In the case of \mathscr{X} being an infinitedimensional, we set up the proof through several steps.

STEP 1. ϕ is rank-one-non-increasing linear map, i.e. rank $\phi(A) \leqslant 1$ for every rank-one $A \in \mathscr{B}(\mathscr{X})$.

Take any $P \in \mathscr{B}(X)$ of rank one. By the surjectivity of ϕ there exists an $A \in$ $\mathscr{B}(\mathscr{X})$ such that

$$
\phi(A)=P .
$$

If A is of rank one, then we have, by Proposition $2, A \sim_{p} E$ for every $E \in \mathscr{B}(\mathscr{X})$ of rank one. Acting by ϕ on this relation implies $P=\phi(A) \sim \phi(E)$. Thus $\phi(E)$ is of rank one for every $E \in \mathscr{B}(\mathscr{X})$ of rank one. In other words, ϕ is rank-one preserving.

In the other case, if A is not of rank one, there exist linearly independent $x_{1}, x_{2} \in$ \mathscr{X} such that $A x_{1}$ and $A x_{2}$ are linearly independent too. Choose linearly independent $f_{1}, f_{2} \in \mathscr{X}^{\prime}$ such that $f_{1}\left(x_{1}\right)=1=f_{2}\left(x_{2}\right)$ and $f_{1}\left(x_{2}\right)=0=f_{2}\left(x_{1}\right)$. Set

$$
N=\left(x_{1}-x_{2}\right) \otimes\left(f_{1}+f_{2}\right) \neq 0
$$

As $N^{2}=0$ and $(-N)^{2}=0$, the operators $I+N$ and $I-N \in \operatorname{P-Inv}(\mathscr{X})$ by Proposition 1. From the relation $A \sim_{p} A(I \pm N)=A \pm A N$ we get

$$
P=\phi(A) \sim \phi(A \pm A N)=P \pm \phi(A N) .
$$

It follows that both $P+\phi(A N)$ as well as $P-\phi(A N)$ are of rank one. Since $A x_{1}, A x_{2}$ and f_{1}, f_{2} are linearly independent, respectively, the operator $A N=\left(A x_{1}-A x_{2}\right) \otimes$ $\left(f_{1}+f_{2}\right)$ is of rank one and either

$$
\phi(A N)=0 \quad \text { or } \quad \phi(A N) \neq 0
$$

Firstly assume that $\phi(A N)=0$. Then, by Proposition 2, we have $\phi\left(E_{1}\right)=0$ for every $E_{1} \in \mathscr{B}(\mathscr{X})$ of rank one. Using the fact that every finite-rank operator $F \in \mathscr{F}(\mathscr{X})$ can be written as a sum of rank-one operators, it is obvious that $\phi(\mathscr{F}(\mathscr{X}))=0$. But, if there exists at least one finite-rank operator in $\mathscr{B}(\mathscr{X})$ which is not mapped to zero operator, then $\phi(A N) \neq 0$. Thus, by [14, Lemma 2.2], the operator $\phi(A N)$ is of rank one. As we have found one operator of rank one which is mapped to an operator of rank one, $\phi\left(E_{2}\right)$ is of rank one for every rank-one $E_{2} \in \mathscr{B}(\mathscr{X})$.

Taking both possibilities into consideration, we conclude that ϕ is rank-one-nonincreasing map.

By the proof of STEP 1 we have seen that either $\phi(\mathscr{F}(\mathscr{X}))=0$ or ϕ is rank-one preserving. Hence, from now on we can and we will assume that ϕ is rank-one preserving.

STEP 2. ϕ is injective.

By the surjectivity of ϕ take an $A \in \mathscr{B}(\mathscr{X})$ such that $\phi(A)=0$. If $A \neq 0$, then there exists an $x \in \mathscr{X}$ with $A x \neq 0$. Choose any non-zero $f \in \mathscr{X}^{\prime}$ with $f(x)=0$ and, by Lemma 1, the operator $I+x \otimes f$ is a product of two involutions. Acting by ϕ on the relation $A \sim{ }_{p} A(I+x \otimes f)=A+A x \otimes f$ we get $0=\phi(A) \sim \phi(A+A x \otimes f)=$ $\phi(A x \otimes f)$ which further implies $\phi(A x \otimes f)=0$, a contradiction with the rank-one preserving property. So, $A=0$ which proves the claim.

Step 3. Either there exist linear maps $T: \mathscr{X} \rightarrow \mathscr{X}$ and $S: \mathscr{X}^{\prime} \rightarrow \mathscr{X}^{\prime}$ such that $\phi(x \otimes f)=T x \otimes S f$, for every $x \in \mathscr{X}$ and every $f \in \mathscr{X}^{\prime}$, or there exist linear maps $T: \mathscr{X}^{\prime} \rightarrow \mathscr{X}$ and $S: \mathscr{X} \rightarrow \mathscr{X}^{\prime}$ such that $\phi(x \otimes f)=T f \otimes S x$, for every $x \in \mathscr{X}$ and every $f \in \mathscr{X}^{\prime}$.

Since ϕ is rank-one preserving, we can apply Theorem 2. Assume firstly that $\phi(X)=\tau(X) \otimes g_{0}$ for some non-zero $g_{0} \in \mathscr{X}^{\prime}$ and some linear map $\tau: \mathscr{F}(\mathscr{X}) \rightarrow \mathscr{X}$. Choose any non-zero $y \in \mathscr{X}^{\prime}$ and any $g_{1} \in \mathscr{X}^{\prime}$ linearly independent of g_{0}. By the surjectivity of ϕ there exists a non-zero $A \in \mathscr{B}(\mathscr{X})$ such that

$$
\phi(A)=y \otimes g_{1}
$$

It is obvious that A is not of rank one, thus there exist linearly independent $x_{1}, x_{2} \in \mathscr{X}$ such that $A x_{1}$ and $A x_{2}$ are linearly independent too. For each $i=1,2$ choose $f_{i} \in \mathscr{X}^{\prime}$ with $f_{i}\left(x_{i}\right)=1$. Then it is easy to verify that the operator $I-2 x_{i} \otimes f_{i}$ is involutive, so acting by ϕ on the relation $A \sim_{p} A\left(I-2 x_{i} \otimes f_{i}\right)=A-2 A x_{i} \otimes f_{i}$ implies $y \otimes g_{1} \sim y \otimes$ $g_{1}-\tau\left(2 A x_{i} \otimes f_{i}\right) \otimes g_{0}$, for $i=1,2$, and consequently $y \otimes g_{1}-2 \tau\left(A x_{i} \otimes f_{i}\right) \otimes g_{0}$ is of rank one for $i=1,2$. Hence, both $\tau\left(A x_{1} \otimes f_{1}\right)$ as well as $\tau\left(A x_{2} \otimes f_{2}\right)$ are scalars multiplied of y. It follows that there exists $\alpha \in \mathbb{C}$ such that $\tau\left(A x_{1} \otimes f_{1}\right)=\alpha \tau\left(A x_{2} \otimes f_{2}\right)$ and in turn $\phi\left(A x_{1} \otimes f_{1}\right)=\phi\left(\alpha A x_{2} \otimes f_{2}\right)$. By the injectivity of $\phi, A x_{1} \otimes f_{1}=\alpha A x_{2} \otimes f_{2}$, a contradiction with linear independency of $A x_{1}, A x_{2}$ and f_{1}, f_{2}, respectively.

Therefore (i), and similarly (ii), from Theorem 2 cannot occur.
We will assume that there exist linear maps $T: \mathscr{X} \rightarrow \mathscr{X}$ and $S: \mathscr{X}^{\prime} \rightarrow \mathscr{X}^{\prime}$ such that

$$
\phi(x \otimes f)=T x \otimes S f, \quad \text { for every } x \in \mathscr{X} \text { and every } f \in \mathscr{X}^{\prime} .
$$

STEP 4. T and S are bijective.
The injectivity of T and S follows immediately from the bijectivity of the map ϕ. The surjectivity of T will be proved by a contradiction, so let us assume that T is not surjective. Then there exists a non-zero $y \in \mathscr{X}$ such that y is not contained in the range
of T. Choose any non-zero $g \in \mathscr{X}^{\prime}$. Since ϕ is surjective, there exists an $A \in \mathscr{B}(\mathscr{X})$ such that

$$
\phi(A)=y \otimes g .
$$

Obviously, $A \neq 0$. Hence, there exists an $x \in \mathscr{X}$ such that $A x \neq 0$. Take linearly independent $f_{1}, f_{2} \in \mathscr{X}^{\prime}$ with $f_{1}(x)=0=f_{2}(x)$. According to Proposition 1, the operator $I+x \otimes f_{i} \in \mathrm{P}-\operatorname{Inv}(\mathscr{X})$, for $i=1,2$. Acting by ϕ on the relation $A \sim_{p} A\left(I+x \otimes f_{i}\right)=$ $A+A x \otimes f_{i}$ we obtain

$$
y \otimes g \sim y \otimes g+T A x \otimes S f_{i}, \quad \text { for } i=1,2
$$

which further implies that $y \otimes g+T A x \otimes S f_{i}$ is of rank one. Observe that $T A x \otimes S f_{i} \neq$ 0 . Since y and $T A x$ are linearly independent, the linear functionals $S f_{1}$ and $S f_{2}$ are scalars multiplied of g. Therefore, $S f_{1}$ and $S f_{2}$ are linearly dependent and, by the injectivity of S, f_{1} and f_{2} are linearly dependent, a contradiction.

By the same method we can see that S is surjective as well.
STEP 5. Let $\phi(A)=I$ for some non-zero $A \in \mathscr{B}(\mathscr{X})$. Then there exist non-zero $\mu, v \in \mathbb{C}$ such that

$$
\begin{equation*}
(S f)(T A x)=\mu f(x) \quad \text { and } \quad\left(S A^{\prime} f\right)(T x)=v f(x) \tag{4}
\end{equation*}
$$

for every $x \in \mathscr{X}$ and every $f \in \mathscr{X}^{\prime}$. Consequently, A and A^{\prime} are injective.
Choose any non-zero $x_{0} \in \mathscr{X}$ and any non-zero $f_{0} \in \mathscr{X}^{\prime}$ such that $f_{0}\left(x_{0}\right)=0$. By Proposition 1, the operator $I+\lambda_{0} x_{0} \otimes f_{0} \in \mathrm{P}-\operatorname{Inv}(\mathscr{X})$ for every $\lambda_{0} \in \mathbb{C}$. From the relation $A \sim_{p} A\left(I+\lambda_{0} x_{0} \otimes f_{0}\right)=A+\lambda_{0} A x_{0} \otimes f_{0}$ it follows

$$
I \sim I+\lambda_{0} T A x_{0} \otimes S f_{0}, \quad \text { for every } \lambda_{0} \in \mathbb{C}
$$

Thus, $I+\lambda_{0} T A x_{0} \otimes S f_{0}$ is invertible, so $\lambda_{0}\left(S f_{0}\right)\left(T A x_{0}\right) \neq-1$ for every $\lambda_{0} \in \mathbb{C}$ by Lemma 3. Therefore,

$$
\left(S f_{0}\right)\left(T A x_{0}\right)=0, \quad \text { for every nilpotent } x_{0} \otimes f_{0} \in \mathscr{B}(\mathscr{X})
$$

Following the steps similar to those used in [16, Remark after Proposition 3.1] we prove that there exists a $\mu \in \mathbb{C}$ such that

$$
(S f)(T A x)=\mu f(x), \quad \text { for every } x \in \mathscr{X} \text { and every } f \in \mathscr{X}^{\prime}
$$

Next we want to see that $\mu \neq 0$. To do this, let us assume the contrary, $\mu=0$. By the surjectivity of S we have $g(T A x)=0$ for every $g \in \mathscr{X}^{\prime}$, which implies $T A x=0$ for every $x \in \mathscr{X}$. The injectivity of T forces that $A x=0$ for every $x \in \mathscr{X}$, a contradiction with $A \neq 0$.

If we started the proof of this Step by $A \sim_{p}\left(I+\lambda_{0} x_{0} \otimes f_{0}\right) A$ instead of $A \sim_{p}$ $A\left(I+\lambda_{0} x_{0} \otimes f_{0}\right)$ and then continuing the proof in the same way, we would get the second equality of (4). To show that A and A^{\prime} are injective is then an elementary exercise.

Step 6. T and S are continuous.

We are essentially following the lines of the proof of Step 4 of Theorem 3.3 in [14]. For the sake of completeness, the proof is included.

Firstly we will prove the continuity of the operator $T A$. Let $\left(x_{n}\right)_{n \in \mathbb{N}} \rightarrow 0$ and $\left(T A x_{n}\right)_{n \in \mathbb{N}} \rightarrow y \in \mathscr{X}$. Applying (4) gives $(S f)(y)=0$ for every $f \in \mathscr{X}^{\prime}$. As S is surjective, we obtain $y=0$. By the Closed graph theorem, the operator $T A$ is continuous.

By the bijectivity of S and according to (4) once again we have $\left(S^{-1} f\right)(x)=$ $\mu^{-1} f(T A x)$ for every $x \in \mathscr{X}$ and every $f \in \mathscr{X}^{\prime}$. Then

$$
\begin{equation*}
\left|\left(S^{-1} f\right)(x)\right|=\left|\mu^{-1} f(T A x)\right| \leqslant\left|\mu^{-1}\right| \cdot\|f\| \cdot\|T A\| \cdot\|x\| \tag{5}
\end{equation*}
$$

for every $x \in \mathscr{X}$. Hence $\left\|S^{-1} f\right\| \leqslant\left|\mu^{-1}\right| \cdot\|T A\| \cdot\|f\|$ for every $f \in \mathscr{X}^{\prime}$. It turns out that $\left\|S^{-1}\right\| \leqslant\left|\mu^{-1}\right| \cdot\|T A\|$, so S^{-1} as well as S is continuous.

In the same way, from $\left(S A^{\prime} f\right)(x)=v f\left(T^{-1} x\right)$, for every $x \otimes f \in \mathscr{B}(\mathscr{X})$, yields the continuity of the operator $S A^{\prime}$. As a consequence, T^{-1} and T are continuous too.

Observe that the injectivity of A^{\prime} immediately implies that A has dense range. After that choose any non-zero $x \in \mathscr{X}$. Because S is bijective, there exists an $f_{x} \in \mathscr{X}^{\prime}$ such that $\left\|S^{-1} f_{x}\right\|=1$ and $\left(S^{-1} f_{x}\right)(x)=\|x\|$. From the first property it follows $\left\|f_{x}\right\|=\left\|S S^{-1} f_{x}\right\| \leqslant\|S\|$. By the same approach as in (5), the second property of f_{x} provides

$$
\begin{aligned}
\|x\| & =\left|\left(S^{-1} f_{x}\right)(x)\right|=|\mu|^{-1} \cdot\left|f_{x}(T A x)\right| \leqslant|\mu|^{-1} \cdot\left\|f_{x}\right\| \cdot\|T A x\| \\
& \leqslant|\mu|^{-1} \cdot\|S\| \cdot\|T\| \cdot\|A x\|
\end{aligned}
$$

As x was arbitrary, the operator A having dense range is bounded below. Thus, it is invertible. Therefore, $T A$ is invertible and in turn, $(T A)^{\prime}$ as well.

By (4) it is obvious that $\mu f(x)=\left((T A)^{\prime} S f\right)(x)$, for every $x \in \mathscr{X}$ and every $f \in \mathscr{X}^{\prime}$. Hence $\mu I=(T A)^{\prime} S$ and consequently, $S=\mu\left((T A)^{\prime}\right)^{-1}$. Now we can replace ϕ by the map $X \mapsto \mu^{-1} T^{-1} \phi(X) T A$, which is clearly bijective and satisfies: $\phi\left(B_{1}\right) \sim$ $\phi\left(B_{2}\right)$ whenever $B_{1} \sim_{p} B_{2}$, for $B_{1}, B_{2} \in \mathscr{B}(\mathscr{X})$. Moreover,

$$
\phi(x \otimes f)=x \otimes f, \quad \text { for every } x \in \mathscr{X} \text { and every } f \in \mathscr{X}^{\prime} .
$$

Let us remark that supposing the alternate form of ϕ (i.e. $\phi(x \otimes f)=T f \otimes S x$ for every $x \in \mathscr{X}$ and every $f \in \mathscr{X}^{\prime}$) the proof of invertibility of linear maps $T: \mathscr{X}^{\prime} \rightarrow \mathscr{X}$ and $S: \mathscr{X} \rightarrow \mathscr{X}^{\prime}$ goes through similarly. Then it is obvious that T^{\prime} is invertible too. By denoting $\phi^{-1}(I)=A$ we can see that there exists a $0 \neq \mu \in \mathbb{C}$ such that $\mu f(x)=(S A x)(T f)=\left(T^{\prime} S A x\right)(f)$, for every $x \in \mathscr{X}$ and every $f \in \mathscr{X}^{\prime}$. As for every non-zero $x \in \mathscr{X}$ exists an $f_{x} \in \mathscr{X}^{\prime}$ with $\left\|f_{x}\right\|=1$ and $f_{x}(x)=\|x\|$, it follows that $\|x\| \leqslant|\mu|^{-1}\left\|T^{\prime}\right\| \cdot\|S\| \cdot\|A x\|$ for every $x \in \mathscr{X}$. Then it is easy to verify that A is invertible. Therefore $i=\mu^{-1} T^{\prime} S A$ is bijective, where $i: \mathscr{X} \rightarrow \mathscr{X}^{\prime \prime}$ is canonical isometric embedding of \mathscr{X}. In other words, \mathscr{X} is reflexive. Now we can replace ϕ by the map $X \mapsto \mu^{-1} S^{-1} \phi(X)^{\prime} S A$. Note that \mathscr{X}^{\prime} is reflexive too and so $j: \mathscr{X}^{\prime} \rightarrow \mathscr{X}^{\prime \prime \prime}$
is bijective canonical isometric embedding of \mathscr{X}^{\prime}. In this special case we can obtain $i^{\prime}=j^{-1}$. For this reason we have

$$
\begin{aligned}
\phi(x \otimes f) & =\mu^{-1} S^{-1}(T f \otimes S x)^{\prime} S A=\mu^{-1} S^{-1} S x \otimes(S A)^{\prime}(T f)^{\prime \prime} \\
& =\mu^{-1} x \otimes\left(\mu T^{\prime-1} i\right)^{\prime} T^{\prime \prime} f^{\prime \prime}=x \otimes i^{\prime}\left(f^{\prime \prime}\right)=x \otimes f
\end{aligned}
$$

for every $x \in \mathscr{X}$ and every $f \in \mathscr{X}^{\prime}$, and then we continue in the same way.
STEP 7. $\phi(A)=A$ for every $A \in \mathbb{C} I+\mathscr{F}(\mathscr{X})$.
By the linearity of ϕ, it is sufficient to prove that $\phi(I)=I$. Denote $\phi^{-1}(I)=J$. Now, we may and we do assume that T and S are identities on \mathscr{X} and \mathscr{X}^{\prime}, respectively. So, apply (4) to get existence of such $0 \neq \alpha \in \mathbb{C}$ that $\alpha f(x)=(S f)(T J x)=$ $f(J x)$ for every $x \in \mathscr{X}$ and every $f \in \mathscr{X}^{\prime}$. Consequently, $J=\alpha I$ and thus $\phi(\alpha I)=I$.

In order to see that $\alpha=1$, choose linearly independent $x_{1}, x_{2} \in \mathscr{X}$ and linearly independent $f_{1}, f_{2} \in \mathscr{X}^{\prime}$ such that $f_{1}\left(x_{1}\right)=1=f_{2}\left(x_{2}\right)$ and $f_{1}\left(x_{2}\right)=0=f_{2}\left(x_{1}\right)$. By Proposition 1 it is easy to see that $I+\lambda\left(x_{1}+x_{2}\right) \otimes\left(f_{1}-f_{2}\right) \in \operatorname{P-Inv}(\mathscr{X})$ for every $\lambda \in \mathbb{C}$. Moreover, $I-2 x_{1} \otimes f_{1}$ is an involution. Hence

$$
\alpha I \sim_{p} \alpha I\left(I+\lambda\left(x_{1}+x_{2}\right) \otimes\left(f_{1}-f_{2}\right)\right)\left(I-2 x_{1} \otimes f_{1}\right)
$$

and thus

$$
\alpha I \sim_{p} \alpha I-\alpha \lambda\left(x_{1}+x_{2}\right) \otimes\left(f_{1}+f_{2}\right)-2 \alpha x_{1} \otimes f_{1}
$$

for every $\lambda \in \mathbb{C}$. Acting by ϕ on this relation implies

$$
I \sim I-\left(\alpha \lambda\left(x_{1}+x_{2}\right) \otimes\left(f_{1}+f_{2}\right)+2 \alpha x_{1} \otimes f_{1}\right)
$$

Therefore, the operator $I-\left(\alpha \lambda\left(x_{1}+x_{2}\right) \otimes\left(f_{1}+f_{2}\right)+2 \alpha x_{1} \otimes f_{1}\right)$ is invertible for every $\lambda \in \mathbb{C}$. From Lemma 4 it follows

$$
\left(\alpha \lambda\left(f_{1}+f_{2}\right)\left(x_{1}+x_{2}\right)-1\right) \cdot\left(2 \alpha f_{1}\left(x_{1}\right)-1\right) \neq 2 \alpha\left(f_{1}+f_{2}\right)\left(x_{1}\right) \cdot \alpha \lambda f_{1}\left(x_{1}+x_{2}\right)
$$

which yields $\left(2 \alpha^{2}-2 \alpha\right) \lambda+(1-2 \alpha) \neq 0$ for every $\lambda \in \mathbb{C}$. Consequently, $2 \alpha^{2}-$ $2 \alpha=0$. As $\alpha \neq 0$, we get $\alpha=1$, as desired.

Step 8. If $A \notin \mathbb{C} I+\mathscr{F}(\mathscr{X})$, then there exists an $\alpha_{A} \in \mathbb{C}$ depending on A such that $\phi(A)=A+\alpha_{A} I$.

Let us suppose $A \in \mathscr{B}(\mathscr{X})$ is not a member of $\mathbb{C} I+\mathscr{F}(\mathscr{X})$ and denote

$$
\phi(A)=B .
$$

Without loss of generality we can assume that B is invertible. If it is non-invertible, then there exists a non-zero $\gamma \in \mathbb{C}$ such that $B+\gamma I$ becomes invertible. In this case, replace A by $A+\gamma I$.

Choose any non-zero $x \in \mathscr{X}$ and any non-zero $f \in \mathscr{X}^{\prime}$ such that $f(x)=0$ and $f\left(B^{-1} x\right)=0$. By Lemma 1 it is obvious that $I+\lambda x \otimes f \in \mathrm{P}-\operatorname{Inv}(\mathscr{X})$ for every $\lambda \in \mathbb{C}$. Then from $A \sim_{p}(I+\lambda x \otimes f) A=A+\lambda x \otimes A^{\prime} f$ it follows

$$
B \sim B+\lambda x \otimes A^{\prime} f=B\left(I+\lambda B^{-1} x \otimes A^{\prime} f\right)
$$

As B is invertible, $B+\lambda x \otimes A^{\prime} f$ and in turn $I+\lambda B^{-1} x \otimes A^{\prime} f$ are invertible too. By Lemma 3 we have $-1 \neq \lambda\left(A^{\prime} f\right)\left(B^{-1} x\right)=\lambda f\left(A B^{-1} x\right)$ for every $\lambda \in \mathbb{C}$. So, $f\left(A B^{-1} x\right)=0$. As x and f were arbitrary with $f(x)=f\left(B^{-1} x\right)=0$, we can obtain that $A B^{-1}, I$ and B^{-1} are linearly dependent by [9, Lemma 2.4]. Hence, there exists $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{C}$, not all zero, such that $\alpha_{1} A B^{-1}+\alpha_{2} I+\alpha_{3} B^{-1}=0$, which is equivalent to $\alpha_{1} A+\alpha_{2} B+\alpha_{3} I=0$. Since $A \notin \mathbb{C} I$ it is obvious that $\alpha_{2} \neq 0$. Thus

$$
\begin{equation*}
\phi(A)=B=\alpha_{A} A+\beta_{A} I \tag{6}
\end{equation*}
$$

for some scalars α_{A} and β_{A}. In order to see that $\alpha_{A}=1$, take any $C \in \mathscr{F}(X)$ such that A, C and I are linearly independent. Obviously, $A+C \notin \mathbb{C} I+\mathscr{F}(\mathscr{X})$ and by applying (6) we get $\phi(A+C)=\alpha_{A+C}(A+C)+\beta_{A+C} I$. On the other hand, $\phi(A+C)=$ $\phi(A)+\phi(C)=\alpha_{A} A+\beta_{A} I+C$. Therefore

$$
\left(\alpha_{A+C}-\alpha_{A}\right) A+\left(\alpha_{A+C}-1\right) C+\left(\beta_{A+C}-\beta_{A}\right) I=0
$$

As A, C and I are linearly independent, $\alpha_{A}=\alpha_{A+C}=1$.
STEP 9. $\phi(A)=A$ for every $A \in \mathscr{B}(\mathscr{X})$.
We will prove this by a contradiction, so let us assume, by STEP 9, that there exists an $A \notin \mathbb{C} I+\mathscr{F}(\mathscr{X})$ with

$$
\phi(A)=A+\alpha_{A} I
$$

for some non-zero $\alpha_{A} \in \mathbb{C}$. Choose any $x \in \mathscr{X}$ and any $f \in \mathscr{X}^{\prime}$ such that $f(x)=0$. According to Lemma 1 , the operator $I+\lambda x \otimes f \in \operatorname{P-Inv}(\mathscr{X})$ for every $\lambda \in \mathbb{C}$. From

$$
A-\alpha_{A} I \sim_{p}\left(A-\alpha_{A} I\right)(I+\lambda x \otimes f)=\left(A-\alpha_{A} I\right)+\lambda\left(A-\alpha_{A} I\right) x \otimes f
$$

being valid for every $\lambda \in \mathbb{C}$ and by the action of ϕ it follows

$$
A \sim A+\lambda\left(A-\alpha_{A} I\right) x \otimes f
$$

for every $\lambda \in \mathbb{C}$. If A is invertible, then

$$
A+\lambda\left(A-\alpha_{A} I\right) x \otimes f=A\left(I+\lambda\left(I-\alpha_{A} A^{-1}\right) x \otimes f\right)
$$

is invertible too. Thus $I+\lambda\left(I-\alpha_{A} A^{-1}\right) x \otimes f$ is invertible for every $\lambda \in \mathbb{C}$ and by Lemma 3 we have $\lambda f\left(x-\alpha_{A} A^{-1} x\right) \neq-1$ for every $\lambda \in \mathbb{C}$. Consequently, $0=$ $f\left(x-\alpha_{A} A^{-1} x\right)=-\alpha_{A} f\left(A^{-1} x\right)$. As $\alpha_{A} \neq 0$ it follows $f\left(A^{-1} x\right)=0$ for every $f \in \mathscr{X}^{\prime}$ with $f(x)=0$. Hence, $A^{-1} x$ and x are linearly dependent. Since $x \in \mathscr{X}$ was arbitrary, there exists a non-zero $\mu_{1} \in \mathbb{C}$ such that $A^{-1}=\mu_{1} I$, a contradiction.

Therefore, A is non-invertible. But then there exists a non-zero $\beta \in \mathbb{C}$ such that $A+\beta I$ is invertible. By the method used above, we get $(A+\beta I)^{-1}=\mu_{2} I$ for some $\mu_{2} \in \mathbb{C}$, a contradiction.

Acknowledgement. The author is greatly indebted to Professor Tatjana Petek and the anonymous referee for theirs valuable comments and suggestions.

REFERENCES

[1] S. A. Argyros and R. G. Haydon, A hereditarily indecomposable \mathscr{L}_{∞}-space that solves the scalar-plus-compact problem, Acta Math., 206, 1, 2011, 1-54.
[2] H.-K. Du and G.-X. Ji, Similarity-invariant subspaces and similarity-preserving linear maps, Acta Math. Sinica (Engl. Ser.), 18, 3, 2002, 489-498.
[3] S. Du and J. Hou, Similarity invariant real linear subspaces and similarity preserving additive maps, Linear Algebra Appl., 377, 2004, 141-153.
[4] F. Hiai, Similarity preserving linear maps on matrices, Linear Algebra Appl., 97, 1987, 127-139.
[5] R. Horn, C. K. Li and N. K. Tsing, Linear operators preserving certain equivalence relations on matrices, SIAM J. Matrix Anal. Appl, 12, 2, 1991, 195-204.
[6] J. HOU AND X.-L. ZHANG, Additive maps preserving similarity of operators on Banach spaces, Acta Math. Sinica (Engl. Ser.), 22, 1, 2006, 179-186.
[7] G. Ji, Similarity-preserving linear maps on $\mathscr{B}(\mathscr{H})$, Linear Algebra Appl., 360, 2003, 249-257.
[8] B. KuZMA, Additive mappings decreasing rank one, Linear Algebra Appl., 348, 2002, 175-187.
[9] C.-K. Li, P. ŠEMRL AND N.-S. SzE, Maps preserving the nilpotency of products of operators, Linear Algebra Appl., 424, 2007, 202-239.
[10] M. H. Lim, A note on similarity preserving linear maps on matrices, Linear Algebra Appl., 190, 1993, 229-233.
[11] F. Lu and C. Peng, Similarity-preserving linear maps on $\mathscr{B}(\mathscr{X})$, Studia Math., 209, 1, 2012, 1-10.
[12] B. S. Mityagin and I. S. Édel'shtein, Homotopy type of linear groups of two classes of Banach spaces, Funct Anal Appl, 4, 3, 1970, 221-231.
[13] T. Petek, Linear mappings preserving similarity on $\mathscr{B}(\mathscr{H})$, Studia Math., 161, 2, 2004, 177-186.
[14] T. PETEK AND G. RADIĆ, Linear preservers of equivalence relations on infinite-dimensional spaces, Studia Math., 238, 2, 2017, 101-119.
[15] H. Radjavi, The group generated by involutions, Proceeding of the Royal Irish Academy, 81A, 1, 1981, 9-12.
[16] P. ŠEMRL, Similarity preserving linear maps, J. Operator Theory, 60, 1, 2008, 71-83.
[17] S. Shelah and J. Steprans, A Banach-space on which there are few operators, Proc. Am. Math. Soc, 104, 1, 1988, 101-105.
[18] A. R. Sourour, Invertibility preserving linear maps on $\mathscr{L}(\mathscr{X})$, Trans. Amer. Math. Soc., 348, 1, 1996, 13-30.
[19] Z. Qin and F. Lu, Involution similarity preserving linear maps, Studia Math., Published online: 23.4.2019.
[20] A. Wilansky, Subalgebras of $\mathscr{B}(\mathscr{X})$, Prodeeding sof the Royal Irish Academy, 29, 2, 1971, 355360.

[^0]: Mathematics subject classification (2010): 47B49, 15 A86.
 Keywords and phrases: Linear preserver, involution, equivalence, equivalence by products of involutions.

 This work was supported by Javna Agencija za Raziskovalno Dejavnost RS [project N1-0063].

