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MAPS PRESERVING EQUIVALENCE BY PRODUCTS OF INVOLUTIONS

GORDANA RADIĆ

(Communicated by H. Radjavi)

Abstract. Let B (X ) be the algebra of bounded linear operators on a complex Banach space
X . Two operators A and B ∈ B (X ) are said to be equivalent by products of involutions, if
A = TBS for T and S being a products of finitely many involutions. We will give description of
linear bijective maps φ on B (X ) satisfying that φ (A) and φ (B) are equivalent (i.e. A = TBS
for some invertible T,S ∈B (X ) ) whenever A and B are equivalent by products of involutions.

1. Introduction and the main result

Let X be, if not stated otherwise, a complex Banach space of dimension at least
two, X ′ its topological dual, ker f the kernel of f ∈ X ′ , B (X ) the algebra of all
bounded linear operators on X and F (X ) the ideal of all finite rank operators.

Over the past decades, there has been a considerable interest in the study of linear
or merely additive maps on operator algebras that leave certain relations invariant. A lot
of interest, among others, has been devoted to the similarity relation (operators A and
B are similar, if B = SAS−1 for some invertible operator S ) and to the classification of
similarity-preserving linear or additive maps φ (i.e. if operators A and B are similar,
then φ (A) and φ (B) are similar as well), for instance [2, 3, 4, 6, 7, 10, 11, 13, 16].
Although a lot of results regarding similarity relation exist, let us expose the result due
to Lu and Peng, [11]. They proved that if X is an infinite-dimensional complexBanach
space and φ : B (X ) → B (X ) is a surjective similarity-preserving linear map, then
there exist either a non-zero c ∈ C , an invertible T ∈B (X ) and a similarity-invariant
linear functional h on B (X ) with h(I) �= −c such that

φ (X) = cTXT−1 +h(X) I, for every X ∈ B (X ) , (1)

or there exist a non-zero c ∈ C , invertible bounded linear operator T : X ′ →X and a
similarity-invariant linear functional h on B (X ) with h(I) �= −c such that

φ (X) = cTX ′T−1 +h(X) I, for every X ∈ B (X ) , (2)
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where X ′ stands for the adjoint of the operator X , and a similarity-invariant functional
h means that h(A) = h(B) whenever A is similar to B . Qin and Lu, [19], modified the
problem and presented it in another way.

An operator J ∈ B (X ) is called an involution if J2 = I , the identity operator
on X . By P-Inv(X ) we denote the set of all finite products of involutions. Ob-
viously, P-Inv(X ) is a subset of G (X ) , the multiplicative group of all invertible
operators in B (X ) . Moreover, due to Radjavi [15] it is known that P-Inv(X ) =
{A ∈ B (X )| detA = ±1} in the case of finite dimensional space X , and P-Inv(X )=
G (X ) if X is an infinite-dimensional complex Hilbert space. In a general infinite-
dimensional complex Banach space X the problem whether P-Inv(X ) coincides
with G (X ) is connected with the existence of a non-trivial multiplicative functional
f ∈X ′ . As stated in [1, 12, 17, 20] there exists a Banach space X having a non-trivial
multiplicative f ∈ X ′ , so P-Inv(X ) can be a proper subset of G (X ) .

Two operators A and B are called p-similar, if B = SAS−1 for some S∈P-Inv(X ) ,
and a linear map φ : B (X ) → B (X ) is said to be p-similarity preserving if φ (A)
and φ (B) are similar whenever A is p-similar to B . Note that similarity preserving is
stronger assumption than p-similarity preserving with which Qin and Lu were occupied.
They proved that a linear bijection φ : B (X )→B (X ) being only a p-similarity pre-
serving is (as in the similarity-preserving case) either of the form (1) or of the form
(2).

We now define another equivalence relations on B (X ) . Two operators A and
B ∈ B (X ) are said to be equivalent, denoted by A ∼ B , if A = TBS for some T,S ∈
G (X ) , and are equivalent by products of involutions, denoted by A ∼p B , if A = TBS
for some T,S ∈ P-Inv(X ) .

The aim of this note is to refine the result stated in [14], where linear bijection
φ : B (X ) → B (X ) with A ∼ B ⇒ φ (A) ∼ φ (B) were determined. It was proved
that in the case of X being an infinite-dimensional reflexive complex Banach space
either there exist T,S ∈ G (X ) such that φ (X) = TXS for every X ∈ B (X ) , or there
exist bounded bijective linear operators T : X ′ → X and S : X → X ′ such that
φ (X) = TX ′S for every X ∈ B (X ) .

Our main result reads as follows.

THEOREM 1. Let X be a complex Banach space of dimension at least two and
φ : B (X ) → B (X ) a surjective linear map such that

A ∼p B ⇒ φ (A) ∼ φ (B) ,

for every A,B ∈ B (X ) . Then one and only one of the following statements holds.

(i) φ (F) = 0 , for every F ∈ F (X ) .

(ii) There exist invertible T,S ∈ B (X ) such that

φ (X) = TXS, for every X ∈ B (X ) .

(iii) There exist invertible bounded linear operators T : X ′ → X and S : X → X ′
such that

φ (X) = TX ′S, for every X ∈ B (X ) ,
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where X ′ stands for the adjoint of the operator X .

Case (iii) can only occur if X is reflexive.

Let us remark that the problem stated in Theorem 1 is not of any general type of
LPPs. We actually determine those surjective linear maps where from equivalence by
products of involutions of A and B follows that φ (A) is equivalent to φ (B) and not
equivalent by products of involutions as we would expect.

2. Preliminaries

Every rank-one operator can be written as x⊗ f for some non-zero vector x ∈ X
and some non-zero functional f ∈ X ′ , and is defined by (x⊗ f )z = f (z)x for every
z ∈ X , A(x⊗ f ) = Ax⊗ f and (x⊗ f )A = x⊗A′ f for every A ∈ B (X ) , where A′
stands for the adjoint operator of A ; operator x⊗ f is idempotent if f (x) = 1 and it is
nilpotent if f (x) = 0.

It is obvious that all rank-one operators are mutually equivalent. But, when we are
speaking about equivalence orbit of a rank-one operator under equivalence by products
of involutions, the problem is a little bit more complicated. With the following Propo-
sition and some subsequent Lemmas we will be able to determine all operators that are
equivalent by products of involutions to a fixed rank-one operator in B (X ) .

PROPOSITION 1. [19, Proposition 2.1] Let N ∈ B (X ) be a non-zero finite-rank
operator with N2 = 0 . Then I +N is a product of two involutions.

LEMMA 1. Let 0 �= x ∈ X and 0 �= f ∈ X ′ . Then x⊗ f ∼p y⊗ f for every
non-zero y ∈ X .

Proof. Take any non-zero y ∈ X . If y is linearly independent of x , then there
exist g1,g2 ∈ X ′ such that g1 (x) = 1 = g2 (y) and g1 (y) = 0 = g2 (x) . Let it be
N = (x− y)⊗ (g1 +g2) . As N �= 0 and N2 = 0, the operator I +N is a product of two
involutions by Proposition 1. Thus

y⊗ f ∼p (I +N)(y⊗ f ) = (I +(x− y)⊗ (g1 +g2))y⊗ f = x⊗ f , (3)

as desired. Next, let x and y be linearly dependent. As dimX � 2, there exists a non-
zero z ∈ X such that x,z and y,z are linearly independent, respectively. Apply (3) to
get x⊗ f ∼p z⊗ f and y⊗ f ∼p z⊗ f . By the transitivity we have x⊗ f ∼p y⊗ f . �

LEMMA 2. Let 0 �= x ∈ X and 0 �= f ∈ X ′ . Then x⊗ f ∼p x⊗ g for every
non-zero g ∈ X ′ .

Proof. Take any non-zero g ∈ X ′ . If kerg = ker f , then g is linearly dependent
on f : g = α f for some α �= 0. In turn we have

x⊗g = x⊗α f = αx⊗ f ∼p x⊗ f ,
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by Lemma 1. Otherwise, when kerg �= ker f , there exist linearly independent y1,y2 ∈
X such that f (y1) = 1 = g(y2) and f (y2) = 0 = g(y1) . By setting N = (y1 + y2)⊗
( f −g) we can see that N �= 0 and N2 = 0. Therefore, by Proposition 1, we obtain
x⊗g∼p (x⊗g)(I +N) = x⊗ f . �

PROPOSITION 2. All rank-one operators in B (X ) are mutually equivalent by
products of involutions.

Proof. Take any non-zero x,y ∈X and any non-zero f ,g ∈ X ′ . The straightfor-
ward consequence of Lemmas 1 and 2 is that x⊗ f ∼p y⊗ f ∼p y⊗g . By the transitivity
we complete the proof. �

Our first step will be reducing the problem to the case of rank-one preserving map,
i.e. if A ∈B(X ) is of rank one, then φ(A) is of rank one too. We will use a result due
to Kuzma regarding rank-one-non-increasing additive mappings.

THEOREM 2. [8, Theorem 2.3] Let φ : F (X ) → F (X ) be an additive map,
which maps rank-one operators to operators of rank at most one. Then one and only
one of the following statements holds.

(i) There exist an f0 ∈ X ′ and an additive map τ : F (X ) → X , such that

φ (X) = τ (X)⊗ f0, for every X ∈ F (X ).

(ii) There exist an x0 ∈ X and an additive map ϕ : F (X ) → X ′ , such that

φ (X) = x0 ⊗ϕ (X) , for every X ∈ F (X ).

(iii) There exist additive maps T : X → X and S : X ′ → X ′ such that

φ (x⊗ f ) = Tx⊗S f , for every x ∈ X and every f ∈ X ′.

(iv) There exist additive maps T : X ′ → X and S : X → X ′ such that

φ (x⊗ f ) = T f ⊗Sx, for every x ∈ X and every f ∈ X ′.

REMARK 1. If φ is in addition linear, it is easy to verify that τ and ϕ from (i)
and (ii) as well as T and S from (iii) and (iv) are linear maps.

We will close the section with two simple Lemmas applying invertible operators.

LEMMA 3. [18, Lemma 3.3] Let x∈X and f ∈X ′ . Then I−x⊗ f is invertible
in B (X ) if and only if f (x) �= 1.

LEMMA 4. [11, Lemma 2.5] Let x,y∈X and f ,g∈X ′ . Then I−(x⊗ f + y⊗g)
is invertible if and only if ( f (x)−1)(g(y)−1) �= f (y)g(x) .
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3. Proof of the main result

Let X be a complex Banach space with dimX � 2 and φ : B (X )→B (X ) a
surjective linear map such that A∼p B implies φ (A)∼ φ (B) for every A,B ∈B (X ) .

If X is finite-dimensional, then P-Inv(X ) is equal to {A ∈ B (X ) |detA = ±1}
and by [5, Theorem 4.1] the proof is completed. In the case of X being an infinite-
dimensional, we set up the proof through several steps.

STEP 1. φ is rank-one-non-increasing linear map, i.e. rank φ (A) � 1 for every
rank-one A ∈ B (X ) .

Take any P ∈ B (X) of rank one. By the surjectivity of φ there exists an A ∈
B (X ) such that

φ (A) = P.

If A is of rank one, then we have, by Proposition 2, A∼p E for every E ∈B (X )
of rank one. Acting by φ on this relation implies P = φ (A) ∼ φ (E) . Thus φ (E) is of
rank one for every E ∈ B (X ) of rank one. In other words, φ is rank-one preserving.

In the other case, if A is not of rank one, there exist linearly independent x1,x2 ∈
X such that Ax1 and Ax2 are linearly independent too. Choose linearly independent
f1, f2 ∈ X ′ such that f1 (x1) = 1 = f2 (x2) and f1 (x2) = 0 = f2 (x1) . Set

N = (x1− x2)⊗ ( f1 + f2) �= 0.

As N2 = 0 and (−N)2 = 0, the operators I +N and I−N ∈ P-Inv(X ) by Proposition
1. From the relation A ∼p A(I±N) = A±AN we get

P = φ (A) ∼ φ (A±AN) = P±φ (AN) .

It follows that both P+ φ (AN) as well as P−φ (AN) are of rank one. Since Ax1,Ax2

and f1, f2 are linearly independent, respectively, the operator AN = (Ax1−Ax2)⊗
( f1 + f2) is of rank one and either

φ (AN) = 0 or φ (AN) �= 0.

Firstly assume that φ (AN) = 0. Then, by Proposition 2, we have φ (E1) = 0 for every
E1 ∈ B (X ) of rank one. Using the fact that every finite-rank operator F ∈ F (X )
can be written as a sum of rank-one operators, it is obvious that φ (F (X )) = 0. But,
if there exists at least one finite-rank operator in B (X ) which is not mapped to zero
operator, then φ (AN) �= 0. Thus, by [14, Lemma 2.2], the operator φ (AN) is of rank
one. As we have found one operator of rank one which is mapped to an operator of
rank one, φ (E2) is of rank one for every rank-one E2 ∈ B (X ) .

Taking both possibilities into consideration, we conclude that φ is rank-one-non-
increasing map.



828 G. RADIĆ

By the proof of STEP 1 we have seen that either φ(F (X )) = 0 or φ is rank-one
preserving. Hence, from now on we can and we will assume that φ is rank-one pre-
serving.

STEP 2. φ is injective.

By the surjectivity of φ take an A ∈ B (X ) such that φ (A) = 0. If A �= 0, then
there exists an x ∈ X with Ax �= 0. Choose any non-zero f ∈ X ′ with f (x) = 0
and, by Lemma 1, the operator I + x⊗ f is a product of two involutions. Acting by φ
on the relation A ∼p A(I + x⊗ f ) = A+Ax⊗ f we get 0 = φ (A) ∼ φ (A+Ax⊗ f ) =
φ (Ax⊗ f ) which further implies φ (Ax⊗ f ) = 0, a contradiction with the rank-one pre-
serving property. So, A = 0 which proves the claim.

STEP 3. Either there exist linear maps T : X → X and S : X ′ → X ′ such that
φ (x⊗ f ) = Tx⊗ S f , for every x ∈ X and every f ∈ X ′ , or there exist linear maps
T : X ′ → X and S : X → X ′ such that φ (x⊗ f ) = T f ⊗Sx , for every x ∈ X and
every f ∈ X ′ .

Since φ is rank-one preserving, we can apply Theorem 2. Assume firstly that
φ (X) = τ (X)⊗g0 for some non-zero g0 ∈X ′ and some linear map τ : F (X )→X .
Choose any non-zero y ∈ X ′ and any g1 ∈ X ′ linearly independent of g0 . By the
surjectivity of φ there exists a non-zero A ∈ B (X ) such that

φ (A) = y⊗g1.

It is obvious that A is not of rank one, thus there exist linearly independent x1,x2 ∈ X
such that Ax1 and Ax2 are linearly independent too. For each i = 1,2 choose fi ∈ X ′
with fi (xi) = 1. Then it is easy to verify that the operator I−2xi⊗ fi is involutive, so
acting by φ on the relation A ∼p A(I−2xi⊗ fi) = A−2Axi⊗ fi implies y⊗g1 ∼ y⊗
g1− τ (2Axi⊗ fi)⊗g0 , for i = 1,2, and consequently y⊗g1−2τ (Axi⊗ fi)⊗g0 is of
rank one for i = 1,2. Hence, both τ (Ax1⊗ f1) as well as τ (Ax2⊗ f2) are scalars multi-
plied of y . It follows that there exists α ∈C such that τ (Ax1⊗ f1) = ατ (Ax2⊗ f2) and
in turn φ (Ax1⊗ f1) = φ (αAx2⊗ f2) . By the injectivity of φ , Ax1 ⊗ f1 = αAx2 ⊗ f2 ,
a contradiction with linear independency of Ax1 , Ax2 and f1 , f2 , respectively.

Therefore (i), and similarly (ii), from Theorem 2 cannot occur.

We will assume that there exist linear maps T : X → X and S : X ′ → X ′ such
that

φ (x⊗ f ) = Tx⊗S f , for every x ∈ X and every f ∈ X ′.

STEP 4. T and S are bijective.

The injectivity of T and S follows immediately from the bijectivity of the map φ .
The surjectivity of T will be proved by a contradiction, so let us assume that T is not
surjective. Then there exists a non-zero y∈X such that y is not contained in the range
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of T . Choose any non-zero g ∈ X ′ . Since φ is surjective, there exists an A ∈ B (X )
such that

φ (A) = y⊗g.

Obviously, A �= 0. Hence, there exists an x ∈ X such that Ax �= 0. Take linearly inde-
pendent f1, f2 ∈X ′ with f1 (x) = 0 = f2 (x) . According to Proposition 1, the operator
I + x⊗ fi ∈ P-Inv(X ) , for i = 1,2. Acting by φ on the relation A ∼p A(I + x⊗ fi) =
A+Ax⊗ fi we obtain

y⊗g∼ y⊗g+TAx⊗S fi, for i = 1,2,

which further implies that y⊗g+TAx⊗S fi is of rank one. Observe that TAx⊗S fi �=
0. Since y and TAx are linearly independent, the linear functionals S f1 and S f2 are
scalars multiplied of g . Therefore, S f1 and S f2 are linearly dependent and, by the
injectivity of S , f1 and f2 are linearly dependent, a contradiction.

By the same method we can see that S is surjective as well.

STEP 5. Let φ (A) = I for some non-zero A ∈ B (X ) . Then there exist non-zero
μ ,υ ∈ C such that

(S f )(TAx) = μ f (x) and
(
SA′ f

)
(Tx) = υ f (x) , (4)

for every x ∈ X and every f ∈ X ′ . Consequently, A and A′ are injective.

Choose any non-zero x0 ∈ X and any non-zero f0 ∈ X ′ such that f0 (x0) = 0.
By Proposition 1, the operator I + λ0x0 ⊗ f0 ∈ P-Inv(X ) for every λ0 ∈ C . From the
relation A ∼p A(I + λ0x0⊗ f0) = A+ λ0Ax0⊗ f0 it follows

I ∼ I + λ0TAx0⊗S f0, for every λ0 ∈ C.

Thus, I + λ0TAx0 ⊗ S f0 is invertible, so λ0 (S f0) (TAx0) �= −1 for every λ0 ∈ C by
Lemma 3. Therefore,

(S f0)(TAx0) = 0, for every nilpotent x0 ⊗ f0 ∈ B (X ).

Following the steps similar to those used in [16, Remark after Proposition 3.1] we prove
that there exists a μ ∈ C such that

(S f )(TAx) = μ f (x) , for every x ∈ X and every f ∈ X ′.

Next we want to see that μ �= 0. To do this, let us assume the contrary, μ = 0. By
the surjectivity of S we have g(TAx) = 0 for every g∈X ′ , which implies TAx = 0 for
every x ∈X . The injectivity of T forces that Ax = 0 for every x ∈X , a contradiction
with A �= 0.

If we started the proof of this Step by A ∼p (I + λ0x0⊗ f0)A instead of A ∼p

A(I + λ0x0⊗ f0) and then continuing the proof in the same way, we would get the sec-
ond equality of (4). To show that A and A′ are injective is then an elementary exercise.
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STEP 6. T and S are continuous.

We are essentially following the lines of the proof of Step 4 of Theorem 3.3 in
[14]. For the sake of completeness, the proof is included.

Firstly we will prove the continuity of the operator TA . Let (xn)n∈N
→ 0 and

(TAxn)n∈N
→ y ∈ X . Applying (4) gives (S f ) (y) = 0 for every f ∈ X ′ . As S is sur-

jective, we obtain y = 0. By the Closed graph theorem, the operator TA is continuous.
By the bijectivity of S and according to (4) once again we have

(
S−1 f

)
(x) =

μ−1 f (TAx) for every x ∈ X and every f ∈ X ′ . Then
∣
∣(S−1 f

)
(x)

∣
∣ =

∣
∣μ−1 f (TAx)

∣
∣ �

∣
∣μ−1

∣
∣ · ‖ f ‖·‖TA‖·‖x‖, (5)

for every x ∈X . Hence ‖S−1 f ‖�
∣∣μ−1

∣∣ · ‖TA‖·‖ f ‖ for every f ∈X ′ . It turns out
that ‖S−1‖ �

∣
∣μ−1

∣
∣ · ‖TA‖ , so S−1 as well as S is continuous.

In the same way, from (SA′ f ) (x) = υ f
(
T−1x

)
, for every x⊗ f ∈ B (X ) , yields

the continuity of the operator SA′ . As a consequence, T−1 and T are continuous too.

Observe that the injectivity of A′ immediately implies that A has dense range.
After that choose any non-zero x ∈ X . Because S is bijective, there exists an fx ∈X ′
such that ‖S−1 fx ‖ = 1 and

(
S−1 fx

)
(x) = ‖x‖ . From the first property it follows

‖ fx ‖ = ‖SS−1 fx ‖ � ‖S‖ . By the same approach as in (5), the second property of fx
provides

‖x‖ =
∣
∣(S−1 fx

)
(x)

∣
∣ = |μ |−1 · | fx (TAx)| � |μ |−1 · ‖ fx ‖·‖TAx‖

� |μ |−1 · ‖S‖·‖T ‖·‖Ax‖ .

As x was arbitrary, the operator A having dense range is bounded below. Thus, it is
invertible. Therefore, TA is invertible and in turn, (TA)′ as well.

By (4) it is obvious that μ f (x) =
(
(TA)′ S f

)
(x) , for every x ∈ X and every

f ∈X ′ . Hence μI = (TA)′ S and consequently, S = μ
(
(TA)′

)−1
. Now we can replace

φ by the map X 
→ μ−1T−1φ (X)TA , which is clearly bijective and satisfies: φ (B1) ∼
φ (B2) whenever B1 ∼p B2 , for B1,B2 ∈ B (X ) . Moreover,

φ (x⊗ f ) = x⊗ f , for every x ∈ X and every f ∈ X ′.

Let us remark that supposing the alternate form of φ (i.e. φ (x⊗ f ) = T f ⊗Sx for
every x∈X and every f ∈X ′ ) the proof of invertibility of linear maps T : X ′ →X
and S : X → X ′ goes through similarly. Then it is obvious that T ′ is invertible
too. By denoting φ−1 (I) = A we can see that there exists a 0 �= μ ∈ C such that
μ f (x) = (SAx)(T f ) = (T ′SAx)( f ) , for every x ∈ X and every f ∈ X ′ . As for
every non-zero x ∈ X exists an fx ∈ X ′ with ‖ fx ‖ = 1 and fx (x) = ‖x‖ , it follows
that ‖x‖ � |μ |−1‖T ′ ‖ ·‖S‖·‖Ax‖ for every x ∈ X . Then it is easy to verify that
A is invertible. Therefore i = μ−1T ′SA is bijective, where i : X → X ′′ is canonical
isometric embedding of X . In other words, X is reflexive. Now we can replace φ by
the map X 
→ μ−1S−1φ (X)′ SA . Note that X ′ is reflexive too and so j : X ′ → X ′′′
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is bijective canonical isometric embedding of X ′ . In this special case we can obtain
i′ = j−1 . For this reason we have

φ(x⊗ f ) = μ−1S−1 (T f ⊗Sx)′ SA = μ−1S−1Sx⊗ (SA)′ (T f )′′

= μ−1x⊗ (
μT ′−1i

)′
T ′′ f ′′ = x⊗ i′ ( f ′′) = x⊗ f ,

for every x ∈ X and every f ∈ X ′ , and then we continue in the same way.

STEP 7. φ (A) = A for every A ∈ CI +F (X ) .

By the linearity of φ , it is sufficient to prove that φ (I) = I . Denote φ−1 (I) = J .
Now, we may and we do assume that T and S are identities on X and X ′ , respec-
tively. So, apply (4) to get existence of such 0 �= α ∈ C that α f (x) = (S f )(TJx) =
f (Jx) for every x∈X and every f ∈X ′ . Consequently, J = αI and thus φ (αI) = I .

In order to see that α = 1, choose linearly independent x1,x2 ∈ X and linearly
independent f1, f2 ∈ X ′ such that f1 (x1) = 1 = f2 (x2) and f1 (x2) = 0 = f2 (x1) . By
Proposition 1 it is easy to see that I + λ (x1 + x2)⊗ ( f1 − f2) ∈ P-Inv(X ) for every
λ ∈ C . Moreover, I−2x1⊗ f1 is an involution. Hence

αI ∼p αI (I + λ (x1 + x2)⊗ ( f1 − f2)) (I−2x1⊗ f1)

and thus
αI ∼p αI−αλ (x1 + x2)⊗ ( f1 + f2)−2αx1⊗ f1,

for every λ ∈ C . Acting by φ on this relation implies

I ∼ I− (αλ (x1 + x2)⊗ ( f1 + f2)+2αx1⊗ f1) .

Therefore, the operator I − (αλ (x1 + x2)⊗ ( f1 + f2)+2αx1⊗ f1) is invertible for ev-
ery λ ∈ C . From Lemma 4 it follows

(αλ ( f1 + f2) (x1 + x2)−1) · (2α f1 (x1)−1) �= 2α ( f1 + f2)(x1) ·αλ f1 (x1 + x2) ,

which yields
(
2α2−2α

)
λ + (1−2α) �= 0 for every λ ∈ C . Consequently, 2α2 −

2α = 0. As α �= 0, we get α = 1, as desired.

STEP 8. If A /∈ CI +F (X ) , then there exists an αA ∈ C depending on A such
that φ (A) = A+ αAI .

Let us suppose A ∈ B (X ) is not a member of CI +F (X ) and denote

φ (A) = B.

Without loss of generality we can assume that B is invertible. If it is non-invertible,
then there exists a non-zero γ ∈ C such that B+ γI becomes invertible. In this case,
replace A by A+ γI .
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Choose any non-zero x ∈ X and any non-zero f ∈ X ′ such that f (x) = 0 and
f
(
B−1x

)
= 0. By Lemma 1 it is obvious that I +λx⊗ f ∈ P-Inv(X ) for every λ ∈ C .

Then from A ∼p (I + λx⊗ f )A = A+ λx⊗A′ f it follows

B ∼ B+ λx⊗A′ f = B
(
I + λB−1x⊗A′ f

)
.

As B is invertible, B + λx⊗ A′ f and in turn I + λB−1x⊗ A′ f are invertible too.
By Lemma 3 we have −1 �= λ (A′ f )

(
B−1x

)
= λ f

(
AB−1x

)
for every λ ∈ C . So,

f
(
AB−1x

)
= 0. As x and f were arbitrary with f (x) = f

(
B−1x

)
= 0, we can obtain

that AB−1 , I and B−1 are linearly dependent by [9, Lemma 2.4]. Hence, there exists
α1,α2,α3 ∈ C , not all zero, such that α1AB−1 +α2I +α3B−1 = 0, which is equivalent
to α1A+ α2B+ α3I = 0. Since A /∈ CI it is obvious that α2 �= 0. Thus

φ (A) = B = αAA+ βAI, (6)

for some scalars αA and βA . In order to see that αA = 1, take any C ∈ F (X) such
that A , C and I are linearly independent. Obviously, A +C /∈ CI +F (X ) and by
applying (6) we get φ (A+C)= αA+C (A+C)+βA+CI . On the other hand, φ (A+C)=
φ (A)+ φ (C) = αAA+ βAI +C . Therefore

(αA+C −αA)A+(αA+C −1)C+(βA+C −βA) I = 0.

As A , C and I are linearly independent, αA = αA+C = 1.

STEP 9. φ (A) = A for every A ∈ B (X ) .

We will prove this by a contradiction, so let us assume, by STEP 9, that there exists
an A /∈ CI +F (X ) with

φ (A) = A+ αAI,

for some non-zero αA ∈ C . Choose any x ∈ X and any f ∈ X ′ such that f (x) = 0.
According to Lemma 1, the operator I + λx⊗ f ∈ P-Inv(X ) for every λ ∈ C . From

A−αAI ∼p (A−αAI)(I + λx⊗ f ) = (A−αAI)+ λ (A−αAI)x⊗ f ,

being valid for every λ ∈ C and by the action of φ it follows

A ∼ A+ λ (A−αAI)x⊗ f ,

for every λ ∈ C . If A is invertible, then

A+ λ (A−αAI)x⊗ f = A
(
I + λ

(
I−αAA−1)x⊗ f

)

is invertible too. Thus I + λ
(
I−αAA−1

)
x⊗ f is invertible for every λ ∈ C and by

Lemma 3 we have λ f
(
x−αAA−1x

) �= −1 for every λ ∈ C . Consequently, 0 =
f
(
x−αAA−1x

)
=−αA f

(
A−1x

)
. As αA �= 0 it follows f

(
A−1x

)
= 0 for every f ∈X ′

with f (x) = 0. Hence, A−1x and x are linearly dependent. Since x∈X was arbitrary,
there exists a non-zero μ1 ∈ C such that A−1 = μ1I , a contradiction.
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Therefore, A is non-invertible. But then there exists a non-zero β ∈ C such that
A+ β I is invertible. By the method used above, we get (A+ β I)−1 = μ2I for some
μ2 ∈ C , a contradiction. �
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