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SOME INEQUALITIES INVOLVING POSITIVE

LINEAR MAPS UNDER CERTAIN CONDITIONS
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(Communicated by I. M. Spitkovsky)

Abstract. We demonstrate that several well-known classical inequalities also hold for some pos-
itive linear maps on matrix algebra. It is shown that for such maps the Jensen inequality hold for
all ordinary convex functions.

1. Introduction

Let Mn be the algebra of all n× n complex matrices and let Φ : Mn → Mk be a
positive linear map [3]. A fundamental inequality of Kadison [11] says that if A is any
Hermitian element of Mn , then

Φ(A2) � Φ(A)2. (1)

The inequality (1) is a non-commutative analogue of the classical inequality

E(X2) � E(X)2, (2)

where X is a random variable with finite expectation E(X) . The inequality (2) has a
simple proof. For any real number α,(x−α)2 � 0, therefore E(X2) � 2αE(X)−α2,
and choice α = E(X) yields (2). Kadison [11] remarks that the standard proof of (2)
does not apply to give simple proof for linear maps. That is, when Φ(A) and Φ(A2)
do not commute, one can not conclude the desired inequality (1) by these means as the
following example shows. Choose

B =
[

2
√

2√
2 2

]
and C =

[
1 0
0 −1

]
.

For every real number α , we have

B−2αC+ α2I =
[
(α −1)2 +1

√
2√

2 (α −1)2 +1

]
� O.
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But B � C2 . The non-commutativity of the image of the Φ forces us to abandon the
usual techniques and the standard proof does not apply to give simple proof for linear
maps. One of the proof of the inequality (1) follows on using the tensor product of
matrices [3]. The inequality (2) is included in the more general Jensen’s inequality
[10]. The Jensen inequality [10] says that if the range of the random variable X is
contained in (a,b) and f is a convex function on (a,b) , then

E( f (X)) � f (E(X)) . (3)

It is then natural to investigate the general version of Kadison’s inequality (1): if A is a
Hermitian matrix whose spectrum is contained in (a,b) and f is a convex function on
(a,b) then do we have

Φ( f (A)) � f (Φ(A)) . (4)

Davis [8] proved that the inequality (4) is true when f is a matrix convex function and
Φ is completely positive. The latter restriction was removed by Choi [7] who proved
that the inequality (4) remains valid for all unital positive linear maps Φ provided f is
matrix convex function. Bhatia and Sharma [4] have shown that if Φ : M2 → Mk then
(4) is true for all convex functions f on an open interval containing the eigenvalues of
an Hermitian element A of M2 . Sharma and Thakur [12] have proved several other
inequalities for unital positive linear maps on 2× 2 matrices. Bourin and Ricard [5]
have obtained the extension of Kadison’s inequality (1) for positive definite matrices.
They proved that for 0 � p � q ,

|Φ(Ap)Φ(Aq)| � Φ(Ap+q) , (5)

where |Φ(Ap)Φ(Aq)| =
(

Φ(Aq)Φ(Ap)2 Φ(Aq)
) 1

2
is meant in the sense of spectral

calculus. Further, Audenaert and Hiai [1] have studied the conditions for which the
operator inequality,

Φ(Ap)
1
p � Φ(Aq)

1
q , (6)

holds for every positive definite matrix A . Sharma and Thakur [12] have also proved
that if Φ : M2 → Mn is a unital positive linear map, then (6) holds for every positive
semidefinite matrices A and B and every p,q ∈ R with p � q .

In Section 2 we consider the unital positive linear maps which satisfy the con-
ditions given in Lemma 1, (see below). It is shown that for such maps the Jensen
inequality (7) holds for all ordinary convex functions (Theorem 1). The operator in-
equality (8) holds for all real numbers p and q such that p � q (Corollary 1). The
Čebyšev’s inequality and its special cases are discussed for these linear maps (Theorem
2 and 3, Corollary 2 and 3). Likewise, we obtain some inequalities related to Schwarz
inequalities for such unital positive linear maps (Theorem 4, 5 and 6). In Section 3 we
mention several examples of maps for which these inequalities hold for all Hermitian
or positive definite matrices and examples of linear maps for which inequalities hold
for particular matrices.
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2. Main results

We begin with the following lemma in which a condition is imposed on map Φ :
Mn → Mk . This assumption on map Φ is motivated by the fact that some well known
maps possess this property one such map is known as Werner-Holevo Channel [13] in
physics literature. See Section 3.

LEMMA 1. Let Φ : Mn → Mk be a unital positive linear map. Let A be a Her-

mitian element of Mn with spectral resolution A =
n
∑
i=1

λiPi . Then, Φ(Pi) and Φ(Pj)

commute if and only if Φ
(
Al
)

and Φ(Am) commute, l,m = 1,2, ...,n−1 .

Proof. The assertions of the Lemma 1 follow from the fact that the orthogonal
projections are polynomial in A , see [9], and therefore for some scalars cik , we can
write

Φ(Pi) =
n

∑
k=1

cikΦ
(
Ak−1

)
. �

We also need the following lemma to prove Jensen’s inequality for the maps which
satisfy condition of Lemma 1.

LEMMA 2. Let Ai ∈ Mn be commuting Hermitian matrices and let αi be real
numbers, i = 1,2, ...,m. Then for any convex function f defined over the interval
containing eigenvalues of Ai ’s we have

f

(
m

∑
i=1

αiAi

)
�

m

∑
i=1

f (αi)Ai.

Proof. By spectral theorem if A∈Mn is Hermitian then there exists a unitary U ∈
Mn such that UAU∗ =diag(λ1 (A) ,λ2 (A) , ...,λn (A)) where λ j (A) , ( j = 1,2, ...,n) ,
are the eigenvalues of A and f (A) is defined as

f (A) = U f (D)U∗,

where f (D) =diag( f (λ1 (A)) , f (λ2 (A)) , ..., f (λn (A))) , see [2]. Since commuting
matrices are simultaneously diagonalizable, there exists a unitary U ∈ Mn such that
UAiU∗ = Di where Di =diag(di1,di2, ...,din) . Also, f is a convex function, therefore

f

(
m

∑
i=1

αidi j

)
�

m

∑
i=1

f (αi)di j,

for all j = 1,2, ...,n . It follows that

f

(
m

∑
i=1

αiDi

)
�

m

∑
i=1

f (αi)Di.
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So

f

(
m

∑
i=1

αiAi

)
= U f

(
m

∑
i=1

αiDi

)
U∗ � U

m

∑
i=1

f (αi)DiU
∗ =

m

∑
i=1

f (αi)Ai. �

In the following discussion whenever we say that a map Φ satisfies the conditions
of Lemma 1, we mean that Φ : Mn → Mk is a unital positive linear map and for the
given Hermitian matrix A , Φ

(
Al
)

and Φ(Am) commute, l,m = 1,2, ...,n−1.

THEOREM 1. (Jensen’s inequality) Let a map Φ satisfy the conditions of Lemma
1. Let f be a convex function on an open interval containing the eigenvalues of a
Hermitian matrix A ∈ Mn . Then

f (Φ(A)) � Φ( f (A)). (7)

Proof. By the spectral theorem and linearity of Φ , we have

Φ(A) =
n

∑
i=1

λiΦ(Pi) .

It follows from Lemma 1 that Φ(Pi) and Φ(Pj) commute, for i, j = 1,2, ...,n . There-
fore, on using Lemma 2, we conclude that

f (Φ(A)) = f

(
n

∑
i=1

λiΦ(Pi)

)
�

n

∑
i=1

f (λi)Φ(Pi) = Φ

(
n

∑
i=1

f (λi)Pi

)
= Φ( f (A)). �

Audenaert and Hiai [1] have shown that the operator inequality (6) holds for every
unital positive linear map Φ : M2 → Mk and every p,q ∈ R with p � q , A > O . We
show that this is also true for maps Φ : Mn → Mk satisfying the conditions of Lemma
1.

COROLLARY 1. For a map Φ satisfying the conditions of Lemma 1, the operator
inequality,

Φ(Ap)
1
p � Φ(Aq)

1
q , (8)

holds for every p,q ∈ R with p � q and A > O.

Proof. The function f (x) = xr is convex for r < 0 or r � 1, x � 0. It follows
from Theorem 1 that

Φ(Ar) � Φ(A)r .

Therefore, for q > p � 0,

Φ(Aq) = Φ
(
(Ap)

q
p

)
� (Φ(Ap))

q
p . (9)
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Since Φ(Ap) and Φ(Aq) commute, the inequality (8) follows from (9). Likewise, the
inequality (8) holds for p < 0 and q > 0. For p � q � 0, we have

Φ(Ap) = Φ
(
(Aq)

p
q

)
� (Φ(Aq))

p
q . (10)

The inequality (10) implies (8), p < 0. �
Let A =

n
∑
i=1

λiPi and B =
n
∑
i=1

μiPi be the spectral resolutions of commuting Hermi-

tian elements A,B ∈ Mn ; [2]. We say that the spectra of A and B are similarly ordered
if λ1 � λ2 � · · · � λn and μ1 � μ2 � · · · � μn or λ1 � λ2 � · · · � λn and μ1 � μ2 �
· · ·� μn . Likewise, the spectra of A and B are oppositely ordered if λ1 � λ2 � · · ·� λn

and μ1 � μ2 � · · · � μn or λ1 � λ2 � · · ·� λn and μ1 � μ2 � · · · � μn .

We now prove an extension of Čebyšev’s inequality [6] for linear maps satisfying
the conditions of Lemma 1.

THEOREM 2. (Čebyšev’s inequality) Let Φ be a map that satisfies the conditions
of Lemma 1. Let A and B be commuting Hermitian matrices in Mn . If the spectra of
A and B are similarly ordered, then

Φ(AB) � Φ(A)Φ(B) . (11)

If the spectra of A and B are oppositely ordered, then

Φ(AB) � Φ(A)Φ(B) . (12)

Proof. It follows from Lemma 1 that Φ(Pi) and Φ(Pj) commute, for i, j = 1,2, ...,
n . Therefore,

Φ(AB)−Φ(A)Φ(B) =
n
∑
i< j

(λi−λ j)(μi − μ j)Φ(Pi)Φ(Pj) . (13)

From (13), we conclude that the inequality (11) holds when (λi −λ j) (μi − μ j)� 0, that
is, if the spectra of A and B are similarly ordered. Likewise, (13) implies (12) when
(λi−λ j)(μi− μ j) � 0, that is, if the spectra of A and B are oppositely ordered. �
Let X ,Y ∈ Mn . Then X � Y means that X and Y are Hermitian and X −Y is positive
semidefinite. Also, the product of two Hermitian matrices X and Y is Hermitian if and
only if X and Y commute. Thus the condition in the above theorem that A and B are
commuting Hermitian matrices is necessary.

Note that under the above conditions on Φ we have |Φ(Ap)Φ(Aq)|= Φ(Ap)Φ(Aq)
and (5) becomes Φ(Ap+q) � Φ(Ap)Φ(Aq) . Such inequalities now follow easily from
Theorem 2.

COROLLARY 2. Let A ∈ Mn be a positive definite matrix and let Φ satisfies the
conditions of Lemma 1. If p and q are real numbers such that pq > 0 , then

Φ(Ap+q) � Φ(Ap)Φ(Aq) . (14)
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If pq < 0 , the reverse inequality holds.
Also, we have

Φ(A logA) � Φ(A)Φ(logA) (15)

and
Φ
(
A−1 logA

)
� Φ

(
A−1

)
Φ(logA) . (16)

Proof. It is clear that the spectra of Ap and Aq are similarly ordered when pq > 0
and oppositely ordered when pq < 0. Therefore, the assertions of the corollary about
the inequality (14) follows from Theorem 2. Spectra of A and logA are similarly
ordered, (15) therefore follows from (11). Likewise, (12) implies (16). �

COROLLARY 3. Let the spectra of commuting positive definite matrices A1,A2, ...,
An be similarly ordered. Let Φ satisfies the conditions of Lemma 1. Then

Φ
(

n
∏
i=1

Ai

)
�

n
∏
i=1

Φ(Ai) . (17)

Let Φ : Mn → Mk be a unital positive linear map and A > O . By Kadison’s
inequality (1), we have

Φ(Ap+q) � Φ
(
A

p+q
2

)2
. (18)

We prove a refinement of the inequality (18) in the following theorem.

THEOREM 3. Let Φ be a map that satisfies the conditions of Lemma 1. Then, for
A > O,

Φ
(
A

p+q
2

)2
� Φ(Ap)Φ(Aq) � Φ(Ap+q) , (19)

where p and q are real numbers such that pq > 0 .

Proof. Let λi be the eigenvalues of the matrix A > O and let X be a Hermitian
matrix that commute with each Φ(Pi) , i = 1,2, ...,n . We then have

(
λ

p
2

i −Xλ
q
2
i

)2
Φ(Pi) � O, (20)

for all i = 1,2, ...,n . Add n inequalities (20), we get

Φ(Ap) � 2XΦ
(
A

p+q
2

)
−X2Φ(Aq) . (21)

On the other hand for any Hermitian matrix X which commute with Φ(Aq) and Φ
(
A

p+q
2

)
we have (

Φ
(
A

p+q
2

)
−XΦ(Aq)

)2
� O. (22)
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Further if C and D are commuting positive definite matrices then C−1D is also a posi-
tive definite matrix, and therefore it follows from (22) that

Φ(Aq)−1
(

Φ
(
A

p+q
2

)
−XΦ(Aq)

)2
� O.

This gives

2XΦ
(
A

p+q
2

)
−X2Φ(Aq) � Φ

(
A

p+q
2

)2
Φ(Aq)−1 . (23)

The equality is attained in (23) when

X = Φ
(
A

p+q
2

)
Φ(Aq)−1 . (24)

The inequality (21) holds for all Hermitian matrices X which commute with Φ(Aq)
and Φ

(
A

p+q
2

)
. Therefore the inequality (21) must also hold for the Hermitian matrix

X in (24). Inserting (24) in (21) we get

Φ(Ap)−Φ
(
A

p+q
2

)2
Φ(Aq)−1 � O. (25)

The matrix Φ(Aq) is positive definite and commute with the left hand side matrix in
(25), therefore

Φ(Aq)
(

Φ(Ap)−Φ
(
A

p+q
2

)2
Φ(Aq)−1

)
� O.

This immediately gives the first inequality (19). The second inequality (19) follows
from Corollary 2. �

Arguments similar to those in the proof of above theorem give a version of
Schwarz’s inequality for such maps proved in the following theorem.

THEOREM 4. (Schwarz’s inequality) Let A and B be commuting Hermitian ma-
trices with eigenvalues λi and μi respectively, i = 1,2, ...,n. For a map Φ satisfying
the conditions of Lemma 1, we have

Φ
(
A2
)

Φ
(
B2
)

� Φ(AB)2 . (26)

Proof. For a Hermitian matrix X that commute with each Φ(Pi) , the inequality

(λi −Xμi)2 Φ(Pi) � O, (27)

holds for all i = 1,2, ...,n . Add n inequalities (27), we get

Φ
(
A2
)

� 2XΦ(AB)−X2Φ
(
B2
)
. (28)

By Lemma 1, Φ(Pi) and Φ(Pj) commute, i, j = 1,2, ...,n . Therefore, from the in-
equality (

Φ(AB)−XΦ
(
B2))2 � O,
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we find that

2XΦ(AB)−X2Φ
(
B2
)

� Φ(AB)2 Φ
(
B2
)−1

. (29)

Equality is attained in (29) when

X = Φ(AB)Φ
(
B2
)−1

. (30)

Insert (30) in (28); we immediately get (26). �
A special case of the above theorem says that if A > O ,

Φ
(
A3)� Φ

(
A2)2 Φ(A)−1 � Φ

(
A2)Φ(A) � Φ(A)3 .

A related classical inequality can be generalized immediately for positive unital linear
functionals,

ϕ
(
A4
)

� (ϕ(A3)−ϕ(A)ϕ(A2))2

ϕ(A2)−ϕ(A)2
+ ϕ

(
A2
)2

. (31)

We show that inequalities of the type (31) also hold for maps Φ satisfying the con-
ditions of Lemma 1. We prove an analogous inequality for Φ

(
A−1

)
in the following

theorem.

THEOREM 5. For a positive definite matrix A, the inequality

Φ
(
A−1

)
�
(

Φ
(
A3
)−2Φ(A)Φ

(
A2
)
+ Φ(A)3

)(
Φ(A)Φ

(
A3
)−Φ

(
A2
)2)−1

, (32)

holds for maps Φ satisfying the conditions of Lemma 1.

Proof. Let X and Y be Hermitian matrices which commute with Φ(Pi) , i =
1,2, ...,n . Let λi be the eigenvalues of A , then the inequality

1
λi

(
λ 2

i −λiX +Y
)2 Φ(Pi) � O, (33)

holds for all i = 1,2, ...,n . Add n inequalities (33), we get

Φ
(
A3
)

� 2XΦ
(
A2
)− (X2 +2Y

)
Φ(A)+2XY −Y2Φ

(
A−1

)
. (34)

The inequality (34) is valid for all Hermitian matrices X and Y which commute with
Φ(Pi) , i = 1,2, ...,n . We see that the Hermitian matrices

X =
(

Φ
(
A2
)−Φ(A)Φ

(
A−1

)−1
)(

Φ(A)−Φ
(
A−1

)−1
)−1

(35)

and

Y =
(

Φ
(
A2
)−Φ(A)2

)(
Φ(A)−Φ

(
A−1

)−1
)−1

Φ
(
A−1

)−1
, (36)

commute with all Φ(Pi) . Insert (35) and (36) into (34), we get
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Φ
(
A3
)

�
(

Φ
(
A2
)−Φ(A)Φ

(
A−1

)−1
)2(

Φ(A)−Φ
(
A−1

)−1
)−1

+ Φ(A)2 Φ
(
A−1

)−1
.

(37)
A little computation shows that (37) implies (32). �

It may be noted here that the inequality (32) can be written in the following equiv-
alent form: ∣∣∣∣∣∣

Φ
(
A−1

)
I Φ(A)

I Φ(A) Φ
(
A2
)

Φ(A) Φ
(
A2
)

Φ
(
A3
)
∣∣∣∣∣∣� 0.

Also note that the inequality (32) gives a refinement of the Choi inequality [7],

Φ
(
A−1

)
� Φ(A)−1 . (38)

THEOREM 6. Under the conditions of Lemma 1, the inequality

Φ
(
A4
)

�
(
Φ
(
A3
)−Φ(A)Φ

(
A2
))2(Φ

(
A2
)−Φ(A)2

)−1
+ Φ

(
A2
)2

, (39)

holds for all Hermitian matrices, A ∈ Mn .

Proof. Let X and Y be Hermitian matrices which commute with Φ(Pi) , i =
1,2, ...,n . Let λi be an eigenvalues of A , then

(
λ 2

i −λiX +Y
)2 Φ(Pi) � O, (40)

for all i = 1,2, ...,n. Add n inequalities (40), we get

Φ
(
A4
)

� 2XΦ
(
A3
)− (X2 +2Y

)
Φ
(
A2
)
+2XYΦ(A)−Y2. (41)

The inequality (41) is valid for all Hermitian matrices X and Y which commute with
Φ(Pi) , i = 1,2, ...,n . We see that the Hermitian matrices

X =
(
Φ
(
A3
)−Φ(A)Φ

(
A2
))(

Φ
(
A2
)−Φ(A)2

)−1
(42)

and

Y =
(
Φ
(
A3
)

Φ(A)−Φ
(
A2
))(

Φ
(
A2
)−Φ(A)2

)−1
, (43)

commute with all Φ(Pi) . Insert (42) and (43) into (41), we get (39). �
It may be noted here that the inequality (39) can be written in the following equiv-

alent form: ∣∣∣∣∣∣
I Φ(A) Φ

(
A2
)

Φ(A) Φ
(
A2
)

Φ
(
A3
)

Φ
(
A2
)

Φ
(
A3
)

Φ
(
A4
)
∣∣∣∣∣∣� 0.
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3. Numerical examples

We give some examples of the unital positive linear maps which satisfy the con-
ditions of Lemma 1 and consequently all the above inequalities hold for these maps.
Immediate examples are Φ(A) = AT , Φ(A) = trA

n I and Φ(A) = U∗AU , where U is
a unitary matrix. All the maps ϕ : Mn → C and Φ : M2 → Mk also satisfy the con-
ditions of Lemma 1 and inequalities in the subsequent theorems. Note that for n = 2,
Φ(P1)+Φ(P2) = I and so Φ(P1) and Φ(P2) = I− Φ(P1) always commute with each
other. The map Φ : Mn → Mn that replaces all off-diagonal entries by 0 is a unital
positive linear map. In this case, Φ(A) and Φ(B) commute for all A, B ∈ Mn . We
have Φ(A) = diag(a11,a22, ...,ann) .

EXAMPLE 1. The map Φ : Mn → Mn defined by

Φ(A) =
1

n−1
(trAI−A) ,

is a unital positive linear map (Positivity follows from the fact that A � trA). This map
satisfies the conditions of Lemma 1. Therefore, all the above inequalities hold for this
map.

EXAMPLE 2. The map Φ : Mn → M2 defined by

Φ(A) =
[

a11 a1n

a1n a11

]
; n > 1,

is a unital positive linear map. This map does not satisfy the conditions of Lemma 1 for
all Hermitian matrices. But for the Toeplitz matrix

A =

⎡
⎢⎢⎢⎣

a0 a1 . . . an−1

a1 a0 . . . an−2
...

...
. . . a1

an−1 an−2 . . . a0

⎤
⎥⎥⎥⎦ ,

with real entries, Φ
(
Al
)

and Φ(Am) commute, l,m = 1,2, ...,n− 1, and hence the
above inequalities hold for this map on Toeplitz matrix.

EXAMPLE 3. The map Φ : Mn → M2 defined by

Φ(A) =

[
aii+a j j

2
ai j+a ji

2
a ji+ai j

2
aii+a j j

2

]
; i �= j, (44)

satisfies the conditions of Lemma 1. Therefore, all the above inequalities hold for map
(44). Let

A =

⎡
⎣ 1 2 2+ ı

2 5 1− ı
2− ı 1+ ı 25

⎤
⎦ .
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Using (44), for i = 1 and j = 2, we have

Φ(A) =
[

3 2
2 3

]
.

From (32) and (38), we respectively have

Φ(A−1) � 1
15481

[
19070 −15508
−15508 19070

]
and Φ(A−1) � 1

5

[
3 −2
−2 3

]
.

We see that our inequality (32) is better than (38).

EXAMPLE 4. Let

A =

⎡
⎣ 1 2 3

2 1 4
3 4 1

⎤
⎦

and let Φ(A) be the compression map that takes an n×n matrix to a 2×2 block in its
top left corner, then

Φ(A)Φ
(
A2)=

[
46 58
44 53

]
, Φ
(
A2)Φ(A) =

[
46 44
58 53

]

and

Φ
(
A4)−Φ(A)4 =

[
607 716
716 852

]
� O.

So Φ(A) and Φ
(
A2
)

do not commute, but Φ
(
A4
)

� Φ(A)4 . Hence the conditions in
Theorem 1 are sufficient rather than necessary for (7) to be true. Let

A =

⎡
⎣ 4 2 1

2 2 0
1 0 2

⎤
⎦ and B =

⎡
⎣ 2 3 4

3 2 4
4 4 7

⎤
⎦ .

Here, A > O , Φ
(
A3
)

≯ Φ(A)3 and Φ
(
A4
)

≯ Φ(A)4 . The matrix B is not positive

definite, Φ(B) and Φ
(
B2
)

commute, and Φ
(
B3
)

� Φ(B)3 .
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