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SYLVESTER EQUATIONS AND

POLYNOMIAL SEPARATION OF SPECTRA
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(Communicated by A. Böttcher)

Abstract. Sylvester equations AX −XB = C have unique solutions for all C when the spectra
of A and B are disjoint. Here A and B are bounded operators in Banach spaces. We discuss the
existence of polynomials p such that the spectra of p(A) and p(B) are well separated, either
inside and outside of a circle or separated into different half planes. Much of the discussion is
based on the following inclusion sets for the spectrum: Vp(T ) = {λ ∈ C : |p(λ)| � ‖p(T )‖}
where T is a bounded operator. We also give an explicit series expansion for the solution in

terms of p(M) , where M =
(

A C
B

)
, in the case where the spectra of A and B lie in different

components of Vp(M) .

1. Introduction

We discuss the solution of the Sylvester equation

AX −XB = C (1)

by solving first a related equation

p(A)Y −Y p(B) = C (2)

which is assumed to be easier to solve and then recover the solution of (1) as

X = q(A,B)(Y ). (3)

Here the operator q(A,B) is obtained by the bivariate polynomial functional calculus
from the divided difference of p , see Section 2, below. Alternatively, one can first form
a new right hand side and consider solving

p(A)X −X p(B) = q(A,B)(C),

see Propositions 2.2 and 2.4.
We consider the equations in the generality of bounded operators in Banach spaces.

Given Banach spaces X ,Y we assume that A is bounded in X , B in Y and while C
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and the unknowns X and Y are bounded operators from Y to X . We discuss solution
methods which can be formulated in infinite dimensional cases but which should be
useful in matrix problems, in particular when the dimensions are large so that direct
methods may not be practical. In this introduction we mention two basic representations
for the solution, and then provide the spectral conditions under which a polynomial p
exist so that these methods can be used.

In a series of papers [10,11,12] we have studied the possibility of taking a poly-
nomial as a new global variable. As polynomials are not injective we represent scalar
functions ϕ : z �→ ϕ(z) ∈ C by vector valued functions f : w �→ f (w) ∈ Cd where
w = p(z) and p is a polynomial of degree d with simple roots λ j . Then ϕ is repre-
sented in the multicentric form

ϕ(z) =
d

∑
j=1

δ j(z) f j(p(z)) (4)

where δ j is the Lagrange polynomial δ j(z) = ∏k �= j
z−λk

λ j−λk
. In this representation δ j(A)

is always well defined for any bounded operator and if p(A) is “simpler” than A , small
in norm, diagonalizable, normal, etc, an efficient functional calculus may be available
for defining and computing f j(p(A)) .

Here the idea is again to replace the operators A and B by p(A) and p(B) but part
of our dicussion is independent of the multicentric calculus. However, we discuss an
application of the multicentric calculus which can be viewed as a modification of the
sign-function approach, leading to a series expansion given in powers of p(M) where

M =
(

A C
B

)
.

We shall now summarize the key results on the Sylvester equation needed in the
following. If T is a bounded operator in a Banach space, then we denote by σ(T ) the
spectrum:

σ(T ) = {λ ∈ C : λ −T is not invertible}.
Bhatia and Rosenthal have written a readable survey of (1), [1]. They call the

following the Sylvester-Rosenblum Theorem.

THEOREM 1. Let X and Y be Banach spaces and A, B bounded operators in
X and Y , respectively. If

σ(A)∩σ(B) = /0, (5)

then the equation (1) has a unique solution X ∈ B(Y ,X ) for every C ∈ B(Y ,X ) .

We shall only consider the cases where (5) holds. Thus at least one of the operators
A and B can be assumed to be invertible, and we shall assume that B is. This is no
restriction of generality as we could transpose the equation. Further, if λ ∈ C is such
that both A−λ and B−λ are invertible we may consider the equivalent equation

(A−λ )X −X(B−λ ) = C (6)

instead. This leads to the following representation of the solution.
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THEOREM 2. ([14]) If γ is a union of closed contours with total winding numbers
1 around σ(A) and 0 around σ(B) , then the solution of (1) can be expressed as

X =
1

2π i

∫
γ
(λ −A)−1C(λ −B)−1dλ . (7)

Proof. Operate (6) by (λ −A)−1 from left and with (λ −B)−1 from right. Inte-
grating over γ yields the claim. �
Denote by ρ(T ) the spectral radius of T : ρ(T ) = sup{|λ | : λ ∈ σ(T )} .

PROPOSITION 1. Assume that B is invertible and that ρ(A)ρ(B−1) < 1 . Then
the series ∑∞

n=0 AnCB−n−1 converges and setting

X = −
∞

∑
n=0

AnCB−n−1 (8)

we have a representation for the solution.

Proof. The series converges as

‖An‖1/n‖CB−1‖1/n‖B−n‖1/n → ρ(A)ρ(B−1) < 1.

Multiplying the series by A from left and subtracting the result of multiplying the series
by B from right then yields the claim. �

Notice that this also follows from Theorem 2 since by assumption there exists an
r > 0 such that ρ(A) < r and ρ(B−1) < 1/r . Then we can integrate along |λ | = r
substituting

(λ −A)−1 =
∞

∑
n=0

λ−n−1An and (λ −B)−1 = −
∞

∑
n=0

λ nB−n−1.

Our first aim is to discuss whether for given A and B there is a polynomial p such
that

ρ(p(A)) ρ(p(B−1)) < 1 (9)

so that (2) could be solved as

Y = −
∞

∑
n=0

p(A)nCp(B)−n−1. (10)

Recall, that the polynomially convex hull K̂ of a compact set K ⊂ C is defined as

K̂ = {z ∈ C : |p(z)| � ‖p‖K for all polynomials p}, (11)

where ‖p‖K = supz∈K |p(z)| . Thus K̂ is obtained by “filling the holes” of K . We have
the following.
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THEOREM 3. There exists a polynomial p such that p(B) is invertible and (9)
holds if and only if

σ̂(A)∩σ(B) = /0. (12)

The proof is in Section 3 where we also show how small the product in (9), when
properly normalized, can be.

The second aim concerns another sufficient condition, based on the separation of
the spectra of A and B by a vertical line. Again, by subtracting a suitable constant from
the operators we may assume that the line is the imaginary axis. We shall denote by
C+ the open right half plane and by C− the open left half plane.

THEOREM 4. ([5]) Suppose that the operators A, B and C are all bounded and
that σ(A) ⊂ C+ and σ(B) ⊂ C− . Then the solution of (1) can be represented as

X =
∫ ∞

0
e−tACetBdt. (13)

Proof. For a small enough ε > 0 and large enough K we have for t > 0

‖e−tA‖ � Ke−εt and ‖etB‖ � Ke−εt .

Thus, the integral converges and the claim follows by operating with A from left and
integrating by parts. �

Recall that under the assumptions of Theorem 4 the sign-function of the block
operator M is well defined and can be used to solve the Sylvester equation, see (37).
On the possibility of separation into half planes we have the following result with proof
in Section 4.

THEOREM 5. There exists a polynomial p such that

σ(p(A)) ⊂ C+ and σ(p(B)) ⊂ C− (14)

if and only if

σ̂(A)∩ σ̂(B) = /0 (15)

holds.

While (9) and (14) give the conditions under which these separating polynomi-
als exist, one should expect that replacing the spectra by ε -pseudospectra should give
useful information on the difficulty of computing these polynomials. Denoting

Σε(T ) = {λ ∈ C : either λ ∈ σ(T ) or ‖(λ −T )−1‖ � 1
ε
} (16)

we could ask for how large ε the conditions

Σ̂ε (A)∩Σε(B) = /0 and Σ̂ε(A)∩ Σ̂ε(B) = /0
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would hold. However, it seems that a more useful concept in this connection is the
following inclusion set

Vp(T ) = {λ ∈ C : |p(λ )| � ‖p(T )‖} (17)

where p is a polynomial. For (9) we would look for a polynomial p such that

Vp(A)∩σ(B) = /0

while for (14) we would look for a polynomial such that Vp(A⊕ B) separates into
different components, containing σ(A) and σ(B) , respectively.

In the practical search for separating polynomials, Krylov methods can be uselful,
but one cannot in general guarantee that they would always produce separating polyno-
mials when the necessary and sufficient spectral conditions hold. However, an idealized
procedure exists with guaranteed performance. It assumes that one can perform min-
imizations of norms at polynomials of the operator and the key point is that one need
not to know about the spectrum in advance. The following is Theorem 1.3 in [9], see
also [4].

THEOREM 6. There exists a procedure which, given A ∈ B(X ) , produces a se-
quence of compact sets Kk ⊂ C and polynomials pk satisfying the following: Kk+1 ⊂
Kk , Vpk(A) ⊂ Kk , and

σ̂(A) =
⋂
k�1

Kk.

In Section 2 we show how the post-processing is done. Sections 3 and 4 contain
proofs of Theorems 3 and 5 and refinements of these.

At the end in Section 5 we take a somewhat different approach. We assume that
we have a polynomial p such that Vp(M) separates into two components in which we
define a piecewise constant holomorphic function. Using multicentric representation of
this function we obtain a series expansion in terms of p(M) from which the solution
for the Sylvester equation can be read out in the same way as from sgn(M) . The coef-
ficients of the series expansions can be computed with an explicit recursion depending
on the polynomial p .

2. Post-processing

Assume that one has in one way or another solved the modified equation (2). We
assume that we know the operators A∈B(X ),B∈B(Y ) and Y ∈B(Y ,X ) and the
(scalar) polynomial p . We shall use the bivariate polynomial calculus to write down
the solution X satisfying (1). To that end we associate with p the bivariate polynomial
q as the divided difference of p :

q(λ ,μ) =
p(λ )− p(μ)

λ − μ
. (18)
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Denote qk−1(λ ,μ) = λ k−1 + λ k−2μ + · · ·+ μk−1 with q0 = 1. Since λ k − μk = (λ −
μ)qk−1(λ ,μ) we then have with p(λ ) = ∑d

j=0 α jλ j

q(λ ,μ) =
d

∑
j=1

α jq j−1(λ ,μ). (19)

On bivariate holomorphic functional calculus we recommend [7]. Since we deal here
only with polynomials we can give the calculus without reference to integral represen-
tations. In the notation of [7], q{A,BT}(C) stands for our q(A,B)(C) .

DEFINITION 1. Let the operators A ∈ B(X ),B ∈ B(Y ) and C ∈ B(Y ,X )
and the polynomial f (λ ,μ) = ∑i, j αi jλ iμ j be given. Then we denote by f (A,B) the
bounded linear operator in B(Y ,X ) given by

f (A,B) : C �→ f (A,B)(C) = ∑
i, j

αi jA
iCBj. (20)

When f is holomorphic in two variables one defines f (A,B) using a double integral
and based on that one can prove that if h(λ ,μ) = g(λ ,μ) f (λ ,μ) one gets

h(A,B)(C) = g(A,B)( f (A,B)(C)).

For polynomials this is obvious from (20) as we may work termwise. If g(λ ,μ) =
λ mμn , f (λ ,μ) = λ iμ j then g(λ ,μ) f (λ ,μ) = λ i+mμ j+n = h(λ ,μ) and we have

g(A,B)( f (A,B)(C)) = Am(AiCBj)Bn = Am+iCBn+ j = h(A,B)(C).

Taking linear combinations we see that h(A,B) = g(A,B) ◦ f (A,B) holds for polyno-
mials f , g where h = g f .

Consider now the post-processing step which is contained in the following simple
result.

PROPOSITION 2. Let A ∈ B(X ),B ∈ B(Y ) and Y ∈ B(Y ,X ) be given and
a polynomial p, such that (2) holds. Then

X = q(A,B)(Y ) (21)

satisfies the original Sylvester equation (1).

Proof. We have
p(λ )− p(μ) = (λ − μ)q(λ ,μ).

Taking the left hand side as a polynomial of two variables and applying the poly-
nomial functional calculus yields, by (2), p(A)Y −Y p(B) =C . Now the right hand side
gives Aq(A,B)(Y )−q(A,B)(Y)B = AX −XB , completing the proof. �
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EXAMPLE 1. Let A be a nonsingular real symmetric matrix, B a real skew sym-
metric one. Then A2 is positive definite while B2 is negative semidefinite and

Y =
∫ ∞

0
e−tA2

CetB2
dt (22)

solves the modified equation. Now q(λ ,μ) = λ + μ and we have the solution of the
original Sylvester equation as

X = q(A,B)(Y ) = AY +YB =
∫ ∞

0
(Ae−tA2

CetB2
+ e−tA2

CetB2
B)dt.

The simple choice, p(λ ) = λ 2 works naturally in a somewhat lager set of matrices.
In fact, if there exists θ < 1 such that if α + iβ ∈ σ(A) then |β | � θ |α| while with
γ + iδ ∈ σ(B) we ask for |γ| � θ |δ | . If at least one of A or B is nonsingular, then
again the integral in (22) converges.

Denoting S(λ ,μ)= λ −μ the solution operator is the inverse of S(A,B) satisfying

S(A,B)−1 = q(A,B)◦ S(p(A), p(B))−1. (23)

Extending the bivarite polynomial calculus to holomorphic calculus one can show
that if f ,g are holomorphic in two variables near the spectra and h = g f , then

g(A,B)◦ f (A,B) = h(A,B), (24)

see e.g. Lemma 4.2 in [7]. Assuming this allows us to commute the terms in (23) and
we conclude that rather than post-processing with q(A,B) we may equally well begin
with processing C . Clearly the order of computation is not the same but the operations
needed to be excecuted essentially are. To summarise:

PROPOSITION 3. Let A ∈ B(X ),B ∈ B(Y ) and C ∈ B(Y ,X ) be given and
a polynomial p such that σ(p(A))∩σ(p(B)) = /0 . Then

p(A)X −X p(B) = q(A,B)(C) (25)

has a unique solution X which also satisfies (1).

3. Disc separation

As before, A∈B(X ) and B∈B(Y ) and here we consider the convergence con-
dition ρ(p(A)) ρ(p(B)−1) < 1. Theorem 3 covers the existence of such polynomials
and we give the proof here. We also derive an expression for the normalized infimum of
the product of spectral radii. At the end of this section we discuss a more quantitative
result.

If the spaces are finite dimensional, or more generally, if A is an algebraic operator,
then there exists a minimal polynomial mA such that mA(A) = 0, and assuming
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σ(A)∩σ(B) = /0 , then trivially ρ(mA(A)) ρ(mA(B)−1) = 0. However, the degree of
mA may be impractically high and computation of mA unstable.

Proof of Theorem 3.

Suppose first that λ0 ∈ σ̂(A)∩σ(B) and let p be a polynomial such that p(B) is
invertible. Then

|p(λ0)| � min
μ∈σ(B)

|p(μ)| = 1/ρ(p(B)−1).

Since ρ(p(A)) � |p(λ0)| we have

ρ(p(A)) ρ(p(B)−1) � |p(λ0)||p(λ0)|−1 = 1

and we see that the condition (12) is necessary.

Assume then that (12) holds. As σ̂(A) and σ(B) are both compact, there exists an

open U such that σ̂(A) ⊂U while σ(B)∩U = /0. By Hilbert’s Lemniscate Theorem,
see e.g. Theorem 5.5.8 in [13], there exists a polynomial p such that

|p(z)| > ‖p‖σ(A) for z ∈ C\U. (26)

Thus, in particular

1/ρ(p(B)−1) = min
μ∈σ(B)

|p(μ)| > ‖p‖σ(A) = ρ(p(A))

and so ρ(p(A)) ρ(p(B)−1) < 1, completing the proof. �

In practical computation, the spectral radius ρ(p(A)) should rather be replaced by
‖p(A)‖ and scaled properly. To that end put

η(A,B) = inf(‖p(A)‖‖p(B)−1‖)1/deg(p), (27)

where the infimum is over all polynomials p .

LEMMA 1. We have

η(A,B) = inf(ρ(p(A)) ρ(p(B)−1))1/deg(p). (28)

Proof. The claim follows from the spectral radius formula. In fact, given ε > 0
there exists a polynomial q of degree k such that

(ρ(q(A)) ρ(q(B)−1)1/k < inf(ρ(p(A)) ρ(p(B)−1))1/deg(p) + ε.

But we have as n → ∞

‖q(A)n‖1/kn‖q(B)−n‖1/kn → (ρ(q(A)) ρ(q(B)−1)1/k
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so that η(A,B) cannot be larger than inf(ρ(p(A)) ρ(p(B)−1))1/deg(p) . As it trivially
cannot be smaller, (28) holds. �

It is of interest to know how small η(A,B) can be. Given a polynomially convex
compact set K with positive logarithmic capacity, denote by g the Green’s function of
the complement of K , with singularity at ∞ . That is, g is harmonic in C\K ,

g(z) = log(z)+O(1), as z → ∞

and such that g(z) → 0 as z → ζ from C\K , for almost all ζ ∈ ∂K , [13].

THEOREM 7. Assume (12) holds and A is such that cap(σ̂(A)) > 0. Denote by g

the Green’s function of C\ σ̂(A) . Set α = minμ∈σ(B) g(μ) . Then we have 0 < α < ∞
and

η(A,B) = e−α . (29)

Proof. Here we use Bernstein’s Lemma, as formulated in Theorem 5.5.7 of [13].

Since σ(B) and σ̂(A) are both compact, there is a positive distance between them and
since g is continuous and positive, we conclude 0 < α < ∞ . Then Bernstein’s Lemma
yields for any polynomial p of degree d

min
μ∈σ(B)

|p(μ)|1/d � eα ‖p‖1/d
σ(A)

which means
ρ(p(B)−1)1/d � e−α ρ(p(A))−1/d.

Thus
ρ(p(B)−1)1/dρ(p(A))1/d � e−α .

To get η(A,B) bounded from above we use the following part of Theorem 5.5.7, [13]:

if p is a Fekete polynomial for σ̂(A) of degree d > 1, then

|p(z)|1/d � ‖p‖1/d
σ(A) eg(z)h(z,d) for all z ∈ C\ σ̂(A).

Here h is as follows:

h(z,d) =
(cap(σ̂(A))

δd(σ̂(A))

)τ(z)

where τ is the Harnack distance for C \ σ̂(A) . For us it suffices to know that τ is
continuous and that

δn(K) → cap(K) as n → ∞.

Thus, for any ε > 0 there exists a Fekete polynomial p of degree d such that

max
μ∈σ(B)

h(μ ,d) >
1

1+ ε
.
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But then
ρ(p(B)−1)1/d � ρ(p(A))−1/de−α(1+ ε).

Multiplying this with ρ(p(A))1/d gives

η(A,B) � ρ(p(B)−1)1/d ρ(p(A))1/d � e−α(1+ ε),

which implies the bound from above. �
Recall, that operators A ∈ B(X ) are called quasialgebraic if there exists a se-

quence {p j} of monic polynomials such that

inf‖p j(A)‖1/deg(p j) = 0. (30)

Halmos [3] has shown that a bounded operator is quasialgberaic if and only if the ca-
pacity of its spectrum vanishes. So, quasinilpotent, compact, polynomially compact,
Riesz operators ect, are all quasialgebraic.

THEOREM 8. Let A ∈ B(X ) , B ∈ B(Y ) be such that σ̂(A)∩σ(B) = /0 . Then

η(A,B) = 0 if and only if A is quasialgebraic and, in particular σ̂(A) = σ(A) .

Proof. That A being quasialgebraic is necessary, follows immediately from The-
orem 7. To obtain the other direction one needs to conclude that the superlinear decay
guaranteed for A can be obtained with a sequence of polynomials with roots stay-
ing away from the spectrum of B . This can be done for example by taking a nested
sequence of compact sets Kn such that ∩Kn = σ(A) , using Hilbert’s Lemniscate The-
orem to get polynomials such that the associated lemniscates include Kn+1 but stay
inside Kn . Then the related Green’s functions shall blow up at σ(B) . �

REMARK 1. In [8] we studied the polynomial acceleration speeds for the equation
x = Lx + f with L a bounded operator in a Banach space X . We formulated the
equation in the fixed point form, rather than the usual Ax = b , to make the relationship
between fixed point iteration and e.g. Krylov methods more apparent. Notice that
viewing x and f as bounded operators C→X , the fixed point equation can be viewed
as a very special case of (1) with A =L and B = 1. The optimal asymptotic convergence
rate is, in agreement with the results above,

η(A) = e−g(1)

provided 1 /∈ σ̂(A) , see Theorem 3.4.9 in [8]. Here g denotes the Green’s function
when the capacity is positive and can be thought as +∞ when the capacity vanishes.
We also discussed the superlinear behavior when the capacity vanishes and modelling

the early behavior of iterations by assuming 1 ∈ ∂ σ̂(A) when the speed is sublinear.

We now derive a quantitative version of Theorem 3. Denote by S(A,B) again
the mapping X �→ AX −XB . Then the norm of S(A,B)−1 can be used to bound the
perturbation sensitivity. Since S(A,B)−1 = q(A,B)◦ S(p(A), p(B))−1 we have

‖S(A,B)−1‖ � ‖q(A,B)‖‖S(p(A), p(B))−1‖. (31)
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When separating the operators using a polynomial p the inversion should become easier
but one would pay the prize of q(A,B) typically having a large norm. However, as
q(A,B) is written out explicitly it can be thought of as being applied exactly while the
inversion part - when the dimensions are large or infinite - would typically be done only
approximatively, e.g. by truncating an iteration.

It is tempting to replace the separation condition σ̂(A)∩σ(B) = /0 by the corre-
sponding one on pseudospectra:

Σ̂ε (A)∩Σε(B) = /0, (32)

in particular, as one of the the early applications of pseudospectra was related to mea-
suring the separation between matrices [15], [2]. However, we shall rather use the
following condition

Vp(A)∩Σε(B) = /0, (33)

which connects the polynomial p directly into the estimates. In practice, one could
calculate Σε(B) with moderate ε and search for a polynomial p e.g. by running an
Arnoldi type Krylov process for a while and testing whether (33) is satisfied. This, or
even the so called “ideal Arnoldi” method, may not always produce polynomials with
level set staying close to the spectrum. In fact, already the minimizing ‖p‖K of monic
polynomials of odd degree over K = [−2,−1]∪ [1,2] necessarily has a zero at origin,
staying far away from K . For that reason the process behind the proof of Theorem 6
is based on minimizing ‖p(A)‖ over monic polynomials of given degree but includes a
“cleaning” process - which most likely would not usually be needed. Notice also, that

if Σ̂ε (A) is known and such that (32) holds, then one could compute Fekete points on

Σ̂ε(A) to get a polynomial for which (33) could hold.
Assume now that ε and p are such that (33) holds. Then there exists δ > 0 and

a contour γB surrounding Σε (B) , having vanishing total winding around Vp(A) , and
such that along γB we have |p(μ)| > ‖p(A)‖+ δ . Let �B be the length of γB . Then

p(B)−k =
1

2π i

∫
γB

p(μ)−k(μ −B)−1dμ ,

which implies

‖p(B)−k‖ � �B

2πε
(‖p(A)‖+ δ )−k,

so that

‖p(A)k‖‖p(B)−k−1‖ � �B

2πε
‖p(A)k‖

(‖p(A)‖+ δ )k+1 . (34)

Summing up we have the following.

PROPOSITION 4. Assume that there is a polynomial p and ε > 0 so that (33)
holds. Then with δ , �B as above we have

‖S(p(A), p(B))−1‖ � �B

2πε

∞

∑
k=0

‖p(A)k‖
(‖p(A)‖+ δ )k+1 . (35)
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REMARK 2. If X = S(A,B)−1(C) is wanted within some tolerance, notice that
(31) and (35) allow one to calculate a safe truncation of the series expansion

Y =
∞

∑
k=0

p(A)kCp(B)−k−1.

In fact, truncating

Ỹ =
N

∑
k=0

p(A)kCp(B)−k−1

and denoting X̃ = q(A,B)(Ỹ ) we obtain ‖X̃ −X‖ < tol , providing N is large enough
so that

rN+1 <
2πε(1− r)
�B‖q(A,B)‖ tol

holds, where r = ‖p(A)‖/(‖p(A)‖+ δ ) .

4. Half plane separation

The Theorem 5 deals with the question of existence of p such that the spectra are
separated into different half planes, allowing one to solve the modified equation using
the integral representation (13) or the sign-function.

Observe that

M =
(

A C
B

)
=

(
I −X

I

)(
A

B

)(
I X

I

)
(36)

is satisfied exactly when AX −XB = C . If σ(A) ⊂ C+ and σ(B) ⊂ C− , the sign-
function is well defined at M and we have

sgn

(
A C

B

)
=

(
I −X

I

)(
I
−I

)(
I X

I

)
=

(
I 2X
−I

)
. (37)

Thus, X can be obtained if sgn(M) can be computed. This is a rather popular route to
compute the solution to Sylvester equation, see e.g. [1], [6].

We first prove the qualitative result of Theorem 5, then discuss how the lemniscate
set Vp(A⊕B) can be used to obtain a quantitative result.

Proof of Theorem 5. The condition σ̂(A)∩ σ̂(B) = /0 is necessary. In fact, assum-

ing (14) holds, then we also have ̂σ(p(A)) ⊂ C+ and ̂σ(p(B)) ⊂ C− and hence

̂σ(p(A))∩ ̂σ(p(B)) = /0.

If λ0 ∈ σ̂(A)∩ σ̂(B) we get a contradiction as

p(λ0) ∈ ̂σ(p(A))∩ ̂σ(p(B)).

Here the last step follows from the general fact that if z ∈ K̂ and q is any polynomial,

then |(q ◦ p)(z)|� ‖q ◦ p‖K = ‖q‖p(K) and so, p(z) ∈ p̂(K) .
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Assume therefore that (15) holds and denote dist(σ(A),σ(B)) = δ . Put U1 = {λ :

dist(λ , σ̂(A)) < δ/3} and U2 = {μ : dist(μ , (̂σ(B)) < δ/3} . Then denote by K the
union of the closures of U1 and U2 . Recall that A(K) stands for continuous functions
in K which are holomorphic in the interior of K . Denote c =max{‖A‖,‖B‖}+ 1.
Then we define a function ϕ ∈ A(K) as follows:

ϕ : U1 � z �→ z+ c, while U2 � z �→ z− c. (38)

Since C\K is connected we may by Mergelyan’s Theorem approximate ϕ arbitrarily
accurately on K by polynomials, say ‖ϕ − p‖K < ε . If γ1 is a contour such that γ1

surrounds σ̂(A) inside U1 , then we have

‖ϕ(A)− p(A)‖� ε
2π

∫
γ1

‖(λ −A)−1‖ |dλ |

and in particular if ε is small enough, σ(p(A)) ⊂ C+. Defining γ2 in the similar way
and integrating we get p(B) with spectrum in the left half plane. �

We may replace the Mergelyan’s Theorem in the proof of Theorem 5 by the use of
multicentric representation of ϕ . To that end, assume we have found polynomials p1 ,
p2 such that

Vp1(A)∩Vp2(B) = /0, (39)

e.g. based on Theorem 6. Let then Ui be open, Vp1(A)⊂U1 and Vp2(B)⊂U2 and such
that U1∩U2 = /0 . Then, again by Theorem 6, we may assume that, applied to the block
diagonal operator A⊕B , we have a polynomial p such that

Vp(A⊕B)⊂U1∪U2. (40)

Without loss of generality we may assume that p is of degree d and has simple roots
λ j . Let t > 0 be small enough so that

γ = {λ : |p(λ )| = ‖p(A⊕B)‖+ t}⊂U1∪U2.

Define ϕ on U1 ∪U2 as in (38). We now use the multicentric representation (4) of ϕ
to approximate ϕ(A) and ϕ(B) by polynomials. When |w| < |p(λ )| we have

Kj(λ ,w) =
1

λ −λ j

∞

∑
n=0

wnp(λ )−n

and the functions f j in

ϕ(z) =
d

∑
j=1

δ j(z) f j(p(z))

satisfy

f j(p(z)) =
1

2π i

∫
γ
Kj(λ , p(z))ϕ(λ )dλ ,
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see [10]. We put

P(z) =
d

∑
i=1

δi(z)Pi(p(z)), (41)

where we truncate the series expansion for the integral kernel after the index N to

Pj(w) =
1

2π i

∫
γ

ϕ(λ )
λ −λ j

N

∑
n=0

wnp(λ )−ndλ ,

so that in particular P is a polynomial of degree (N +1)d−1 at most.
Let γ = γ1∪γ2 with γi ⊂Ui . The roots of p are divided into two parts, say λ j ∈U1

for j � m and λk ∈U2 for m < k � d . Since σ(A) ⊂U1 , the integral over γ2 does not
contribute to ϕ(A) and we may estimate as follows. Denote

Cj =
1
2π

∫
γ

1
|λ −λ j| |dλ |.

Now

P(A) =
m

∑
j=1

δ j(A)
1

2π i

∫
γ

ϕ(λ )
λ −λ j

N

∑
n=0

p(A)np(λ )−ndλ

and thus

‖ϕ(A)−P(A)‖� ‖ϕ‖γ
m

∑
j=1

Cj ‖δ j(A)‖ 1
1− r

rN+1,

where we set r = ‖p(A)‖
‖p(A⊕B)‖+t . Likewise we obtain

‖ϕ(B)−P(B)‖� ‖ϕ‖γ
d

∑
k=m+1

Ck ‖δk(B))‖ 1
1− s

sN+1,

with s = ‖p(B)‖
‖p(A⊕B)‖+t . By the choice of ϕ the spectrum of ϕ(A) is in the half plane

Re λ > 1 while that of ϕ(B) is likewise in the half plane Re μ < −1. Choosing N
large enough so that

max{‖ϕ(A)−P(A)‖,‖ϕ(B)−P(B)‖}< 1

we have σ(P(A)) ⊂ C+ and σ(P(B)) ⊂ C− .
To summarize:

PROPOSITION 5. Assume that we have a polynomial p such that (40) holds. Then
we can estimate a truncation index N such that

σ(P(A)) ⊂ C+ and σ(P(B)) ⊂ C− (42)

holds with the polynomial P in (41).
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5. Explicit series expansion using multicentric calculus

In the previous section we demonstrated the existence polynomials for half plane
separation. One could then compute the sign-function of

M =
(

A C
B

)
(43)

and obtain the solution X to the Sylvester equation from (37). This can be done for
example using Newton’s iteration.

Here we consider a variant of this which avoids the need to map the spectra into
different half planes. We use piecewise constant holomorphic functions to define the
formal solution as a Cauchy-integral and then show how using multicentric calculus we
get an explicit series expression for it. In the following we again assume all the time
that A ∈ B(X ) , B ∈ B(Y ) and C ∈ B(Y ,X ) .

Suppose we have open sets U1,U2 such that σ̂(A) ⊂ U1 and σ̂(B) ⊂ U2 and
U1∩U2 = /0 . Let ϕ be the locally constant holomorphic function taking value 1 in U1

and value −1 in U2 . If γ1 is a contour inside U1 surrounding σ(A) we set

Q =
1

2π i

∫
γ1

(λ −M)−1. (44)

Then the following holds.

PROPOSITION 6. In the notation above

Q =
(

I X
0

)
(45)

where X is the solution of AX −XB = C.

Proof. We may write M in (43) as

M =
(

I −X
I

)(
A

B

)(
I X

I

)
.

Then Q in (44) takes the form

Q =
(

I −X
I

)
1

2π i

∫
γ1

(
λ −A

λ −B

)−1 (
I X

I

)

so that

Q =
(

I −X
I

)(
I 0
0 0

)(
I X

I

)
=

(
I X

0

)
. �

Our aim is now to compute Q . To that end let γ = γ1 ∪ γ2 where γ2 is a contour
surrounding σ(B) inside U2 so that, as γ surrounds σ(M) , we have

I =
1

2π i

∫
γ
(λ −M)−1.
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But then adding this to both sides of

ϕ(M) = Q− 1
2π i

∫
γ2

(λ −M)−1

yields ϕ(M) = 2Q− I and Q = 1
2 (ϕ(M)+ I). Suppose we have a polynomial p such

that
Vp(M) ⊂U1∪U2 (46)

and t > 0 small enough so that γ = {λ : |p(λ )| = ‖p(M)‖+ t} ⊂ U1 ∪U2 . Then γ
splits into γ1 and γ2 in a natural way. We now write down the series expansion of ϕ
which converge inside γ , uniformly in compact subsets.

On the polynomial p we assume that it has simple roots and is monic and of degree
d . We write ϕ in the multicentric form

ϕ(λ ) =
d

∑
j=1

δ j(λ ) f j(p(λ )) (47)

where the Taylor coefficients α j,k in

f j(w) =
∞

∑
k=0

α j,kw
k

can be computed by an explicit recursion. The recursion is derived in [10]. Let p have
roots λ j and δ j(λ ) denote the polynomials taking value 1 at λ j and vanishing at the
other roots. We may assume that λ j ∈U1 for j � s and λ j ∈U2 for s+1 � j � d . We
first compute recursively polynomials bn,m as follows:

Put b0,0 = 1, b1,1 = p′ , bn,0 = 0 for n > 0 and for m > n bn,m = 0. Then

bn+1,m = bn,m−1p′ +b′n,m.

Then given the values ϕ(n)(λ j) we can compute f (n)
j (0) from the following

(p′(λ j))n f (n)
j (0) = ϕ(n)(λ j) (48)

−
d

∑
k=1

n−1

∑
m=0

(
n
m

)
δ (n−m)

k (λ j)
m

∑
l=0

bm,l(λ j) f (l)
k (0) (49)

−
n−1

∑
l=0

bn,l(λ j) f (l)
j (0). (50)

This is Proposition 4.3 in [10]1. We can summarize:

PROPOSITION 7. Let ϕ = 1 in U1 and ϕ =−1 in U2 , and assume p is such that
(46) holds. Then we have Q = 1

2 (ϕ(M)+ I) where

ϕ(M) =
d

∑
j=1

δ j(M)
∞

∑
n=0

f (n)
j (0)

n!
p(M)n.

1where the last line (50) had dropped out
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The Taylor coefficients of f j satisfy, see Proposition 4.4 in [10],

α j,n =
f (n)
j (0)

n!
=

1
2π i

∫
γ

ϕ(λ )
p(λ )n

dλ
λ −λ j

. (51)

Denote Lj = 1
2π

∫
γ

|dλ |
|λ−λ j | then, we have | f

(n)
j (0)
n! | � Lj(‖p(M)‖+ t)−n, which allows us

to truncate the series. Put

ϕ̃(M) =
d

∑
j=1

δ j(M)
N

∑
n=0

f (n)
j (0)

n!
p(M)n

so that

‖ϕ̃(M)−ϕ(M)‖ � C
1− r

rN+1, (52)

where

C =
d

∑
j=1

Lj‖δ j(M)‖, and r =
‖p(M)‖

‖p(M)‖+ t
.

Let tol > 0 be given and compute N such that

rN+1 <
2(1− r)

C
tol. (53)

PROPOSITION 8. In the notation above, if N is large enough so that (53) holds,
then we have an approximation X̃ to X solving AX−XB =C such that ‖X̃−X‖< tol ,
where X̃ is the right upper corner element of Q̃ = 1

2 (ϕ̃(M)+ I) .

REMARK 3. We may assume without loss of generality that p has simple rational
roots, as conditions such as (46) allow small perturbations if needed. This means that
the Taylor coefficients α j,n are rational as well.

REMARK 4. Observe that we have an explicit formula for p(M)k . In fact

p(M) =
(

p(A) q(A,B)(C)
p(B)

)
=:

(
R T

S

)

and so

p(M)k =
(

Rk qk−1(R,S)(T )
Sk

)

where qk−1(λ ,μ) = (λ k − μk)/(λ − μ) .

EXAMPLE 2. We shall again demonstrate the approach using the special case as
in Example 1. Let A and B be invertible bounded operators in a Hilbert space, such
that A and iB are self adjoint, normalized e.g. so that both have norms bounded by 1.
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In particular then A2 and −B2 are both positive definite with spectra in some interval
[α,1] , with α > 0. We can proceed in two slightly different ways.

We could start by setting ζ = λ 2 and solve

A2X −XB2 = AC+CB (54)

using sign-function expansion in the polynomial p(ζ ) = ζ 2 −1. Or, you could solve

p(A)X −X p(B) = q(A,B)(C) (55)

with p(λ ) = λ 4 −1 so that q(λ ,μ) = λ 3 + λ 2μ + λ μ2 + μ3 . Here you should define
ϕ = 1 in the open sectors where arg(λ 4) > 0 and ϕ = −1 where arg(λ 4) < 0. Both
approaches lead to an expansion in terms of powers of M4 − I which is easy to derive
directly. Consider the sign-function, defined for Re ζ �= 0 as

sgn(ζ ) =
ζ

(ζ 2)1/2

where Re(ζ 2)1/2 > 0. With w = ζ 2 −1 and assuming that |w| = |ζ 2−1|< 1 we may
expand (1+w)−1/2 to get

sgn(ζ ) = ζ (1− 1
2
w+

3
8
w2 − 5

16
w3 + · · ·). (56)

Now, we can apply this to the operator M2 . In fact, we have

sgn(M2) = M2(I− 1
2
(M4 −1)+

3
8
(M4 −1)2− 5

16
(M4 −1)3 + · · ·)

which converges as the spectral radius ρ(M4− I) = ‖(A2⊕B2)2− I‖< 1. The solution
to the original equation is then the right upper corner element of 1

2 sgn(M2) .
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