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Abstract. In this paper we deal with the algebraic reflexivity of sets of bounded linear operators
on absolutely continuous vector-valued function spaces. As a consequence, it is shown that
the set of all surjective linear isometries, the set of all isometric reflections, and the set of all
generalized bi-circular projections on AC[0,1] are algebraically reflexive.

1. Introduction

For arbitrary normed spaces A and B , L (A,B) stands for the space of all bounded
linear operators from A to B . Let ξ ⊆ L (A,B) . We say a map T ∈ L (A,B) belongs
locally to ξ if T pointwise equals an element of ξ , in other words, if for each a ∈ A
there is a Ta ∈ ξ , possibly depending on a , such that Ta = Taa . The collection ξ is
said to be algebraically reflexive if ξ contains every T belonging locally to ξ . For
more information on this concept we refer to the book by Molnár [18].

One important collection ξ is the set Iso(A,B) of all surjective linear isometries
from A onto B . When A = B , we write Iso(A) = Iso(A,A) which, namely, is the isom-
etry group of all surjective linear isometries of A . Investigations on algebraic reflexivity
of the group of isometries of spaces of continuous functions were begun by Molnár and
Zalar [19]. They proved that the isometry group of the function space C(X) of all con-
tinuous complex-valued functions on a compact Hausdorff space X , endowed with the
supremum norm ‖ · ‖∞ , is algebraically reflexive when X is first countable. Motivated
by [19], considerable study has been done in this direction. Jarosz and Rao [15] investi-
gated a vector-valued version of this result proving that if X is a first countable compact
Hausdorff space and E is a uniformly convex complex Banach space such that Iso(E)
is algebraically reflexive, then Iso(C(X ,E)) is algebraically reflexive. Moreover, with
respect to subsets of the isometry group, Dutta and Rao in [10] studied the algebraic
reflexivity of the set of isometric reflections Iso2(C(X)) of C(X) , and they proved
that for any compact Hausdorff space X , if Iso(C(X)) is algebraically reflexive, then
so is Iso2(C(X)) . Recently, Jiménez-Vargas et al. in [16] showed that if (X ,d) is a
compact metric space, then the isometry group and the set of isometric reflections of
Lip(X,d) and lip(X,dα) (0 < α < 1), equipped with the sum norm ‖ · ‖∞ +L(·) , are
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algebraically reflexive, where L(·) denotes the Lipschitz constant of a function. Then, a
vector-valued version of the results of [16] was established by Botelho and Jamison [3]
for the group of surjective linear isometries preserving a constant function on the space
Lip(X,E) consisting of all E -valued Lipschitz functions on a compact metric space
X with respect to the norm max{‖ · ‖∞,L(·)} , when is E is a strictly convex complex
Banach space. Meantime, more recently, Oi [20] investigated the algebraic reflexivity
of groups of surjective linear isometries on Lip(X,E) with the sum norm for the case
where E is C(Y ) , or Mn(C) (the algebra of all n×n complex matrices). One can also
see related results on the algebraic reflexivity of sets of isometries for various classical
spaces of continuous scalar and vector-valued functions in [2, 6, 7, 10, 21].

Motivated by the above results, in this paper we investigate the algebraic reflexivity
of the sets of isometries of spaces of absolutely continuous vector-valued functions,
endowed with the max norm max{‖ · ‖∞,V (·)} , where V (·) is the total variation of a
function.

Another important class of operators has recently received considerable attention,
known as generalized bi-circular projections. The notion of generalized bi-circular pro-
jection (abbreviated gbp) was introduced in [11]. In the context of function spaces,
Botelho and Jamison [4] characterized gbp’s on the spaces of vector-valued continu-
ous functions C(X ,E) for certain compact Hausdorff spaces X and Banach spaces E .
Then in [10], the authors applied this characterization to show that if Iso(C(X)) is al-
gebraically reflexive, then the set of gbp’s of C(X) is algebraically reflexive. Further
results on the representation and the algebraic reflexivity problem of gbp’s on various
function spaces can be found in [1, 3, 5, 12] and the references therein. In this paper,
Section 3 concerns the description of gbp’s on AC(X ,E)-spaces which is also essential
in our study of the algebraic reflexivity problem for sets of such operators.

As a consequence, in the scalar-valued case, we prove that the isometry group, the
set of all isometric reflections, and the set of all generalized bi-circular projections on
AC[0,1] with respect to either of the natural norms max{‖·‖∞,V (·)} and ‖·‖∞ +V (·) ,
are algebraically reflexive.

In the rest of this section, we fix notation and recall some definitions that we shall
use in our paper.

Let X be a compact subset of the real line R with at least two points and E be
a nonzero normed space over the filed R or C . A function f : X −→ E is called
absolutely continuous if for every ε > 0, there is a δ > 0 such that

n

∑
i=1

‖ f (bi)− f (ai)‖ < ε,

for every finite family of non-overlapping open intervals {(ai,bi) : i = 1, ...,n} whose
extreme points belong to X with ∑n

i=1(bi−ai) < δ . We denote by AC(X ,E) the space
of all absolutely continuous E -valued functions on X . If not explicitly stated otherwise,
AC(X ,E) is equipped with the norm

‖ f‖ = max{‖ f‖∞,V ( f )} ( f ∈ AC(X ,E)),
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where ‖ f‖∞ = sup{‖ f (x)‖ : x ∈ X} and V ( f ) is the total variation of f defined as

V ( f ) := sup
{ n

∑
i=1

‖ f (xi)− f (xi−1)‖ : n ∈ N,x0,x1, ...,xn ∈ X ,x0 < x1 < ... < xn
}
.

For the case where E is the scalar field R or C , we shall write AC(X) instead of
AC(X ,E) . Furthermore, given e ∈ E , ê stands for the function in AC(X ,E) which is
constantly e on X .

For each non-empty set, I denotes the identity map on it.
We finally recall that a nonzero normed space E is said to be strictly convex if each

point in the unit sphere SE = {e ∈ E : ‖e‖ = 1} is an extreme point of the closed unit
ball of E . Meantime, one can observe that ‖e1‖,‖e2‖< max{‖e1 +e2‖,‖e1−e2‖} for
every e1,e2 ∈ E \ {0} .

2. Algebraic reflexivity of sets of isometries on AC(X ,E)-spaces

Throughout the rest of this paper, we assume that X and Y are compact sub-
sets of the real line with at least two points, and E and F are both strictly convex
real normed spaces or both strictly convex complex normed spaces. We denote by
G (AC(X ,E),AC(Y,F)) the set of all linear isometries from AC(X ,E) onto AC(Y,F)
such that T ê(a) �= 0 and T ê′(b) �= 0 for some e,e′ ∈ E , where a = minY and b =
maxY . According to [14, Theorem 4.1], for a given T in G (AC(X ,E),AC(Y,F)) there
exist a monotonic absolutely continuous homeomorphism ϕ :Y −→ X , and a surjective
linear isometry J in Iso(E,F) such that

T f (y) = J( f (ϕ(y))) ( f ∈ AC(X ,E),y ∈ Y ).

Indeed, G (AC(X ,E),AC(Y,F)) is the set of all surjective linear isometries of the form
of the generalized weighted composition operators (see [14, Remark 4.2]). If X = Y
and E = F , we denote this set by G (AC(X ,E)) . We would like to remark that, by [14,
Corollary 4.4], G (AC[0,1]) is the isometry group Iso(AC[0,1]) of all surjective linear
isometries acting on AC[0,1] .

Meantime, here every linear map T : AC(X ,E) −→ AC(Y,F) which belongs lo-
cally to the set G (AC(X ,E),AC(Y,F)) is naturally termed as a local isometry.

The following theorem provides a precise description of local isometries of spaces
of absolutely continuous functions.

THEOREM 2.1. Let T : AC(X ,E) −→ AC(Y,F) be a local isometry. Then there
exist a monotonic absolutely continuous homeomorphism ϕ : Y −→ X , and a linear
isometry J : E −→ F belonging locally to Iso(E,F) such that

T f (y) = J( f (ϕ(y))) ( f ∈ AC(X ,E),y ∈ Y ).

Furthermore, T is surjective if and only if J is surjective.
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Proof. First notice that T preserves the supremum norm. To see this, let f ∈
AC(X ,E) . Since T is a local isometry, there exists a Tf ∈ G (AC(X ,E),AC(Y,F))
such that T f = Tf f . Hence, from the representation of Tf , it is inferred that ‖Tf f‖∞ =
‖ f‖∞ , which immediately yields ‖T f‖∞ = ‖ f‖∞ . Now, since AC(X ,E) (resp. AC(Y,F))
is uniformly dense in C(X ,E) (resp. C(Y,F)) (see [13, Lemma 1] and [17, Corollary
1.2]), we can extend T to a linear isometry from C(X ,E) to C(Y,F) , which we keep
denoting by T . Hence by [8], there exist a nonempty subset Y0 of Y , a continuous
surjective map ϕ : Y0 −→ X , a function ω from Y0 to L (E,F) such that

T f (y) = ω(y)( f (ϕ(y))) ( f ∈ AC(X ,E),y ∈ Y0).

Next, we claim that ω is a constant function. Let e ∈ E . Since T is a local
isometry, there is a surjective linear isometry Tê in the set G (AC(X ,E),AC(Y,F)) such
that T ê = Têê . According to [14, Theorem 4.1], there exist a monotonic absolutely
continuous homeomorphism ϕê :Y −→X , and a surjective linear isometry Jê : E −→F
such that

Tê f (y) = Jê( f (ϕê(y))) ( f ∈ AC(X ,E),y ∈ Y ).

Hence letting f = ê , from the above relations, it follows that ω(y)(e) = Jê(e) for all
y ∈ Y0 . This discussion implies that ω(y) = ω(y′) for all y,y′ ∈ Y0 . Therefore, ω is a
constant function, as claimed.

Now, we set J := ω(y) for some y ∈ Y0 . Note that the above argument shows that
for each e ∈ E we have J(e) = ω(y)(e) = Jê(e) , which says that J belongs locally to
Iso(E,F) .

We now assert that Y0 = Y . For this purpose, take e ∈ SE and define f (x) =
(x− a+ 1)e for all x ∈ X , where a = minX . Since T is a local isometry, there exist
a monotonic absolutely continuous homeomorphism ϕ f : Y −→ X , and Jf ∈ Iso(E,F)
such that

J( f (ϕ(y))) = T f (y) = Jf ( f (ϕ f (y))) (y ∈Y0).

Hence we get

J((ϕ(y)−a+1)e) = Jf ((ϕ f (y)−a+1)e) (y ∈Y0),

and consequently,

‖(ϕ(y)−a+1)J(e)‖ = ‖(ϕ f (y)−a+1)Jf (e)‖ (y ∈Y0).

Since J and Jf are isometries, we infer that ϕ(y)−a+1 = ϕ f (y)−a+1, whence

ϕ(y) = ϕ f (y) (y ∈ Y0). (�)

Suppose, on the contrary, that there is a point y0 ∈ Y \Y0 . Set x0 = ϕ f (y0) . Since
ϕ is surjective, there exists a point y in Y0 such that x0 = ϕ(y) . Now from (� ) we have
ϕ f (y) = x0 , and so ϕ f (y) = ϕ f (y0) , which contradicts the injectivity of ϕ f . Hence, we
conclude that Y0 = Y .

It should be noted, as observed in the above part, ϕ = ϕ f , and in consequence,
ϕ is a monotonic absolutely continuous homeomorphism. Therefore, T is of the form
mentioned in the statement.
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Furthermore, by [14, Theorem 4.1], it is immediately seen that T is surjective if
and only if J is surjective. �

Here we determine the structure of isometric reflections of absolutely continuous
function spaces. First let us recall that an isometric reflection of a normed space E is
a linear isometry T : E −→ E satisfying T 2 = I . Clearly, any isometric reflection is
surjective. Let Iso2(E) be the set of all isometric reflections of E .

It should be noted that isometric reflections of AC(X ,E) are not necessarily
weighted composition operators. For instance, let X = Y = {1,2} and define T :
AC(X) −→ AC(Y ) by T f (1) = f (1) and T f (2) = f (1)− f (2) . It is easy to check
that T is an isometric reflection which is not a weighted composition operator. How-
ever, as the following theorem shows, an isometric reflection of AC(X ,E) is a weighted
composition operator if and only if it belongs to G (AC(X ,E)) .

Before stating the next theorem, let us denote by G 2(AC(X ,E)) the set of all iso-
metric reflections of AC(X ,E) which belong to G (AC(X ,E)) . In fact, G 2(AC(X ,E))=
{T ∈ G (AC(X ,E)) : T 2 = I} .

THEOREM 2.2. (1) T ∈ G 2(AC(X ,E)) if and only if there exist a monotonic
absolutely continuous homeomorphism ϕ : X −→X with ϕ2 = I , and J ∈ Iso2(E)
such that T f (x) = J( f (ϕ(x))) for all f ∈ AC(X ,E) and x ∈ X .

In particular, T ∈ G 2(AC(X)) if and only if there exist a monotonic absolutely
continuous homeomorphism of X with ϕ2 = I , and λ ∈ {1,−1} such that T f (x)
= λ f (ϕ(x)) for all f ∈ AC(X) and x ∈ X .

(2) If T belongs locally to G 2(AC(X ,E)) , then there exist a monotonic absolutely
continuous homeomorphism ϕ : X −→ X with ϕ2 = I , and a linear isometry
J : E −→ E belonging locally to Iso2(E) such that T f (x) = J( f (ϕ(x))) for
all f ∈ AC(X ,E) and x ∈ X . Furthermore, T is surjective if and only if J is
surjective.

Proof.

(1) To prove the ”only if” part, let T ∈ G 2(AC(X ,E)) . According to [14, Theorem
4.1], there exist a monotonic absolutely continuous homeomorphism ϕ : X −→
X , and J ∈ Iso(E) such that

T f (x) = J( f (ϕ(x))) ( f ∈ AC(X ,E),x ∈ X).

For any e ∈ E we have

e = T 2ê(x) = T (T ê)(x) = J2(e) (x ∈ X),

which yields J2 = I . Now, fix a norm one vector e ∈ E and define f (x) = xe
(x ∈ X ). Then we get

xe = f (x) = (T 2 f )(x) = T (T f )(x) = J((T f )(ϕ(x))) = J2( f (ϕ2(x))) = ϕ2(x)e
(x ∈ X).
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Hence ϕ2(x) = x for al x ∈ X , as claimed. Moreover, taking into account [14,
Theorem 4.1], it is easy to obtain the ”if” part.

(2) From the proof of Theorem 2.1 and the above part (1), one can derive immedi-
ately the result. �

Thanks to the above theorems, we can easily deduce our results on the algebraic
reflexivity of the sets of isometries of absolutely continuous function spaces as follows.

THEOREM 2.3. (1) If Iso(E,F) is algebraically reflexive, then
G (AC(X ,E),AC(Y,F)) is algebraically reflexive. In particular, the group
G (AC(X)) and the group of all unital surjective linear isometries of AC(X) are
algebraically reflexive.

(2) If Iso2(E) is algebraically reflexive, then so is G 2(AC(X ,E)) . In particular,
G 2(AC(X)) is algebraically reflexive.

Proof.

(1) It is a direct consequence of Theorem 2.1.

(2) Assume that T belongs locally to G 2(AC(X ,E)) . By Theorem 2.2(2), there exist
a monotonic absolutely continuous homeomorphism ϕ : X −→ X with ϕ2 = I ,
and a linear isometry J : E −→E belonging locally to Iso2(E) such that T f (x) =
J( f (ϕ(x))) for all f ∈ AC(X ,E) and x ∈ X . Since Iso2(E) is algebraically
reflexive, J is surjective, which again taking into account Theorem 2.2(2), yields
the surjectivity of T . Therefore, T ∈ G 2(AC(X ,E)) , by Theorem 2.2(1). �

COROLLARY 2.4. Iso(AC[0,1]) and Iso2(AC[0,1]) are algebraically reflexive.

Proof. From [14, Corollary 4.4], Iso(AC[0,1])= G (AC[0,1]) and Iso2(AC[0,1])=

G 2(AC[0,1]) . Now the result is obtained by Theorem 2.3. �

REMARK 2.5. The above result holds when AC[0,1] is equipped with the norm
‖ · ‖∞ + V (·) . Indeed, from [9, Theorem 2.7] we deduce that the isometry group of
(AC[0,1],‖ · ‖∞ +V (·)) coincide with G (AC[0,1]) , and so the claim follows immedi-
ately from Corollary 2.4.

3. Algebraic reflexivity of generalized bi-circular projections on AC(X ,E)-spaces

DEFINITION 3.1. For a normed space E , a linear projection P : E −→E is said to
be generalized bi-circular projection (gbp) if T = P+λ (I−P) is an isometry for some
unimodular scalar λ not equal to one. Note that if E is a real normed space, generalized
bi-circular projections are those projections P such that P− (I − P) = 2P− I is an
isometry.
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It is clear that if P is a gbp, then so is its complementary projection I−P . Mean-
time, it is an easy consequence of the definition that T must be a surjective linear
isometry (see [11, Lemma 1.1]). Hence the characterization of the surjective linear
isometries of E is the key tool to study such operators.

Here by GBP(AC(X ,E)) we mean the set of all generalized bi-circular projec-
tions of AC(X ,E) for which there exists a unimodular scalar λ �= 1 such that T =
P+ λ (I−P) ∈ G (AC(X ,E)) .

THEOREM 3.2. For a strictly convex complex normed space E ,
P ∈ G BP(AC(X ,E)) if and only if one of the following statements holds:

(i) P = I+T
2 for a unique T ∈ G 2(AC(X ,E)) .

(ii) There exists a gbp P0 on E such that P f (x) = P0(( f (x)) for all f ∈ AC(X ,E)
and x ∈ X .

Meantime, for a strictly convex real normed space E , P ∈ G BP(AC(X ,E)) if and
only if (i) holds.

Proof. We prove this theorem by arguments similar to the proof [3, Theorem 3.2].
Let E be a strictly convex complex normed space and P ∈ G BP(AC(X ,E)) . Hence
there exists a scalar λ ∈T\{1} such that T = P+λ (I−P) belongs to G (AC(X ,E)) . It
is easy to check that T 2− (λ +1)T +λ I = 0 (see, e.g., [11, Lemma 1.1]). We consider
two cases as follows:

Case 1. λ = −1. In this case, from the above relations it follows easily that
P = I+T

2 and T 2 = I , as stated in item (i).
Case 2. λ �= −1. According to Theorem 2.2, there exist a monotonic absolutely

continuous homeomorphism ϕ : X −→ X , and J ∈ Iso(E) such that

T f (x) = J( f (ϕ(x))) ( f ∈ AC(X ,E),x ∈ X).

We claim that ϕ = I . Contrary to what we claim, assume that, there exists an x0 ∈ X so
that x0 �= ϕ(x0) . Clearly, ϕ2(x0) �= ϕ(x0) since ϕ is injective. We choose f ∈AC(X ,E)
with f (ϕ2(x0)) = f (x0) = 0 and f (ϕ(x0)) = e for some e ∈ SE . Thus from the
representation of T it follows that

T 2 f (x0) = T (T f )(x0) = J(T f (ϕ(x0))) = J2( f (ϕ2(x0))) = 0,

on the other side,

T 2 f (x0) = ((λ +1)T −λ I) f (x0) = (λ +1)T f (x0)−λ f (x0) = (λ +1)J( f (ϕ(x0)))
= (λ +1)J(e) �= 0.

This contradiction shows that ϕ(x) = x for each x ∈ X . Therefore, we get

T f (x) = J( f (x)) ( f ∈ AC(X ,E),x ∈ X).
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Put P0 = J−λ I
1−λ . It is easily seen that

P f (x) =
T f (x)−λ f (x)

1−λ
=

J( f (x))−λ f (x)
1−λ

= P0( f (x)) ( f ∈ AC(X ,E),x ∈ X).

Notice that P0 is a projection since P2(ê) = P(ê) for all e ∈ E . Moreover, for any
e ∈ E we have T 2ê− (λ +1)Tê+ λ ê = 0, which implies that

J2− (λ +1)J + λ I = 0,

and in consequence, taking into account [11, Lemma 1.1], we conclude that P0 is a gbp
on E . Whence P is of the form stated in item (ii).

The converse can be verified by simple computations.
Furthermore, from the above discussion it is clear that for a strictly convex real

normed space E , P ∈ G BP(AC(X ,E)) if and only if the statement (i) holds. �
Below, we state the scalar-valued version of the above theorem.

COROLLARY 3.3. P ∈ G BP(AC(X)) if and only if there exist a monotonic ab-
solutely continuous homeomorphism ϕ : X −→ X with ϕ2 = I , and λ ∈ {1,−1} such
that P f (x) = 1

2 [ f (x)+ λ f (ϕ(x))] for all f ∈ AC(X) and x ∈ X .

Now, taking into account Theorem 3.2, we obtain the following result immediately.

THEOREM 3.4. If Iso(E) or Iso2(E) is algebraically reflexive, then the set of all
gbp’s of AC(X ,E) described as the average of the identity with an isometric reflection,
is algebraically reflexive. In particular, if E is a real normed space, or E is the scalar
field then G BP(AC(X ,E)) is algebraically reflexive.

Proof. Let P belongs locally to G BP(AC(X ,E)) . Then for any f ∈ AC(X ,E) ,
there is an isometric reflection Tf such that P f = (I+Tf ) f

2 , which yields (2P− I) f =
Tf f . Hence we observe that 2P− I belongs locally to G 2(AC(X ,E)) . If Iso(E) or
Iso2(E) is algebraically reflexive, then 2P− I is surjective by Theorem 2.3. Meantime,
from this fact that P is a projection, we get (2P− I)2 = I . Consequently, it is deduced
that (2P− I)∈ G 2(AC(X ,E)) , and so P∈ G BP(AC(X ,E)) , as desired. Furthermore,
the particular case is obtained immediately from Theorem 3.2 and Corollary 3.3. �

REMARK 3.5. The set of all gbp’s of AC[0,1] equipped with either of the norms
‖·‖ or ‖·‖∞ +V (·) , is algebraically reflexive (combine Remark 2.5 and Theorem 3.4).
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