α -FREDHOLM OPERATORS RELATIVE TO INVARIANT SUBSPACES

S. SÁNCHEZ-PERALES*, S. PALAFOX AND S. V. DJORDJEVIĆ

(Communicated by R. Curto)

Abstract. Let T be a bounded linear operator on a Hilbert space H and let W be a closed T-invariant subspace of H. Then T has a matrix representation on the space $W \oplus W^{\perp}$ by $T = \begin{bmatrix} A & C \\ 0 & B \end{bmatrix}$. In this paper, the relationships between the α -Fredholm properties of T and those of the pair of operators A and B are studied.

1. Introduction

Let *H* be a complex Hilbert space of dimension $h > \aleph_0$ and let α be a cardinal number such that $1 \le \alpha \le h$. A linear subspace *K* of *H* is called α -closed if there is a closed linear subspace *E* of *H* such that $E \subseteq K$ and

$$\dim(\overline{K\cap E^{\perp}})<\alpha.$$

This concept, introduced by G. Edgar et al. in [8], allowed to generalize the definition of a Fredholm operator. For a bounded linear operator $T \in B(H)$, let N(T) and R(T) the null space and the range, respectively, of the mapping T. Also, let $n(T) = \dim N(T)$ and $d(T) = \dim R(T)^{\perp}$. If the range R(T) of $T \in B(H)$ is α -closed and $n(T) < \alpha$ (respectively, $d(T) < \alpha$), then T is said to be an *upper semi* α -Fredholm (respectively, a *lower semi* α -Fredholm) operator and we denote $T \in \Phi_{\alpha}^{+}(H)$ (respectively $T \in \Phi_{\alpha}^{-}(H)$). If $T \in \Phi_{\alpha}^{-}(H) \cap \Phi_{\alpha}^{+}(H)$ then we say that T is an α -Fredholm operator (in notation $T \in \Phi_{\alpha}(H)$). This notion is of interest only when $\alpha > \aleph_0$, since \aleph_0 -Fredholm operators are Fredholm operators.

For each α , $\aleph_0 \leq \alpha \leq h$, let \mathscr{F}_{α} denote the two-sided ideal in B(H) of all bounded linear operators such that $\dim \overline{R(T)} < \alpha$ and let \mathscr{I}_{α} denote the norm closure of \mathscr{F}_{α} in B(H). The closed two-sided ideal \mathscr{I}_{α} of B(H) permits consider the quotient space $B(H)/\mathscr{I}_{\alpha}$ as a complex unital Banach algebra. The operators which are left (resp. right) invertible modulo \mathscr{I}_{α} are precisely the upper (resp. lower) semi α -Fredholm operators. See [8],[9]. This implies that $\Phi^+_{\alpha}(H)$ and $\Phi^-_{\alpha}(H)$ are open sets in B(H) for all $\alpha \geq \aleph_0$. See, for example, Theorem 2.7.

Corresponding spectra of an operator $T \in B(H)$ are defined as:

^{*} Corresponding author.

Mathematics subject classification (2010): 47A53.

Keywords and phrases: α -closed subspaces, α -Fredholm operators, invariant subspaces.

the upper semi α -Fredholm spectrum:

$$\sigma_{\alpha u}(T) = \{ \lambda \in \mathbb{C} \mid \lambda - T \notin \Phi_{\alpha}^{+}(H) \}$$

the lower semi α -Fredholm spectrum:

$$\sigma_{\alpha l}(T) = \{ \lambda \in \mathbb{C} \mid \lambda - T \notin \Phi_{\alpha}^{-}(H) \},\$$

the α -Fredholm spectrum:

$$\sigma_{\alpha}(T) = \{ \lambda \in \mathbb{C} \mid \lambda - T \notin \Phi_{\alpha}(H) \}.$$

All of these spectra are non-empty compact subsets of the complex plane.

Let *W* be a closed subspace of *H*. We shall use $\mathscr{F}_W(H)$ to denote the set of all bounded operators $T: H \to H$ for which *W* is *T*-invariant. If $T \in \mathscr{F}_W(H)$ then *T* has on $W \oplus W^{\perp}$ the matrix representation

$$T = \begin{bmatrix} A & C \\ 0 & B \end{bmatrix},$$

where $A = T|_W$, $B = QT|_{W^{\perp}}$ and $C = PT|_{W^{\perp}}$; here *P* is the projection of *H* on *W* and *Q* is the projection of *H* on W^{\perp} . In the present paper the relationships between the α -Fredholm properties of *T* and those of the pair of operators *A* and *B* are studied. This work has been influenced by the work of Bruce A. Barnes in [4].

The results obtained are applied to show that the α -Fredholm spectrum of T, A and B form ([10]) a "love knot", namely each is a subset of union of the other two. Also, we make a similar observation about the continuity of the α -Fredholm spectrum $\sigma_{\alpha} : a \to \sigma_{\alpha}(a)$, from B(Y) to the collection of all non-empty compact subsets of \mathbb{C} , for each $a \in \{T, A, B\}$ and each $Y \in \{H, W, W^{\perp}\}$.

2. Preliminary results

The goal of this section consists in establishing some preliminary results which will be needed in the sequel.

PROPOSITION 2.1. [11, Lemma 2.4]. If H, K are Hilbert spaces and $T \in B(H, K)$ then dim $\overline{R(T)} \leq \dim H$.

PROPOSITION 2.2. Let H, K be Hilbert spaces. If there exists an injective bounded linear operator $T : H \to K$ then dim $H \leq \dim K$.

Proof. Let $\{v_j\}_{j\in J}$ be an orthonormal basis for K. Observe that if $\langle x, T^*v_j \rangle = 0$ for all $j \in J$, then x = 0. Indeed, suppose that $x \neq 0$, then since T is injective, $Tx \neq 0$. Thus there exists $j \in J$ such that $\langle Tx, v_j \rangle \neq 0$ and hence $\langle x, T^*v_j \rangle \neq 0$ which is a contradiction. Consequently, $\{T^*v_j\}_{j\in J}$ is a complete system in H. This implies that $H = \overline{\text{span}(\{T^*v_j\}_{j\in J})}$. On the other hand, $R(T^*) = \text{span}(\{T^*v_j\}_{j\in J})$, thus by Proposition 2.1, dim $H = \dim \overline{\text{span}(\{T^*v_j\}_{j\in J})} = \dim \overline{R(T^*)} \leq \dim K$. \Box PROPOSITION 2.3. If L and Y are closed subspaces of H such that $H = L \oplus^{\perp} Y$ then dim $L^{\perp} = \dim Y$.

Proof. For each $l \in L^{\perp}$, there exist unique $s_l \in L$ and $t_l \in Y$ such that $l = s_l + t_l$. Define the linear operator $U: L^{\perp} \to Y$ as $U(l) = t_l$. Since $L \perp Y$ it follows that $||U(l)||^2 = ||t_l||^2 \leq ||s_l||^2 + ||t_l||^2 = ||l||^2$, therefore U is bounded. Let $l_1, l_2 \in L^{\perp}$ such that $U(l_1) = U(l_2)$, then $l_1 - s_{l_1} = l_2 - s_{l_2}$ and so $l_1 - l_2 = s_{l_2} - s_{l_1} \in L \cap L^{\perp}$, hence $l_1 = l_2$. Now, let $y \in Y$ then there exist unique $u_y \in L$ and $w_y \in L^{\perp}$ such that $y = u_y + w_y$. This implies that $0 \oplus y = y = u_y + w_y = (u_y + s_{w_y}) \oplus t_{w_y}$ and hence $y = t_{w_y}$. Thus $U(w_y) = t_{w_y} = y$. Consequently U is bijective.

From Proposition 2.1, $\dim Y = \dim \overline{U(L^{\perp})} \leq \dim L^{\perp}$. And by Proposition 2.2, $\dim L^{\perp} \leq \dim Y$. \Box

PROPOSITION 2.4. If E, F, Y are closed subspaces of H such that E, F are contained in Y then

$$\dim[(E \cap F)^{\perp} \cap F] \leqslant \dim(Y \cap E^{\perp}).$$

Proof. Since $E = (E^{\perp} \cap Y)^{\perp} \cap Y$, it follows that

$$\begin{split} (E \cap F)^{\perp} \cap F &= [((E^{\perp} \cap Y)^{\perp} \cap Y) \cap F]^{\perp} \cap F = [(E^{\perp} \cap Y)^{\perp} \cap F]^{\perp} \cap F \\ &= [E^{\perp} \cap Y + F^{\perp}]^{\perp \perp} \cap F = \overline{E^{\perp} \cap Y + F^{\perp}} \cap F^{\perp \perp}. \end{split}$$

Moreover, since $F^{\perp} \subseteq F^{\perp} + E^{\perp} \cap Y$, from [8, Lemma 2.2] we obtain that

$$\overline{E^{\perp} \cap Y + F^{\perp}} \cap F^{\perp \perp} = \overline{[E^{\perp} \cap Y + F^{\perp}] \cap F^{\perp \perp}}.$$

Consequently,

$$(E \cap F)^{\perp} \cap F = \overline{[E^{\perp} \cap Y + F^{\perp}] \cap F}.$$
(2.1)

On the other hand, observe that

 $H=F\oplus F^{\perp}$

and

$$F = (E \cap F) \oplus [(E \cap F)^{\perp} \cap F].$$

This implies that for each $z \in Y \cap E^{\perp}$, there exist unique $u_z \in E \cap F$, $v_z \in (E \cap F)^{\perp} \cap F$ and $w_z \in F^{\perp}$ such that $z = u_z \oplus v_z \oplus w_z$. Define $S: Y \cap E^{\perp} \to (E \cap F)^{\perp} \cap F$ as $S(z) = v_z$. Clearly *S* is a bounded linear operator. Let $f \in [E^{\perp} \cap Y + F^{\perp}] \cap F$, then by (2.1), $f \in (E \cap F)^{\perp} \cap F$, also there exist $e^* \in E^{\perp} \cap Y$ and $w^* \in F^{\perp}$ such that $f = e^* + w^*$. Therefore $e^* = 0 \oplus f \oplus (-w^*) \in [E \cap F] \oplus [(E \cap F)^{\perp} \cap F] \oplus F^{\perp}$ and so $S(e^*) = f$. Consequently, $[E^{\perp} \cap Y + F^{\perp}] \cap F \subseteq R(S)$. Thus by (2.1),

$$\overline{R(S)} = (E \cap F)^{\perp} \cap F.$$

Finally, by Proposition 2.1, $\dim[(E \cap F)^{\perp} \cap F] = \dim \overline{R(S)} \leq \dim Y \cap E^{\perp}$.

It is well known that if $T \in B(H)$ and $S \in B(H)$ are α -Fredholm operators then *ST* is an α -Fredholm operator, see [3, Lemma 3.1]. The following theorem shows a similar result for upper and lower semi α -Fredholm operators.

THEOREM 2.5. Let α be a cardinal number such that $\aleph_0 \leq \alpha \leq h$. For every *S*,*T* operators in *B*(*H*) the following statements hold:

- (1) if $T \in \Phi^+_{\alpha}(H)$ and $S \in \Phi^+_{\alpha}(H)$, then $TS \in \Phi^+_{\alpha}(H)$;
- (2) if $T \in \Phi_{\alpha}^{-}(H)$ and $S \in \Phi_{\alpha}^{-}(H)$, then $TS \in \Phi_{\alpha}^{-}(H)$;
- (3) if $ST \in \Phi^+_{\alpha}(H)$, then $T \in \Phi^+_{\alpha}(H)$;
- (4) if $ST \in \Phi_{\alpha}^{-}(H)$, then $S \in \Phi_{\alpha}^{-}(H)$.

Proof. We only prove (1) and (4).

By [8, Theorem 2.6], the operators *T*,*S* are left invertible modulo *I*_α, hence there exist *U*, *V* ∈ *B*(*H*) such that (*U* + *I*_α)(*T* + *I*_α) = *I* + *I*_α and (*V* + *I*_α)(*S* + *I*_α) = *I* + *I*_α. This implies that *UT* − *I*, *VS* − *I* ∈ *I*_α. Now, since *I*_α is a two-sided ideal of *B*(*H*), it follows that *VUTS* − *VS* ∈ *I*_α. Thus

$$[VUTS - I - (VS - I)] + (VS - I) \in \mathscr{I}_{\alpha},$$

hence $VUTS - I \in \mathscr{I}_{\alpha}$, i.e.,

$$(VU + \mathscr{I}_{\alpha})(TS + \mathscr{I}_{\alpha}) = I + \mathscr{I}_{\alpha}.$$

Therefore, by [8, Theorem 2.6], $TS \in \Phi^+_{\alpha}(H)$.

(4) Since ST ∈ Φ_α⁻(H), by [9, Theorem 4], it follows that ST is right invertible modulo 𝔅_α, i.e., there exists U ∈ B(H) such that (ST + 𝔅_α)(U + 𝔅_α) = I + 𝔅_α. Therefore (S + 𝔅_α)(TU + 𝔅_α) = I + 𝔅_α i.e. S is right invertible modulo 𝔅_α. Thus, again by [9, Theorem 4], S ∈ Φ_α⁻(H). □

PROPOSITION 2.6. Let α be a cardinal number such that $\aleph_0 \leq \alpha \leq h$. For every operator $T \in B(H)$ the following assertions hold:

- (1) $T \in \Phi^+_{\alpha}(H)$ if and only if $T^* \in \Phi^-_{\alpha}(H)$;
- (2) $T \in \Phi_{\alpha}^{-}(H)$ if and only if $T^* \in \Phi_{\alpha}^{+}(H)$.

Proof. By [9, Theorem 2], R(T) is α -closed if and only if $R(T^*)$ is α -closed. Thus the conclusion of the proposition holds, because $n(T) = \dim N(T) = \dim R(T^*)^{\perp} = d(T^*)$ and $d(T) = \dim R(T)^{\perp} = \dim \overline{R(T)}^{\perp} = \dim N(T^*) = n(T^*)$. \Box

In [3, Lemma 2.1] was observed that $\Phi_{\alpha}(H)$ is an open set. We show in the next theorem that $\Phi_{\alpha}^{+}(H)$ and $\Phi_{\alpha}^{-}(H)$ are also open sets.

THEOREM 2.7. Let α be a cardinal number such that $\aleph_0 \leq \alpha \leq h$. Then $\Phi_{\alpha}^+(H)$, $\Phi_{\alpha}^-(H)$ and $\Phi_{\alpha}(H)$ are open sets in B(H).

Proof. Let \mathscr{G}_l the set of all left invertible elements in $B(H)/\mathscr{I}_{\alpha}$. From [6, Theorem], \mathscr{G}_l is an open set in $B(H)/\mathscr{I}_{\alpha}$. Take $T \in \Phi^+_{\alpha}(H)$, then by [8, Theorem 2.6], $T + \mathscr{I}_{\alpha} \in \mathscr{G}_l$. Thus, there exists r > 0 such that if $||U + \mathscr{I}_{\alpha} - (T + \mathscr{I}_{\alpha})|| < r$ then $U + \mathscr{I}_{\alpha} \in \mathscr{G}_l$. Let $S \in B(H)$ such that ||S - T|| < r. Since $||S + \mathscr{I}_{\alpha} - (T + \mathscr{I}_{\alpha})|| \leq ||S - T||$, it follows that $S + \mathscr{I}_{\alpha} \in \mathscr{G}_l$, and so by [8, Theorem 2.6], $S \in \Phi^+_{\alpha}(H)$. The other cases are analogous. \Box

3. α – Fredholm properties of *T* involving its diagonal

Throughout this paper, given a bounded operator $T \in \mathscr{F}_W(H)$ we shall denote by A the restriction $T|_W$, by B the operator $QT|_{W^{\perp}}$ and by C the operator $PT|_{W^{\perp}}$, where P is the projection of H on W and Q is the projection of H on W^{\perp} .

PROPOSITION 3.1. Let α be a cardinal number such that $\aleph_0 \leq \alpha \leq h$. Let $U \in B(W)$, $V \in B(W^{\perp})$ and U_1, V_1 be bounded operators defined on $W \oplus W^{\perp}$ as

$$U_1 = \begin{bmatrix} U & 0 \\ 0 & I \end{bmatrix} \quad and \quad V_1 = \begin{bmatrix} I & 0 \\ 0 & V \end{bmatrix}.$$

Then, the following conditions hold:

- (1) R(U) is α -closed if and only if $R(U_1)$ is α -closed;
- (2) $n(U_1) = n(U)$ and $d(U_1) = d(U)$.

A similar statements hold if we replace U, U_1 by V, V_1 .

Proof.

(1) Suppose that R(U) is α -closed, namely there exists a closed linear subspace Z of W such that $Z \subseteq R(U)$ and $\dim[\overline{R(U) \cap (Z^{\perp} \cap W)}] < \alpha$. We set $E = Z \oplus W^{\perp}$, then E is a closed linear subspace of H such that $E \subseteq R(U_1)$ and $R(U_1) \cap E^{\perp} = R(U_1) \cap (Z \oplus W^{\perp})^{\perp} = R(U_1) \cap Z^{\perp} \cap W = R(U) \cap (Z^{\perp} \cap W)$. Therefore $\dim(\overline{R(U_1) \cap E^{\perp}}) = \dim(\overline{R(U) \cap Z^{\perp} \cap W}) < \alpha$, thus $R(U_1)$ is α -closed.

Now, suppose that $R(U_1)$ is α -closed. Then there exists a closed linear subspace E of H such that $E \subseteq R(U_1)$ and $\dim \overline{R(U_1) \cap E^{\perp}} < \alpha$. Let $D = E \cap \overline{R(U)}$, so D is a closed linear subspace of W and

$$D = E \cap \overline{R(U)} \subseteq R(U_1) \cap W = R(U).$$

By [8, Lemma 2.2], $\overline{R(U) \cap D^{\perp}} = \overline{R(U)} \cap D^{\perp}$. Then by Proposition 2.4,

$$\dim \overline{R(U)} \cap D^{\perp} = \dim [(E \cap \overline{R(U)})^{\perp} \cap \overline{R(U)}] \leq \dim [\overline{R(U_1)} \cap E^{\perp}]$$
$$= \dim \overline{R(U_1)} \cap E^{\perp} < \alpha.$$

(2) It is clear that $n(U_1) = \dim N(U_1) = \dim[N(U) \oplus \{0\}] = \dim N(U) = n(U)$. Moreover, $d(U_1) = \dim R(U_1)^{\perp} = \dim[R(U) \oplus W^{\perp}]^{\perp} = \dim[R(U)^{\perp} \cap W] = d(U)$.

The statements with respect to the operators V and V_1 are proved in a similar way. \Box

REMARK 3.2. As consequence of Proposition 3.1, we have that:

(1)
$$U_1 \in \Phi^-_{\alpha}(H)$$
 if and only if $U \in \Phi^-_{\alpha}(W)$;

(2) $U_1 \in \Phi^+_{\alpha}(H)$ if and only if $U \in \Phi^+_{\alpha}(W)$.

Also,

- (3) $V_1 \in \Phi_{\alpha}^-(H)$ if and only if $V \in \Phi_{\alpha}^-(W^{\perp})$;
- (4) $V_1 \in \Phi^+_{\alpha}(H)$ if and only if $V \in \Phi^+_{\alpha}(W^{\perp})$.

THEOREM 3.3. Let α be a cardinal number such that $\aleph_0 \leq \alpha \leq h$. For every $T \in \mathscr{F}_W(H)$ we have:

- (1) if $A \in \Phi^+_{\alpha}(W)$ and $B \in \Phi^+_{\alpha}(W^{\perp})$, then $T \in \Phi^+_{\alpha}(H)$;
- (2) if $A \in \Phi_{\alpha}^{-}(W)$ and $B \in \Phi_{\alpha}^{-}(W^{\perp})$, then $T \in \Phi_{\alpha}^{-}(H)$;
- (3) if $T \in \Phi^+_{\alpha}(H)$, then $A \in \Phi^+_{\alpha}(W)$;
- (4) if $T \in \Phi_{\alpha}^{-}(H)$, then $B \in \Phi_{\alpha}^{-}(W^{\perp})$.

Proof. We only prove (1) and (3). Let A_1, B_1 and C_1 be bounded operators defined on $W \oplus W^{\perp}$ as

$$A_1 = \begin{bmatrix} A & 0 \\ 0 & I \end{bmatrix}, \quad B_1 = \begin{bmatrix} I & 0 \\ 0 & B \end{bmatrix} \text{ and } C_1 = \begin{bmatrix} I & C \\ 0 & I \end{bmatrix}.$$

Then $T = B_1C_1A_1$ and C_1 is invertible. Assume first that $A \in \Phi_{\alpha}^+(W)$ and $B \in \Phi_{\alpha}^+(W^{\perp})$. From Remark 3.2 (2) and (4), we have $A_1, B_1 \in \Phi_{\alpha}^+(H)$, so by Theorem 2.5 (1), $T = B_1C_1A_1 \in \Phi_{\alpha}^+(H)$.

Now, suppose that $(B_1C_1)A_1 = T \in \Phi^+_{\alpha}(H)$. From Theorem 2.5 (3), we have that $A_1 \in \Phi^+_{\alpha}(H)$ and, this implies by Remark 3.2 (2), that $A \in \Phi^+_{\alpha}(W)$. \Box

As an immediate consequence of parts (1) and (2) of Theorem 3.3 we have the following corollary.

COROLLARY 3.4. Let α be a cardinal number such that $\aleph_0 \leq \alpha \leq h$. For every $T \in \mathscr{F}_W(H)$ we have:

- (1) $\sigma_{\alpha u}(T) \subseteq \sigma_{\alpha u}(A) \cup \sigma_{\alpha u}(B);$
- (2) $\sigma_{\alpha l}(T) \subseteq \sigma_{\alpha l}(A) \cup \sigma_{\alpha l}(B).$

LEMMA 3.5. Let $T \in \mathscr{F}_W(H)$. If there exists a closed linear subspace E of H such that $E \subseteq R(T)$, then

$$d(A) \leq n(B) + \dim[\overline{R(T)} \cap E^{\perp}] + d(T).$$

Proof. Suppose that *E* is a closed linear subspace of *H* such that $E \subseteq R(T)$. From $R(A)^{\perp} \subseteq (\overline{R(A)} \cap E)^{\perp}$, it follows that

$$d(A) = \dim[R(A)^{\perp} \cap W] \leq \dim[(\overline{R(A)} \cap E)^{\perp} \cap W].$$
(3.1)

Consider the decompositions

$$W = (E \cap W) \oplus [(E \cap W)^{\perp} \cap W]$$

and

$$E \cap W = (E \cap \overline{R(A)}) \oplus [(E \cap \overline{R(A)})^{\perp} \cap (E \cap W)]$$

Then

$$W = (E \cap \overline{R(A)}) \oplus \left[[(E \cap \overline{R(A)})^{\perp} \cap (E \cap W)] \oplus [(E \cap W)^{\perp} \cap W] \right],$$

so by Proposition 2.3,

$$\dim[(E \cap \overline{R(A)})^{\perp} \cap W] = \dim[(E \cap \overline{R(A)})^{\perp} \cap (E \cap W)] + \dim[(E \cap W)^{\perp} \cap W].$$
(3.2)

From Proposition 2.4, dim $[(E \cap W)^{\perp} \cap W] \leq \dim(H \cap E^{\perp}) = \dim E^{\perp}$. Moreover, since $\overline{R(T)} = E \oplus [E^{\perp} \cap \overline{R(T)}]$, it follows that $H = \overline{R(T)} \oplus \overline{R(T)^{\perp}} = E \oplus [(\overline{R(T)} \cap E^{\perp}) \oplus R(T)^{\perp}]$. Consequently by Proposition 2.3, dim $E^{\perp} = \dim(\overline{R(T)} \cap E^{\perp}) + \dim R(T)^{\perp} = \dim(\overline{R(T)} \cap E^{\perp}) + \dim(R(T)^{\perp})$.

Therefore

$$\dim[(E \cap W)^{\perp} \cap W] \leq \dim(\overline{R(T)} \cap E^{\perp}) + d(T).$$
(3.3)

We prove that $\dim[(E \cap \overline{R(A)})^{\perp} \cap (E \cap W)] \leq \dim N(B)$. Let

$$Y = N(T)^{\perp} \cap T^{-1}(E).$$
(3.4)

Then, *Y* is a closed linear subspace of *H* and $T|_Y$ is bounded below. Indeed, take $u \in E$, so there exists $x \in H$ such that u = Tx. Consider the representation $x = x_1 \oplus x_2$, where $x_1 \in N(T)$ and $x_2 \in N(T)^{\perp}$, thus $Tx_2 = Tx = u$ which implies that $x_2 \in T^{-1}(E) \cap N(T)^{\perp}(=Y)$ and hence $u \in T(Y)$. This shows that $E \subseteq T(Y)(\subseteq E)$. On the other hand, since $N(T) \cap Y = \{0\}$, it follows that $N(T|_Y) = \{0\}$. Therefore, $T|_Y$ is bounded below.

Then, for each $y \in E \cap W$, there exists an unique $x_y \in Y$ such that $y = Tx_y$. Also, there are unique $w_y \in W$ and $v_y \in W^{\perp}$ such that $x_y = w_y \oplus v_y$. From $[Aw_y + Cv_y] \oplus Bv_y = Tx_y = y \in W$, it follows that $v_y \in N(B)$. Define $U : (E \cap \overline{R(A)})^{\perp} \cap (E \cap W) \rightarrow C$

N(B) as $U(y) = v_y$. This operator is linear and bounded. Indeed, since $T|_Y$ is bounded below, there exists M > 0 such that $||Tx|| \ge M||x||$ for all $x \in Y$. Then

$$||Uy|| = ||v_y|| \le ||w_y + v_y|| = ||x_y|| \le \frac{1}{M} ||Tx_y|| = \frac{1}{M} ||y||.$$

Let $y_1, y_2 \in (E \cap \overline{R(A)})^{\perp} \cap (E \cap W)$ be such that $U(y_1) = U(y_2)$. Then $x_{y_1} - w_{y_1} = v_{y_1} = v_{y_2} = x_{y_2} - w_{y_2}$ which implies that $x_{y_1} - x_{y_2} = w_{y_1} - w_{y_2}$ and hence $y_1 - y_2 = T(x_{y_1} - x_{y_2}) = T(w_{y_1} - w_{y_2}) \in [\overline{R(A)} \cap E] \cap (E \cap \overline{R(A)})^{\perp} = \{0\}$. Thus $y_1 = y_2$, i.e. *U* is injective. Therefore, by Proposition 2.2,

$$\dim[(E \cap \overline{R(A)})^{\perp} \cap (E \cap W)] \leqslant \dim N(B).$$
(3.5)

Consequently, by (3.1), (3.2), (3.3) and (3.5),

$$d(A) \leq n(B) + \dim[\overline{R(T)} \cap E^{\perp}] + d(T).$$

LEMMA 3.6. Let $T \in \mathscr{F}_W(H)$. If there exists a closed linear subspace F of W such that $F \subseteq R(A)$, then

$$n(B) \leq n(T) + \dim[\overline{R(A)} \cap F^{\perp}] + d(A).$$

Proof. Take a closed linear subspace F of W such that $F \subseteq R(A)$. Note that N(B) is contained in the pre-image $T^{-1}(W) = \{h \in H \mid Th \in W\}$, thus

$$\dim N(B) \leqslant \dim T^{-1}(W) \cap W^{\perp}. \tag{3.6}$$

In similar way to (3.4), it follows that A is bounded below on $Y = [N(A)^{\perp} \cap W] \cap A^{-1}(F)$. Let $x \in T^{-1}(W) \cap W^{\perp}$ be arbitrary, then $Tx \in W$ and so there exist unique $f_x \in F(\subseteq R(A))$ and $g_x \in F^{\perp} \cap W$ such that $Tx = f_x \oplus g_x$. Take an unique $y_x \in Y$ such that $f_x = Ty_x$, then $T(x - y_x) = g_x \in F^{\perp} \cap W$. Define $V : T^{-1}(W) \cap W^{\perp} \to T^{-1}(F^{\perp} \cap W)$ as $V(x) = x - y_x$. It is clear that V is a linear operator. In order to prove that V is bounded, consider M > 0 such that $||Ax|| \ge M||x||$ for all $x \in Y$. Then for every $x \in T^{-1}(W) \cap W^{\perp}$,

$$\begin{aligned} \|V(x)\| &= \|x - y_x\| \leqslant \|x\| + \|y_x\| \leqslant \|x\| + \frac{1}{M} \|Ay_x\| = \|x\| + \frac{1}{M} \|f_x\| \\ &\leqslant \|x\| + \frac{1}{M} \|f_x + g_x\| = \|x\| + \frac{1}{M} \|Tx\| \leqslant (1 + \frac{\|T\|}{M}) \|x\|. \end{aligned}$$

Thus *V* is bounded. Moreover *V* is injective, because if $x_1, x_2 \in T^{-1}(W) \cap W^{\perp}$ are such that $V(x_1) = V(x_2)$ then $x_1 - y_{x_1} = x_2 - y_{x_2}$ and so $x_1 - x_2 = y_{x_1} - y_{x_2} \in W^{\perp} \cap W$ i.e. $x_1 = x_2$. Therefore, by Proposition 2.2,

$$\dim T^{-1}(W) \cap W^{\perp} \leqslant \dim T^{-1}(F^{\perp} \cap W).$$
(3.7)

On the other hand, since $N(T) \subseteq T^{-1}(F^{\perp} \cap W)$ it follows that

$$\dim T^{-1}(F^{\perp} \cap W) = \dim N(T) + \dim[N(T)^{\perp} \cap T^{-1}(F^{\perp} \cap W)] \leqslant n(T) + \dim(F^{\perp} \cap W),$$
(3.8)

where the last inequality is because the application $T: N(T)^{\perp} \cap T^{-1}(F^{\perp} \cap W) \to F^{\perp} \cap W$ is bounded and injective. From the equalities

$$W = \overline{R(A)} \oplus [R(A)^{\perp} \cap W]$$

and

$$\overline{R(A)} = F \oplus [F^{\perp} \cap \overline{R(A)}]$$

we obtain that $W = F \oplus [(\overline{R(A)} \cap F^{\perp}) \oplus (R(A)^{\perp} \cap W)]$ and so by Proposition 2.3,

$$\dim[F^{\perp} \cap W] = \dim[\overline{R(A)} \cap F^{\perp}] + d(A).$$
(3.9)

Consequently by (3.6), (3.7), (3.8) and (3.9),

$$n(B) \leq n(T) + \dim[\overline{R(A)} \cap F^{\perp}] + d(A).$$

As an immediate consequence of Lemmas 3.5 and 3.6 we obtain the next theorem.

THEOREM 3.7. Let α be a cardinal number such that $\aleph_0 \leq \alpha \leq h$ and let $T \in \mathscr{F}_W(H)$. The following conditions hold:

- (1) if $T \in \Phi_{\alpha}^{-}(H)$ and $n(B) < \alpha$, then $d(A) < \alpha$;
- (2) if $T \in \Phi^+_{\alpha}(H)$ and $d(A) < \alpha$, then $n(B) < \alpha$.

Proof.

- (1) It is an immediately consequence of Lemma 3.5.
- (2) If $T \in \Phi_{\alpha}^{+}(H)$ then $n(T) < \alpha$, and from Theorem 3.3 (3), $A \in \Phi_{\alpha}^{+}(W)$. Thus there exists a closed linear subspace *F* of *W* such that $F \subseteq R(A)$ and dim $[\overline{R(A) \cap (F^{\perp} \cap W)}] < \alpha$. From [8, Lemma 2.2], $\overline{R(A) \cap (F^{\perp} \cap W)} = \overline{R(A)} \cap (F^{\perp} \cap W)$. Consequently by Lemma 3.6,

$$n(B) \leq n(T) + \dim[\overline{R(A)} \cap F^{\perp}] + d(A) = n(T) + \overline{R(A) \cap (F^{\perp} \cap W)} + d(A) < \alpha. \quad \Box$$

The following corollary is a version of [4, Theorem 8] for α -Fredholm operators.

COROLLARY 3.8. Let $T \in \mathscr{F}_W(H)$ and let α be a cardinal number such that $\aleph_0 \leq \alpha \leq h$. The following statements are equivalent:

- (1) $T \in \Phi_{\alpha}(H)$ and $n(B) < \alpha$;
- (2) $T \in \Phi_{\alpha}(H)$ and $d(A) < \alpha$;
- (3) $A \in \Phi_{\alpha}(W)$ and $B \in \Phi_{\alpha}(W^{\perp})$.

Proof. $(1) \Rightarrow (2)$ It follows from Theorem 3.7 (1).

(2) \Rightarrow (3) From Theorem 3.3 (3) and (4), we have that $A \in \Phi_{\alpha}^{+}(W)$ and $B \in \Phi_{\alpha}^{-}(W^{\perp})$. Since $d(A) < \alpha$, it follows by Theorem 3.7 (2), that $n(B) < \alpha$. Therefore $A \in \Phi_{\alpha}(W)$ and $B \in \Phi_{\alpha}(W^{\perp})$.

(3) ⇒ (1) By Theorem 3.3 (1) and (2), $T \in \Phi_{\alpha}(H)$. Obviously, by hypothesis, $n(B) < \alpha$. □

Of this corollary it follows that the α -Fredholm spectrum of T, A and B form a "love knot".

COROLLARY 3.9. If $T \in \mathscr{F}_W(H)$ then:

- (1) $\sigma_{\alpha}(T) \subseteq \sigma_{\alpha}(A) \cup \sigma_{\alpha}(B);$
- (2) $\sigma_{\alpha}(A) \subseteq \sigma_{\alpha}(T) \cup \sigma_{\alpha}(B);$
- (3) $\sigma_{\alpha}(B) \subseteq \sigma_{\alpha}(T) \cup \sigma_{\alpha}(A)$. Moreover,
- (4) $(\sigma_{\alpha}(A) \cup \sigma_{\alpha}(B)) \setminus \sigma_{\alpha}(T) \subseteq \sigma_{\alpha}(A) \cap \sigma_{\alpha}(B);$
- (5) $(\sigma_{\alpha}(T) \cup \sigma_{\alpha}(B)) \setminus \sigma_{\alpha}(A) \subseteq \sigma_{\alpha}(T) \cap \sigma_{\alpha}(B);$
- (6) $(\sigma_{\alpha}(T) \cup \sigma_{\alpha}(A)) \setminus \sigma_{\alpha}(B) \subseteq \sigma_{\alpha}(T) \cap \sigma_{\alpha}(A).$

THEOREM 3.10. Let $D_1 \in B(W)$, $D_2 \in B(W^{\perp})$ and α be a cardinal number such that $\aleph_0 \leq \alpha \leq h$. If for every $D \in B(W^{\perp}, W)$, M_D is defined on $W \oplus W^{\perp}$ by

$$M_D = \begin{bmatrix} D_1 & D \\ 0 & D_2 \end{bmatrix},$$

then

$$\bigcap_{D\in B(W^{\perp},W)}\sigma_{\alpha}(M_D)\supseteq\sigma_{\alpha u}(D_1)\cup\sigma_{\alpha l}(D_2)\cup\mathscr{W},$$

where $\mathscr{W} = \{\lambda \in \mathbb{C} \mid n(\lambda - D_2) \neq d(\lambda - D_1) \text{ and at least one these cardinals is greater than or equal to } \alpha\}.$

Proof. From Theorem 3.3 (3) and (4), it follows that for every $D \in B(W^{\perp}, W)$,

$$\mathbb{C} \setminus \sigma_{\alpha}(M_D) \subseteq \mathbb{C} \setminus (\sigma_{\alpha u}(D_1) \cup \sigma_{\alpha l}(D_2)).$$

Consequently, $\sigma_{\alpha u}(D_1) \cup \sigma_{\alpha l}(D_2) \subseteq \sigma_{\alpha}(M_D)$ for all $D \in B(W^{\perp}, W)$. Let $\lambda \in \mathcal{W}$ and suppose that $\lambda \notin \sigma_{\alpha}(M_D)$ for some $D \in B(W^{\perp}, W)$. Then $\lambda - M_D \in \Phi_{\alpha}(H)$. This implies that $n(\lambda - M_D) < \alpha$, $d(\lambda - M_D) < \alpha$ and there exists a closed linear subspace E of H such that $E \subseteq R(\lambda - M_D)$ and $\dim \overline{R(\lambda - M_D) \cap E^{\perp}} < \alpha$. Also, by Theorem 3.3 (3), there exists a closed linear subspace F of W such that $F \subseteq R(\lambda - D_1)$ and $\dim \overline{R(\lambda - D_1) \cap (F^{\perp} \cap W)} < \alpha$. Therefore by Lemmas 3.5 and 3.6, we have that

$$d(\lambda - D_1) \leq n(\lambda - D_2) + \dim[R(\lambda - M_D) \cap E^{\perp}] + d(\lambda - M_D)$$

and

$$n(\lambda - D_2) \leq n(\lambda - M_D) + \dim[\overline{R(\lambda - D_1)} \cap (F^{\perp} \cap W)] + d(\lambda - D_1).$$

Consequently,

$$d(\lambda - D_1) \leqslant n(\lambda - D_2) + \alpha \tag{3.10}$$

and

$$n(\lambda - D_2) \leqslant d(\lambda - D_1) + \alpha. \tag{3.11}$$

If $n(\lambda - D_2) \ge \alpha$ and $d(\lambda - D_1) \ge \alpha$ then, by inequalities (3.10) and (3.11), $n(\lambda - D_2) = d(\lambda - D_1)$. This contradicts the fact that $n(\lambda - D_2) \ne d(\lambda - D_1)$. Now, if $n(\lambda - D_2) < \alpha$ then by inequality (3.10), $d(\lambda - D_1) < \alpha$ which is a contradiction, because at least one the cardinals $n(\lambda - D_2)$ or $d(\lambda - D_1)$ is greater than or equal to α . Finally, if $d(\lambda - D_1) < \alpha$ then by inequality (3.11), $n(\lambda - D_2) < \alpha$, again a contradiction. In any case we have a contradiction. Therefore $\lambda \in \sigma_{\alpha}(M_D)$ for all $D \in B(W^{\perp}, W)$. \Box

In similar way to [4, Proposition 7] we have the following theorem for arbitrary dimensions.

THEOREM 3.11. Let $T \in \mathscr{F}_W(H)$, then the following assertions hold:

(1)
$$n(T) \leq n(A) + n(B)$$
; moreover, if $R(A) = R(T) \cap W$, then $n(T) = n(A) + n(B)$;
(2) $d(T) \leq d(A) + d(B)$; moreover, if $\overline{R(A)} = \overline{R(T)} \cap W$, then $d(T) = d(A) + d(B)$.

Proof.

(1) Consider the decomposition

$$N(T) = N(A) \oplus [N(A)^{\perp} \cap N(T)].$$
(3.12)

Let $Y = N(A)^{\perp} \cap N(T)$. For each $y \in Y$, there exist unique $w_y \in W$ and $v_y \in W^{\perp}$ such that $y = w_y \oplus v_y$. Observe that

$$\begin{bmatrix} 0\\0 \end{bmatrix} = Ty = \begin{bmatrix} A & C\\0 & B \end{bmatrix} \begin{bmatrix} w_y\\v_y \end{bmatrix} = \begin{bmatrix} Aw_y + Cv_y\\Bv_y \end{bmatrix},$$

thus $v_y \in N(B)$. Define $U: Y \to N(B)$ by $U(y) = v_y$. It is clear that U is a continuous linear operator. Let $y_1, y_2 \in Y$ be such that $U(y_1) = U(y_2)$, then $v_{y_1} = v_{y_2}$. This implies that $y_1 - y_2 = w_{y_1} - w_{y_2} + v_{y_1} - v_{y_2} = w_{y_1} - w_{y_2}$ and hence $y_1 - y_2 \in W$. Thus $A(y_1 - y_2) = T(y_1 - y_2) = Ty_1 - Ty_2 = 0$. Therefore $y_1 - y_2 \in N(A) \cap N(A)^{\perp} (= \{0\})$, i.e. $y_1 = y_2$, which implies that U is injective. Consequently, by (3.12) and Proposition 2.2,

$$n(T) = n(A) + \dim Y \leq n(A) + n(B).$$

Now, suppose that $R(A) = R(T) \cap W$. Take $z \in N(B)$, then

$$Tz = \begin{bmatrix} A & C \\ 0 & B \end{bmatrix} \begin{bmatrix} 0 \\ z \end{bmatrix} = \begin{bmatrix} Cz \\ Bz \end{bmatrix} = \begin{bmatrix} Cz \\ 0 \end{bmatrix} = Cz \oplus 0 = Cz \in W.$$

Therefore $Tz \in R(T) \cap W(=T(W))$, thus Tz = Tw for some $w \in W$. This implies that $z - w \in N(T)$, and so by (3.12), there exist $x \in N(A)$ and $y \in Y$ such that $z - w = x \oplus y$. Finally, since y = -w - x + z, $-w - x \in W$ and $z \in W^{\perp}$, it follows that U(y) = z, which implies that U is surjective. Consequently, by Proposition 2.1, dim $N(B) = \dim \overline{U(Y)} \leq \dim Y$, and hence

$$n(T) = n(A) + \dim Y \ge \dim N(A) + n(B).$$

(2) From the inclusion $R(T) \subseteq W \oplus R(B)$, it follows that $W^{\perp} \cap R(B)^{\perp} \subseteq R(T)^{\perp}$. Thus,

$$R(T)^{\perp} = (W^{\perp} \cap R(B)^{\perp}) \oplus [(W^{\perp} \cap R(B)^{\perp})^{\perp} \cap R(T)^{\perp}].$$

Moreover, observe that $(W^{\perp} \cap R(B)^{\perp})^{\perp} \cap R(T)^{\perp} = (W + \overline{R(B)}) \cap R(T)^{\perp}$. Therefore

$$d(T) = \dim[W^{\perp} \cap R(B)^{\perp}] + \dim[(W + \overline{R(B)}) \cap R(T)^{\perp}].$$
(3.13)

For each $y \in R(A)^{\perp} \cap W$, there exist unique $r_y \in \overline{R(T)}$ and $s_y \in R(T)^{\perp}$ such that $y = r_y \oplus s_y$. Let us consider the operator *S* defined on $R(A)^{\perp} \cap W$ as $S(y) = s_y$. Clearly *S* is linear and bounded. We prove that

$$\overline{R(S)} = (W + \overline{R(B)}) \cap R(T)^{\perp}.$$

First note that $(W + \overline{R(B)}) \cap R(T)^{\perp} = \overline{W + \overline{R(T)}} \cap R(T)^{\perp}$, and by [8, Lemma 2.2], $\overline{W + \overline{R(T)}} \cap R(T)^{\perp} = (W + \overline{R(T)}) \cap R(T)^{\perp}$. Thus

$$(W + \overline{R(B)}) \cap R(T)^{\perp} = \overline{(W + \overline{R(T)})} \cap R(T)^{\perp}.$$
 (3.14)

Let $y \in R(A)^{\perp} \cap W$, then $S(y) = s_y = y - r_y \in [W + \overline{R(T)}] \cap R(T)^{\perp}$. Therefore, $R(S) \subseteq (W + \overline{R(T)}) \cap R(T)^{\perp}$. On the other hand, let $s \in (W + \overline{R(T)}) \cap R(T)^{\perp}$, then there exist $w \in W$ and $r \in \overline{R(T)}$ such that s = w + r. Also, there exist $u \in \overline{R(A)}$ and $v \in R(A)^{\perp} \cap W$ such that w = u + v. Thus, $v = (-u - r) + s \in \overline{R(T)} \oplus R(T)^{\perp}$ and so S(v) = s. Therefore $(W + \overline{R(T)}) \cap R(T)^{\perp} \subseteq R(S)$, which implies that

$$R(S) = (W + \overline{R(T)}) \cap R(T)^{\perp}$$

Consequently by (3.14), $\overline{R(S)} = \overline{(W + \overline{R(T)})} \cap R(T)^{\perp} = (W + \overline{R(B)}) \cap R(T)^{\perp}$. Thus by Proposition 2.1,

$$\dim[(W + \overline{R(B)}) \cap R(T)^{\perp}] = \dim\overline{R(S)} \leqslant \dim[R(A)^{\perp} \cap W].$$

Therefore by (3.13), $d(T) \leq d(B) + d(A)$.

Now, suppose that $\overline{R(A)} = \overline{R(T)} \cap W$. Let $y_1, y_2 \in R(A)^{\perp} \cap W$ such that $S(y_1) = S(y_2)$. Then $y_1 - y_2 = r_{y_1} - r_{y_2} \in W \cap \overline{R(T)} (= \overline{R(A)})$. So that $y_1 - y_2 \in \overline{R(A)} \cap R(A)^{\perp}$, i.e. $y_1 = y_2$, which proves that *S* is injective. Consequently, by Proposition 2.2,

$$\dim[R(A)^{\perp} \cap W] \leq \dim[(W + \overline{R(B)}) \cap R(T)^{\perp}].$$

Thus by (3.13),

$$d(A) + d(B) \leq \dim[(W + \overline{R(B)}) \cap R(T)^{\perp}] + d(B) = d(T). \quad \Box$$

In the same way that L. A. Coburn defined the Weyl spectrum, B. S. Yadav and S. C. Arora in [14] did it for the α -Weyl spectrum of a weight α , $\aleph_0 < \alpha < h$, for an operator $T \in B(H)$, as

$$\omega_{\alpha}(T) = \bigcap_{K \in \mathscr{I}_{\alpha}} \sigma(T + K).$$
(3.15)

L. Burlando in [5] defined the β -index of an operator $T: H \to H$ for $\aleph_0 \leq \beta \leq h$ as

$$\operatorname{ind}_{\beta}(T) = \begin{cases} n(T) - d(T), & \text{if either } \beta = \aleph_0 \text{ or } \beta > \aleph_0 \text{ and} \\ & \max\{n(T), d(T)\} \ge \beta; \\ 0, & \text{if } \beta > \aleph_0 \text{ and } \max\{n(T), d(T)\} < \beta. \end{cases}$$

With this index S. V. Djordjević and F. Hernández-Díaz in [7] presented a Schechter's manner to introduce α -Weyl operators. An operator $T \in B(H)$ is said α -Weyl operator, for some cardinal α , $\aleph_0 \leq \alpha < h$, if *T* is an α -Fredholm operator with $\operatorname{ind}_{\beta}(T) = 0$, for all cardinals β , $\aleph_0 \leq \beta < \alpha$. They proved, see [7, Theorem 3], that the Weyl spectrum of a weight α may be characterized as the following set

$$\omega_{\alpha}(T) = \{ \lambda \in \mathbb{C} \mid \lambda - T \text{ is not an } \alpha - \text{Weyl operator} \}$$

= $\{ \lambda \in \mathbb{C} \mid \lambda \in \sigma_{\alpha}(T) \text{ or ind}_{\beta}(\lambda - T) \neq 0, \text{ for some } \aleph_0 \leq \beta < \alpha \}.$

Let us now consider the set

$$\mathscr{N}_{W}(H) = \left\{ T \in \mathscr{F}_{W}(H) \mid R(\lambda - A) = R(\lambda - T) \cap W \text{ and} \\ \overline{R(\lambda - A)} = \overline{R(\lambda - T)} \cap W \text{ for all } \lambda \in \mathbb{C} \setminus \{0\} \right\}.$$

THEOREM 3.12. Let α be a cardinal number such that $\aleph_0 \leq \alpha \leq h$. If $T \in \mathcal{N}_W(H)$, then

$$\omega_{\alpha}(T) \subseteq \omega_{\alpha}(A) \cup \omega_{\alpha}(B).$$

Proof. Take $\lambda \notin (\omega_{\alpha}(A) \cup \omega_{\alpha}(B))$, then $\lambda - A$ and $\lambda - B$ are α -Weyl operators, so by [7, Theorem 5], $d(\lambda - A) = n((\lambda - A)^*) = n(\lambda - A) < \alpha$ and $d(\lambda - B) = n((\lambda - B)^*) = n(\lambda - B) < \alpha$. Since $T \in \mathcal{N}_W(H)$, it follows by Theorem 3.11, that

$$n(\lambda - T) = n(\lambda - A) + n(\lambda - B)$$

and

$$d(\lambda - T) = d(\lambda - A) + d(\lambda - B).$$

Therefore $n(\lambda - T) = n(\lambda - A) + n(\lambda - B) = d(\lambda - A) + d(\lambda - B) = d(\lambda - T) = n((\lambda - T)^*)$. On the other hand, $\lambda - A$ and $\lambda - B$ are α -Fredholm operators, hence by Corollary 3.8, $\lambda - T$ is an α -Fredholm operator, consequently by [7, Theorem 5], $\lambda - T$ is an α -Weyl operator. Thus $\lambda \notin \omega_{\alpha}(T)$. \Box

4. Application to spectral v-continuity

Let \mathscr{A} be a complex Banach algebra with identity e. A sequence (a_n) in \mathscr{A} is said to be norm convergent to a (in notation $a_n \to a$), if $||a_n - a|| \to 0$. Recently, M. Ahues in [1] introduced a new mode of convergence on B(X), named v-convergence. This type of convergence can be generalized in the same way to complex unital Banach algebras. Indeed, a sequence (a_n) in \mathscr{A} is said to be v-convergent to a, denoted by $a_n \stackrel{v}{\to} a$, if $(||a_n||)$ is bounded, $||(a_n - a)a|| \to 0$ and $||(a_n - a)a_n|| \to 0$. This convergence is a pseudo-convergence in the sense that it is possible to have $a_n \stackrel{v}{\to} a$ and $a_n \stackrel{v}{\to} b$ but $a \neq b$, see for instance [12, Example 1]. There is a connection between norm convergence and v-convergence as follows: if $a_n \to a$ then $a_n \stackrel{v}{\to} a$, also, if $a_n \stackrel{v}{\to} a$ and a is right invertible then $a_n \to a$. Investigation of the v-continuity of the spectrum on the space B(X) is relatively new, some results on this topic we can find for example in [1], [2], [12] and [13].

A function τ , defined on \mathscr{A} , whose values are non-empty compact subsets of \mathbb{C} is said to be ν -upper (resp. ν -lower) semi-continuous at a, if $a_n \xrightarrow{\nu} a$ implies that $\limsup \tau(a_n) \subseteq \tau(a)$ (resp. $\tau(a) \subseteq \liminf \tau(a_n)$). If τ is both ν -upper and ν -lower semi-continuous at a, then τ is said to be ν -continuous at a.

For $a \in \mathscr{A}$, let $\sigma(a) := \{\lambda \in \mathbb{C} \mid \lambda e - a \text{ is not invertible in } \mathscr{A}\}$, the spectrum of *a*. It is well known that $\sigma(a)$ is a non-empty compact subset of \mathbb{C} and $\sigma(a) \subseteq B(0, ||a||)$. From this it follows the next proposition.

PROPOSITION 4.1. σ is ν -continuous at a if and only if $\sigma(a_n) \rightarrow \sigma(a)$ in the Hausdorff metric for every $a_n \xrightarrow{\nu} a$.

Proceeding exactly as in the proof of [1, Corollary 2.7] we obtain the next result.

THEOREM 4.2. For each $a \in \mathcal{A}$, σ is v-upper semi-continuous at a.

As an immediate consequence of the previous theorem for $\mathscr{A} = B(H)/\mathscr{I}_{\alpha}$ is that the α -Fredholm spectrum, viewed as a function from B(H) into the space of non-empty compact sets, is ν -upper semi-continuous.

COROLLARY 4.3. Let α be a cardinal number such that $\aleph_0 \leq \alpha \leq h$. For each $T \in B(H)$, σ_{α} is v-upper semi-continuous at T.

Proof. Let (T_n) be a sequence in B(H) such that $T_n \xrightarrow{\nu} T$. Consider the natural homomorphism $\pi : H \to B(H)/\mathscr{I}_{\alpha}$ defined by $\pi(T) = T + \mathscr{I}_{\alpha}$. Then $\pi(T_n) \xrightarrow{\nu} \pi(T)$ and so by Theorem 4.2, $\limsup \sigma(\pi(T_n)) \subseteq \sigma(\pi(T))$. On the other hand, for each $n \in \mathbb{N}$, $\sigma_{\alpha}(T_n) = \sigma(\pi(T_n))$, and $\sigma_{\alpha}(T) = \sigma(\pi(T))$. Thus $\limsup \sigma_{\alpha}(T_n) \subseteq \sigma_{\alpha}(T)$. \Box

THEOREM 4.4. Let α be a cardinal number such that $\aleph_0 \leq \alpha \leq h$ and let $T \in \mathscr{F}_W(H)$. Suppose that one of the following conditions holds:

(*i*) $\sigma_{\alpha}(A) \cap \sigma_{\alpha}(B) = \emptyset$;

- (*ii*) $\sigma_{\alpha}(T) \cap \sigma_{\alpha}(A) = \emptyset$;
- (*iii*) $\sigma_{\alpha}(T) \cap \sigma_{\alpha}(B) = \emptyset$.

Then:

- (1) if σ_{α} is v-continuous at A and B, then σ_{α} is v-continuous at T;
- (2) if σ_{α} is v-continuous at T and A, then σ_{α} is v-continuous at B;
- (3) if for each $\{A_n\}$ in B(W) with $A_n \xrightarrow{\nu} A$, $A_n C \to AC$, and if σ_{α} is ν -continuous at T and B, then σ_{α} is ν -continuous at A.

Proof. We suppose that $\sigma_{\alpha}(A) \cap \sigma_{\alpha}(B) = \emptyset$.

(1) Let $\{T_n\}$ be a sequence in $\mathscr{F}_W(H)$ such that $T_n \xrightarrow{v} T$. Each T_n has the following 2×2 upper triangular operator matrix representation: $T_n = \begin{bmatrix} A_n & C_n \\ 0 & B_n \end{bmatrix}$. Since $||A_n|| \le ||T_n||$ and $||B_n|| \le ||T_n||$, it follows that $A_n \xrightarrow{v} A$ and $B_n \xrightarrow{v} B$. Let $\lambda \in \sigma_{\alpha}(T)$, from Corollary 3.9 (1), $\lambda \in \sigma_{\alpha}(A) \cup \sigma_{\alpha}(B)$.

We may suppose without loss of generality that $\lambda \in \sigma_{\alpha}(A)$. Since that σ_{α} is v-lower semi continuous at A, $\lambda \in \liminf \sigma_{\alpha}(A_n)$. Thus there exists a sequence $\{\lambda_n\}$ in \mathbb{C} such that $\lambda_n \to \lambda$ and $\lambda_n \in \sigma_{\alpha}(A_n)$ for all $n \in \mathbb{N}$. Suppose that there exists a subsequence $\{\lambda_{n_k}\}$ of $\{\lambda_n\}$ such that $\lambda_{n_k} \notin \sigma_{\alpha}(T_{n_k})$. Since $\lambda_{n_k} \in [\sigma_{\alpha}(A_{n_k}) \cup \sigma_{\alpha}(B_{n_k})] \setminus \sigma_{\alpha}(T_{n_k})$ it follows by Corollary 3.9 (4) that $\lambda_{n_k} \in \sigma_{\alpha}(A_{n_k}) \cap \sigma_{\alpha}(B_{n_k})$. Therefore $\lambda \in \limsup \sigma_{\alpha}(B_n)$ and so, by v-upper semi continuity of σ_{α} at B, $\lambda \in \sigma_{\alpha}(B)$, which implies that $\lambda \in \sigma_{\alpha}(A) \cap \sigma_{\alpha}(B)$, a contradiction. Consequently, there exists a natural number n_0 such that for every $n \ge n_0$, $\lambda_n \in \sigma_{\alpha}(T_n)$, thus $\lambda \in \liminf \sigma_{\alpha}(T_n)$.

- (2) Let $\{B_n\}$ be a sequence in $B(W^{\perp})$ such that $B_n \xrightarrow{v} B$. Consider the sequence $\{T_n\}$ where each operator is defined by $T_n = \begin{bmatrix} A & C \\ 0 & B_n \end{bmatrix}$. It is clear that $\{T_n\}$ is a sequence in $\mathscr{F}_W(H)$, moreover, observe that $\|(T_n T)T\| = \|(B_n B)B\|$, $\|(T_n T)T_n\| = \|(B_n B)B_n\|$ and $\|T_n\| \leq [\max\{2\max\{\|A\|^2, \|C\|^2\}, \|B_n\|^2\}]^{1/2}$. Thus $T_n \xrightarrow{v} T$. Let $\lambda \in \sigma_{\alpha}(B)$, then by Corollary 3.9 (3), $\lambda \in \sigma_{\alpha}(T)$ and so $\lambda \in \liminf \sigma_{\alpha}(T_n)$, on the other hand, $\liminf \sigma_{\alpha}(T_n) \subseteq \liminf [\sigma_{\alpha}(A) \cup \sigma_{\alpha}(B_n)] \subseteq \sigma_{\alpha}(A) \cup [\liminf \sigma_{\alpha}(B_n)]$, hence $\lambda \in \liminf \sigma_{\alpha}(B_n)$.
- (3) Let $\{A_n\}$ be a sequence in B(W) such that $A_n \xrightarrow{v} A$. By hypothesis, $A_n C \to AC$. Consider $T_n = \begin{bmatrix} A_n & C \\ 0 & B \end{bmatrix}$, $n \in \mathbb{N}$. Then

$$||(T_n - T)T|| = [2\max\{||(A_n - A)A||^2, ||(A_n - A)C||^2\}]^{1/2}$$

and

$$||(T_n - T)T_n|| = [2\max\{||(A_n - A)A_n||^2, ||(A_n - A)C||^2\}]^{1/2}.$$

Therefore $T_n \xrightarrow{v} T$, thus

$$\sigma_{\alpha}(A) \subseteq \sigma_{\alpha}(T) \subseteq \liminf \sigma_{\alpha}(T_n) \subseteq [\liminf \sigma_{\alpha}(A_n)] \cup \sigma_{\alpha}(B).$$

Consequently, $\sigma_{\alpha}(A) \subseteq \liminf \sigma_{\alpha}(A_n)$. \Box

Acknowledgement. The first author was supported by CONACYT.

REFERENCES

- M. AHUES, A. LARGILLIER AND B. V. LIMAYE, Spectral computations for bounded operators, Chapman & Hall/CRC, Boca Raton, 2001.
- [2] A. AMMAR, Some properties of the Wolf and Weyl essential spectra of a sequence of linear operators v - convergent, Indagationes Mathematicae, 28, 2, 2017, 424–435.
- [3] S. C. ARORA AND P. DHARMARHA, On weighted Weyl spectrum. II, Bull. Korean Math. Soc., 43, 4, 2006, 715–722.
- [4] B. A. BARNES, Spectral and Fredholm theory involving the diagonal of a bounded linear operator, Acta Sci. Math. (Szeged), 73, (1-2), 2007, 237–250.
- [5] L. BURLANDO, Approximation by semi-Fredholm and semi-α-Fredholm operators in Hilbert spaces of arbitrary dimension, Acta Sci. Math. (Szeged), 65, (1-2), 1999, 217–275.
- [6] S. R. CARADUS, W. E. PFAFFENBERGER AND B. YOOD, Calkin algebras and algebras of operators on Banach spaces, Lect. Notes Pure Appl. Math., vol. 9, Marcel Dekker, Inc., New York, 1974.
- [7] S. V. DJORDJEVIĆ AND F. HERNÁNDEZ-DÍAZ, On α-Weyl operators, Advances in Pure Mathematics, 6, (3), 2016, 138–143.
- [8] G. EDGAR, J. ERNEST AND S. G. LEE, Weighing operator spectra, Indiana Univ. Math. J., 21, 1, 1971, 61–80.
- [9] J. ERNEST, Operators with α-closed range, Tôhoku Math. J., 24, 1, 1972, 45–49.
- [10] R. HARTE, Exactness, invertibility and the love knot, Filomat, 29, 10, 2015, 2347-2353.
- [11] E. LUFT, The two-sided closed ideals of the algebra of bounded linear operators of a Hilbert space, Czechoslovak Math, 18, 4, 1968, 595–605.
- [12] S. SÁNCHEZ-PERALES AND S. V. DJORDJEVIĆ, Spectral continuity using v-convergence, J. Math. Anal. Appl., 433, 1, 2016, 405–415.
- [13] S. SÁNCHEZ-PERALES AND S. V. DJORDJEVIĆ, Spectral continuity relative to invariant subspaces, Complex Anal. Oper. Theory, 11, 4, 2017, 927–941.
- [14] B. S. YADAV AND S. C. ARORA, A generalization of Weyl's spectrum, Glas. Mat. Ser. III, 15, 35, 1980, 315–419.

(Received May 31, 2017)

S. Sánchez-Perales Instituto de Física y Matemáticas Universidad Tecnológica de la Mixteca Km. 2.5 Carretera a Acatlima, 69000 Oaxaca, Mexico e-mail: es21254@yahoo.com.mx

S. Palafox

Instituto de Física y Matemáticas Universidad Tecnológica de la Mixteca Km. 2.5 Carretera a Acatlima, 69000 Oaxaca, Mexico e-mail: sergiopalafoxd@gmail.com

S. V. Djordjević Facultad de Ciencias Físico-Matemáticas Benemérita Universidad Autónoma de Puebla Río Verde y Av. San Claudio, San Manuel, Puebla Pue. 72570, Mexico e-mail: slavdj@fcfm.buap.mx

Operators and Matrices www.ele-math.com oam@ele-math.com