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α−FREDHOLM OPERATORS RELATIVE TO INVARIANT SUBSPACES

S. SÁNCHEZ-PERALES ∗ , S. PALAFOX AND S. V. DJORDJEVIĆ

(Communicated by R. Curto)

Abstract. Let T be a bounded linear operator on a Hilbert space H and let W be a closed
T− invariant subspace of H . Then T has a matrix representation on the space W ⊕W⊥ by

T =
[
A C
0 B

]
. In this paper, the relationships between the α−Fredholm properties of T and

those of the pair of operators A and B are studied.

1. Introduction

Let H be a complex Hilbert space of dimension h > ℵ0 and let α be a cardinal
number such that 1 � α � h . A linear subspace K of H is called α−closed if there is
a closed linear subspace E of H such that E ⊆ K and

dim(K ∩E⊥) < α.

This concept, introduced by G. Edgar et al. in [8], allowed to generalize the defi-
nition of a Fredholm operator. For a bounded linear operator T ∈ B(H) , let N(T ) and
R(T ) the null space and the range, respectively, of the mapping T . Also, let n(T ) =
dimN(T ) and d(T ) = dimR(T )⊥ . If the range R(T ) of T ∈ B(H) is α−closed and
n(T ) < α (respectively, d(T ) < α ), then T is said to be an upper semi α−Fredholm
(respectively, a lower semi α−Fredholm) operator and we denote T ∈ Φ+

α (H) (respec-
tively T ∈ Φ−

α (H)). If T ∈ Φ−
α (H)∩Φ+

α (H) then we say that T is an α−Fredholm
operator (in notation T ∈ Φα (H)). This notion is of interest only when α > ℵ0 , since
ℵ0−Fredholm operators are Fredholm operators.

For each α , ℵ0 � α � h , let Fα denote the two-sided ideal in B(H) of all
bounded linear operators such that dimR(T ) < α and let Iα denote the norm clo-
sure of Fα in B(H) . The closed two-sided ideal Iα of B(H) permits consider the
quotient space B(H)/Iα as a complex unital Banach algebra. The operators which
are left (resp. right) invertible modulo Iα are precisely the upper (resp. lower) semi
α−Fredholm operators. See [8],[9]. This implies that Φ+

α (H) and Φ−
α (H) are open

sets in B(H) for all α � ℵ0 . See, for example, Theorem 2.7.
Corresponding spectra of an operator T ∈ B(H) are defined as:
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the upper semi α−Fredholm spectrum:

σαu(T ) = {λ ∈ C | λ −T �∈ Φ+
α (H)},

the lower semi α−Fredholm spectrum:

σα l(T ) = {λ ∈ C | λ −T �∈ Φ−
α (H)},

the α−Fredholm spectrum:

σα (T ) = {λ ∈ C | λ −T �∈ Φα (H)}.
All of these spectra are non-empty compact subsets of the complex plane.

Let W be a closed subspace of H . We shall use FW (H) to denote the set of all
bounded operators T : H → H for which W is T− invariant. If T ∈ FW (H) then T
has on W ⊕W⊥ the matrix representation

T =
[
A C
0 B

]
,

where A = T |W , B = QT |W⊥ and C = PT |W⊥ ; here P is the projection of H on W and
Q is the projection of H on W⊥ . In the present paper the relationships between the
α−Fredholm properties of T and those of the pair of operators A and B are studied.
This work has been influenced by the work of Bruce A. Barnes in [4].

The results obtained are applied to show that the α−Fredholm spectrum of T ,
A and B form ([10]) a “love knot”, namely each is a subset of union of the other two.
Also, we make a similar observation about the continuity of the α−Fredholm spectrum
σα : a → σα(a) , from B(Y ) to the collection of all non-empty compact subsets of C ,
for each a ∈ {T,A,B} and each Y ∈ {H,W,W⊥} .

2. Preliminary results

The goal of this section consists in establishing some preliminary results which
will be needed in the sequel.

PROPOSITION 2.1. [11, Lemma 2.4]. If H,K are Hilbert spaces and T ∈B(H,K)
then dimR(T ) � dimH .

PROPOSITION 2.2. Let H,K be Hilbert spaces. If there exists an injective bounded
linear operator T : H → K then dimH � dimK .

Proof. Let {v j} j∈J be an orthonormal basis for K . Observe that if 〈x,T ∗v j〉 = 0
for all j ∈ J , then x = 0. Indeed, suppose that x �= 0, then since T is injective, Tx �=
0. Thus there exists j ∈ J such that 〈Tx,v j〉 �= 0 and hence 〈x,T ∗v j〉 �= 0 which is
a contradiction. Consequently, {T ∗v j} j∈J is a complete system in H . This implies
that H = span({T ∗v j} j∈J) . On the other hand, R(T ∗) = span({T ∗v j} j∈J) , thus by
Proposition 2.1, dimH = dimspan({T ∗v j} j∈J) = dimR(T ∗) � dimK. �
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PROPOSITION 2.3. If L and Y are closed subspaces of H such that H = L⊕⊥Y
then dimL⊥ = dimY .

Proof. For each l ∈ L⊥ , there exist unique sl ∈ L and tl ∈ Y such that l = sl +
tl . Define the linear operator U : L⊥ → Y as U(l) = tl . Since L ⊥ Y it follows that
‖U(l)‖2 = ‖tl‖2 � ‖sl‖2 +‖tl‖2 = ‖l‖2 , therefore U is bounded. Let l1, l2 ∈ L⊥ such
that U(l1) = U(l2) , then l1 − sl1 = l2 − sl2 and so l1 − l2 = sl2 − sl1 ∈ L∩L⊥ , hence
l1 = l2 . Now, let y ∈ Y then there exist unique uy ∈ L and wy ∈ L⊥ such that y =
uy +wy . This implies that 0⊕ y = y = uy +wy = (uy + swy)⊕ twy and hence y = twy .
Thus U(wy) = twy = y . Consequently U is bijective.

From Proposition 2.1, dimY = dimU(L⊥) � dimL⊥ . And by Proposition 2.2,
dimL⊥ � dimY . �

PROPOSITION 2.4. If E,F,Y are closed subspaces of H such that E,F are con-
tained in Y then

dim[(E ∩F)⊥ ∩F] � dim(Y ∩E⊥).

Proof. Since E = (E⊥∩Y )⊥∩Y , it follows that

(E ∩F)⊥ ∩F = [((E⊥ ∩Y )⊥ ∩Y )∩F]⊥ ∩F = [(E⊥∩Y )⊥ ∩F]⊥ ∩F

= [E⊥∩Y +F⊥]⊥⊥∩F = E⊥∩Y +F⊥∩F⊥⊥.

Moreover, since F⊥ ⊆ F⊥ +E⊥∩Y , from [8, Lemma 2.2] we obtain that

E⊥∩Y +F⊥ ∩F⊥⊥ = [E⊥∩Y +F⊥]∩F⊥⊥.

Consequently,
(E ∩F)⊥∩F = [E⊥ ∩Y +F⊥]∩F. (2.1)

On the other hand, observe that

H = F ⊕F⊥

and
F = (E ∩F)⊕ [(E∩F)⊥∩F ].

This implies that for each z ∈ Y ∩E⊥ , there exist unique uz ∈ E ∩F , vz ∈ (E ∩
F)⊥ ∩F and wz ∈ F⊥ such that z = uz ⊕ vz ⊕wz . Define S : Y ∩E⊥ → (E ∩F)⊥ ∩F
as S(z) = vz . Clearly S is a bounded linear operator. Let f ∈ [E⊥ ∩Y + F⊥]∩F ,
then by (2.1), f ∈ (E ∩F)⊥ ∩F , also there exist e∗ ∈ E⊥ ∩Y and w∗ ∈ F⊥ such that
f = e∗ +w∗ . Therefore e∗ = 0⊕ f ⊕ (−w∗) ∈ [E ∩F ]⊕ [(E ∩F)⊥ ∩F ]⊕F⊥ and so
S(e∗) = f . Consequently, [E⊥∩Y +F⊥]∩F ⊆ R(S) . Thus by (2.1),

R(S) = (E ∩F)⊥∩F.

Finally, by Proposition 2.1, dim[(E ∩F)⊥ ∩F ] = dimR(S) � dimY ∩E⊥. �
It is well known that if T ∈ B(H) and S ∈ B(H) are α−Fredholm operators then

ST is an α−Fredholm operator, see [3, Lemma 3.1]. The following theorem shows a
similar result for upper and lower semi α−Fredholm operators.



924 S. SÁNCHEZ-PERALES, S. PALAFOX AND S. V. DJORDJEVIĆ

THEOREM 2.5. Let α be a cardinal number such that ℵ0 � α � h. For every
S,T operators in B(H) the following statements hold:

(1) if T ∈ Φ+
α (H) and S ∈ Φ+

α (H) , then TS ∈ Φ+
α (H);

(2) if T ∈ Φ−
α (H) and S ∈ Φ−

α (H) , then TS ∈ Φ−
α (H);

(3) if ST ∈ Φ+
α (H) , then T ∈ Φ+

α (H);

(4) if ST ∈ Φ−
α (H) , then S ∈ Φ−

α (H) .

Proof. We only prove (1) and (4).

(1) By [8, Theorem 2.6], the operators T,S are left invertible modulo Iα , hence
there exist U,V ∈B(H) such that (U +Iα)(T +Iα)= I+Iα and (V +Iα)(S+
Iα ) = I +Iα . This implies that UT − I,VS− I ∈Iα . Now, since Iα is a two-
sided ideal of B(H) , it follows that VUTS−VS ∈ Iα . Thus

[VUTS− I− (VS− I)]+ (VS− I) ∈ Iα ,

hence VUTS− I ∈ Iα , i.e.,

(VU +Iα)(TS+Iα) = I +Iα .

Therefore, by [8, Theorem 2.6], TS ∈ Φ+
α (H) .

(4) Since ST ∈ Φ−
α (H) , by [9, Theorem 4], it follows that ST is right invertible

modulo Fα , i.e., there exists U ∈ B(H) such that (ST +Fα)(U +Fα) = I +
Fα . Therefore (S+Fα)(TU +Fα) = I +Fα i.e. S is right invertible modulo
Fα . Thus, again by [9, Theorem 4], S ∈ Φ−

α (H) . �

PROPOSITION 2.6. Let α be a cardinal number such that ℵ0 � α � h. For every
operator T ∈ B(H) the following assertions hold:

(1) T ∈ Φ+
α (H) if and only if T ∗ ∈ Φ−

α (H);

(2) T ∈ Φ−
α (H) if and only if T ∗ ∈ Φ+

α (H) .

Proof. By [9, Theorem 2], R(T ) is α−closed if and only if R(T ∗) is α−closed.
Thus the conclusion of the proposition holds, because n(T )= dimN(T )= dimR(T ∗)⊥ =

d(T ∗) and d(T ) = dimR(T )⊥ = dimR(T )
⊥

= dimN(T ∗) = n(T ∗) . �
In [3, Lemma 2.1] was observed that Φα (H) is an open set. We show in the next

theorem that Φ+
α (H) and Φ−

α (H) are also open sets.

THEOREM 2.7. Let α be a cardinal number such that ℵ0 � α � h. Then Φ+
α (H) ,

Φ−
α (H) and Φα(H) are open sets in B(H) .
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Proof. Let Gl the set of all left invertible elements in B(H)/Iα . From [6, The-
orem], Gl is an open set in B(H)/Iα . Take T ∈ Φ+

α (H) , then by [8, Theorem 2.6],
T + Iα ∈ Gl . Thus, there exists r > 0 such that if ‖U +Iα − (T + Iα)‖ < r then
U +Iα ∈ Gl . Let S ∈ B(H) such that ‖S−T‖ < r . Since ‖S+Iα − (T +Iα)‖ �
‖S−T‖ , it follows that S +Iα ∈ Gl , and so by [8, Theorem 2.6], S ∈ Φ+

α (H) . The
other cases are analogous. �

3. α−Fredholm properties of T involving its diagonal

Throughout this paper, given a bounded operator T ∈ FW (H) we shall denote by
A the restriction T |W , by B the operator QT |W⊥ and by C the operator PT |W⊥ , where
P is the projection of H on W and Q is the projection of H on W⊥ .

PROPOSITION 3.1. Let α be a cardinal number such that ℵ0 � α � h. Let U ∈
B(W ) , V ∈ B(W⊥) and U1,V1 be bounded operators defined on W ⊕W⊥ as

U1 =
[
U 0
0 I

]
and V1 =

[
I 0
0 V

]
.

Then, the following conditions hold:

(1) R(U) is α−closed if and only if R(U1) is α−closed;

(2) n(U1) = n(U) and d(U1) = d(U) .

A similar statements hold if we replace U,U1 by V,V1 .

Proof.

(1) Suppose that R(U) is α−closed, namely there exists a closed linear subspace
Z of W such that Z ⊆ R(U) and dim[R(U)∩ (Z⊥∩W )] < α . We set E = Z ⊕
W⊥ , then E is a closed linear subspace of H such that E ⊆ R(U1) and R(U1)∩
E⊥ = R(U1)∩ (Z ⊕W⊥)⊥ = R(U1)∩ Z⊥ ∩W = R(U)∩ (Z⊥ ∩W ) . Therefore
dim(R(U1)∩E⊥) = dim(R(U)∩Z⊥∩W ) < α , thus R(U1) is α−closed.

Now, suppose that R(U1) is α−closed. Then there exists a closed linear sub-
space E of H such that E ⊆R(U1) and dimR(U1)∩E⊥ < α . Let D = E∩R(U) ,
so D is a closed linear subspace of W and

D = E ∩R(U) ⊆ R(U1)∩W = R(U).

By [8, Lemma 2.2], R(U)∩D⊥ = R(U)∩D⊥ . Then by Proposition 2.4,

dimR(U)∩D⊥ = dim[(E ∩R(U))⊥ ∩R(U)] � dim[R(U1)∩E⊥]

= dimR(U1)∩E⊥ < α.
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(2) It is clear that n(U1) = dimN(U1) = dim[N(U)⊕ {0}] = dimN(U) = n(U) .
Moreover, d(U1)= dimR(U1)⊥ = dim[R(U)⊕W⊥]⊥ = dim[R(U)⊥∩W ] = d(U) .

The statements with respect to the operators V and V1 are proved in a similar
way. �

REMARK 3.2. As consequence of Proposition 3.1, we have that:

(1) U1 ∈ Φ−
α (H) if and only if U ∈ Φ−

α (W );

(2) U1 ∈ Φ+
α (H) if and only if U ∈ Φ+

α (W ) .

Also,

(3) V1 ∈ Φ−
α (H) if and only if V ∈ Φ−

α (W⊥);

(4) V1 ∈ Φ+
α (H) if and only if V ∈ Φ+

α (W⊥) .

THEOREM 3.3. Let α be a cardinal number such that ℵ0 � α � h. For every
T ∈ FW (H) we have:

(1) if A ∈ Φ+
α (W ) and B ∈ Φ+

α (W⊥) , then T ∈ Φ+
α (H);

(2) if A ∈ Φ−
α (W ) and B ∈ Φ−

α (W⊥) , then T ∈ Φ−
α (H);

(3) if T ∈ Φ+
α (H) , then A ∈ Φ+

α (W );

(4) if T ∈ Φ−
α (H) , then B ∈ Φ−

α (W⊥) .

Proof. We only prove (1) and (3). Let A1,B1 and C1 be bounded operators defined
on W ⊕W⊥ as

A1 =
[
A 0
0 I

]
, B1 =

[
I 0
0 B

]
and C1 =

[
I C
0 I

]
.

Then T = B1C1A1 and C1 is invertible. Assume first that A ∈ Φ+
α (W ) and B ∈

Φ+
α (W⊥) . From Remark 3.2 (2) and (4), we have A1,B1 ∈ Φ+

α (H) , so by Theorem 2.5
(1), T = B1C1A1 ∈ Φ+

α (H) .
Now, suppose that (B1C1)A1 = T ∈ Φ+

α (H) . From Theorem 2.5 (3), we have that
A1 ∈ Φ+

α (H) and, this implies by Remark 3.2 (2), that A ∈ Φ+
α (W ) . �

As an immediate consequence of parts (1) and (2) of Theorem 3.3 we have the
following corollary.

COROLLARY 3.4. Let α be a cardinal number such that ℵ0 � α � h. For every
T ∈ FW (H) we have:

(1) σαu(T ) ⊆ σαu(A)∪σαu(B);

(2) σα l(T ) ⊆ σα l(A)∪σα l(B) .
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LEMMA 3.5. Let T ∈ FW (H) . If there exists a closed linear subspace E of H
such that E ⊆ R(T ) , then

d(A) � n(B)+dim[R(T )∩E⊥]+d(T).

Proof. Suppose that E is a closed linear subspace of H such that E ⊆R(T ) . From
R(A)⊥ ⊆ (R(A)∩E)⊥ , it follows that

d(A) = dim[R(A)⊥∩W ] � dim[(R(A)∩E)⊥ ∩W ]. (3.1)

Consider the decompositions

W = (E ∩W )⊕ [(E ∩W )⊥∩W ]

and
E ∩W = (E ∩R(A))⊕ [(E∩R(A))⊥∩ (E ∩W )].

Then

W = (E ∩R(A))⊕
[
[(E ∩R(A))⊥∩ (E ∩W )]⊕ [(E∩W )⊥ ∩W ]

]
,

so by Proposition 2.3,

dim[(E ∩R(A))⊥ ∩W ] = dim[(E ∩R(A))⊥ ∩ (E ∩W )]+dim[(E ∩W )⊥ ∩W ]. (3.2)

From Proposition 2.4, dim[(E ∩W )⊥∩W ] � dim(H ∩E⊥) = dimE⊥ . Moreover,
since R(T )= E⊕ [E⊥∩R(T )] , it follows that H =R(T )⊕R(T )⊥ =E⊕ [(R(T )∩E⊥)⊕
R(T )⊥] . Consequently by Proposition 2.3, dimE⊥ = dim(R(T )∩E⊥)+dimR(T )⊥ =
dim(R(T )∩E⊥)+d(T ) .

Therefore

dim[(E ∩W )⊥∩W ] � dim(R(T )∩E⊥)+d(T ). (3.3)

We prove that dim[(E ∩R(A))⊥ ∩ (E ∩W )] � dimN(B) . Let

Y = N(T )⊥∩T−1(E). (3.4)

Then, Y is a closed linear subspace of H and T |Y is bounded below. Indeed, take
u ∈ E , so there exists x ∈ H such that u = Tx . Consider the representation x = x1 ⊕
x2 , where x1 ∈ N(T ) and x2 ∈ N(T )⊥ , thus Tx2 = Tx = u which implies that x2 ∈
T−1(E)∩N(T )⊥(=Y ) and hence u ∈ T (Y ) . This shows that E ⊆ T (Y )(⊆ E) . On the
other hand, since N(T )∩Y = {0} , it follows that N(T |Y ) = {0} . Therefore, T |Y is
bounded below.

Then, for each y ∈ E ∩W , there exists an unique xy ∈ Y such that y = Txy . Also,
there are unique wy ∈ W and vy ∈ W⊥ such that xy = wy ⊕ vy . From [Awy +Cvy]⊕
Bvy = Txy = y ∈W , it follows that vy ∈ N(B) . Define U : (E ∩R(A))⊥ ∩ (E ∩W ) →
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N(B) as U(y) = vy . This operator is linear and bounded. Indeed, since T |Y is bounded
below, there exists M > 0 such that ‖Tx‖ � M‖x‖ for all x ∈Y . Then

‖Uy‖= ‖vy‖ � ‖wy + vy‖ = ‖xy‖ � 1
M
‖Txy‖ =

1
M
‖y‖.

Let y1,y2 ∈ (E∩R(A))⊥∩(E∩W ) be such that U(y1) =U(y2) . Then xy1 −wy1 =
vy1 = vy2 = xy2 −wy2 which implies that xy1 − xy2 = wy1 −wy2 and hence y1 − y2 =
T (xy1 − xy2) = T (wy1 −wy2) ∈ [R(A)∩E]∩ (E ∩R(A))⊥ = {0} . Thus y1 = y2 , i.e. U
is injective. Therefore, by Proposition 2.2,

dim[(E ∩R(A))⊥ ∩ (E ∩W )] � dimN(B). (3.5)

Consequently, by (3.1), (3.2), (3.3) and (3.5),

d(A) � n(B)+dim[R(T )∩E⊥]+d(T ). �

LEMMA 3.6. Let T ∈ FW (H) . If there exists a closed linear subspace F of W
such that F ⊆ R(A) , then

n(B) � n(T )+dim[R(A)∩F⊥]+d(A).

Proof. Take a closed linear subspace F of W such that F ⊆ R(A) . Note that N(B)
is contained in the pre-image T−1(W ) = {h ∈ H | Th ∈W} , thus

dimN(B) � dimT−1(W )∩W⊥. (3.6)

In similar way to (3.4), it follows that A is bounded below on Y = [N(A)⊥ ∩W ]∩
A−1(F) . Let x ∈ T−1(W )∩W⊥ be arbitrary, then Tx ∈W and so there exist unique
fx ∈ F(⊆ R(A)) and gx ∈ F⊥ ∩W such that Tx = fx ⊕ gx . Take an unique yx ∈ Y
such that fx = Tyx , then T (x− yx) = gx ∈ F⊥ ∩W . Define V : T−1(W )∩W⊥ →
T−1(F⊥∩W ) as V (x) = x− yx . It is clear that V is a linear operator. In order to prove
that V is bounded, consider M > 0 such that ‖Ax‖ � M‖x‖ for all x ∈ Y . Then for
every x ∈ T−1(W )∩W⊥ ,

‖V (x)‖ = ‖x− yx‖ � ‖x‖+‖yx‖ � ‖x‖+
1
M
‖Ayx‖ = ‖x‖+

1
M
‖ fx‖

� ‖x‖+
1
M
‖ fx +gx‖ = ‖x‖+

1
M
‖Tx‖ � (1+

‖T‖
M

)‖x‖.

Thus V is bounded. Moreover V is injective, because if x1,x2 ∈ T−1(W )∩W⊥ are
such that V (x1) =V (x2) then x1− yx1 = x2− yx2 and so x1− x2 = yx1 − yx2 ∈W⊥∩W
i.e. x1 = x2 . Therefore, by Proposition 2.2,

dimT−1(W )∩W⊥ � dimT−1(F⊥∩W ). (3.7)

On the other hand, since N(T ) ⊆ T−1(F⊥ ∩W ) it follows that

dimT−1(F⊥ ∩W ) = dimN(T )+dim[N(T )⊥ ∩T−1(F⊥∩W )] � n(T )+dim(F⊥ ∩W ),
(3.8)
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where the last inequality is because the application T : N(T )⊥∩T−1(F⊥∩W )→ F⊥∩
W is bounded and injective. From the equalities

W = R(A)⊕ [R(A)⊥∩W ]

and
R(A) = F ⊕ [F⊥∩R(A)]

we obtain that W = F ⊕ [(R(A)∩F⊥)⊕ (R(A)⊥∩W )] and so by Proposition 2.3,

dim[F⊥ ∩W ] = dim[R(A)∩F⊥]+d(A). (3.9)

Consequently by (3.6), (3.7), (3.8) and (3.9),

n(B) � n(T )+dim[R(A)∩F⊥]+d(A). �

As an immediate consequence of Lemmas 3.5 and 3.6 we obtain the next theorem.

THEOREM 3.7. Let α be a cardinal number such that ℵ0 � α � h and let T ∈
FW (H) . The following conditions hold:

(1) if T ∈ Φ−
α (H) and n(B) < α , then d(A) < α ;

(2) if T ∈ Φ+
α (H) and d(A) < α , then n(B) < α .

Proof.

(1) It is an immediately consequence of Lemma 3.5.

(2) If T ∈ Φ+
α (H) then n(T ) < α , and from Theorem 3.3 (3), A ∈ Φ+

α (W ) . Thus
there exists a closed linear subspace F of W such that F ⊆ R(A) and dim
[R(A)∩ (F⊥ ∩W )] < α . From [8, Lemma 2.2], R(A)∩ (F⊥∩W )= R(A)∩(F⊥∩
W ) . Consequently by Lemma 3.6,

n(B)�n(T )+dim[R(A)∩F⊥]+d(A)=n(T )+R(A)∩ (F⊥∩W )+d(A)<α. �

The following corollary is a version of [4, Theorem 8] for α−Fredholm operators.

COROLLARY 3.8. Let T ∈ FW (H) and let α be a cardinal number such that
ℵ0 � α � h. The following statements are equivalent:

(1) T ∈ Φα(H) and n(B) < α ;

(2) T ∈ Φα(H) and d(A) < α ;

(3) A ∈ Φα(W ) and B ∈ Φα(W⊥) .
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Proof. (1) ⇒ (2) It follows from Theorem 3.7 (1).
(2) ⇒ (3) From Theorem 3.3 (3) and (4), we have that A ∈ Φ+

α (W ) and B ∈ Φ−
α (W⊥) .

Since d(A) < α , it follows by Theorem 3.7 (2), that n(B) < α . Therefore A ∈ Φα(W )
and B ∈ Φα(W⊥) .
(3) ⇒ (1) By Theorem 3.3 (1) and (2), T ∈ Φα (H) . Obviously, by hypothesis, n(B) <
α . �

Of this corollary it follows that the α−Fredholm spectrum of T , A and B form a
“love knot”.

COROLLARY 3.9. If T ∈ FW (H) then:

(1) σα(T ) ⊆ σα(A)∪σα(B);

(2) σα(A) ⊆ σα(T )∪σα(B);

(3) σα(B) ⊆ σα(T )∪σα(A) .

Moreover,

(4) (σα(A)∪σα(B))\σα(T ) ⊆ σα(A)∩σα(B);

(5) (σα(T )∪σα(B))\σα(A) ⊆ σα(T )∩σα(B);

(6) (σα(T )∪σα(A))\σα(B) ⊆ σα(T )∩σα(A) .

THEOREM 3.10. Let D1 ∈B(W ) , D2 ∈B(W⊥) and α be a cardinal number such
that ℵ0 � α � h. If for every D ∈ B(W⊥,W ) , MD is defined on W ⊕W⊥ by

MD =
[
D1 D
0 D2

]
,

then ⋂
D∈B(W⊥,W )

σα(MD) ⊇ σαu(D1)∪σα l(D2)∪W ,

where W = {λ ∈C | n(λ −D2) �= d(λ −D1) and at least one these cardinals is greater
than or equal to α} .

Proof. From Theorem 3.3 (3) and (4), it follows that for every D ∈ B(W⊥,W ) ,

C\σα(MD) ⊆ C\ (σαu(D1)∪σα l(D2)).

Consequently, σαu(D1)∪σα l(D2))⊆ σα(MD) for all D ∈ B(W⊥,W ) . Let λ ∈W and
suppose that λ �∈ σα(MD) for some D ∈ B(W⊥,W ) . Then λ −MD ∈ Φα(H) . This
implies that n(λ −MD) < α , d(λ −MD) < α and there exists a closed linear subspace
E of H such that E ⊆ R(λ −MD) and dimR(λ −MD)∩E⊥ < α . Also, by Theorem
3.3 (3), there exists a closed linear subspace F of W such that F ⊆ R(λ −D1) and
dimR(λ −D1)∩ (F⊥∩W ) < α . Therefore by Lemmas 3.5 and 3.6, we have that

d(λ −D1) � n(λ −D2)+dim[R(λ −MD)∩E⊥]+d(λ −MD)
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and
n(λ −D2) � n(λ −MD)+dim[R(λ −D1)∩ (F⊥∩W )]+d(λ −D1).

Consequently,
d(λ −D1) � n(λ −D2)+ α (3.10)

and
n(λ −D2) � d(λ −D1)+ α. (3.11)

If n(λ −D2) � α and d(λ −D1) � α then, by inequalities (3.10) and (3.11),
n(λ −D2) = d(λ −D1) . This contradicts the fact that n(λ −D2) �= d(λ −D1) . Now,
if n(λ −D2) < α then by inequality (3.10), d(λ −D1) < α which is a contradiction,
because at least one the cardinals n(λ −D2) or d(λ −D1) is greater than or equal
to α . Finally, if d(λ −D1) < α then by inequality (3.11), n(λ −D2) < α , again a
contradiction. In any case we have a contradiction. Therefore λ ∈ σα(MD) for all
D ∈ B(W⊥,W ) . �

In similar way to [4, Proposition 7] we have the following theorem for arbitrary
dimensions.

THEOREM 3.11. Let T ∈ FW (H) , then the following assertions hold:

(1) n(T ) � n(A)+n(B); moreover, if R(A) = R(T )∩W , then n(T ) = n(A)+n(B);

(2) d(T ) � d(A)+d(B); moreover, if R(A) = R(T )∩W , then d(T ) = d(A)+d(B) .

Proof.

(1) Consider the decomposition

N(T ) = N(A)⊕ [N(A)⊥∩N(T )]. (3.12)

Let Y = N(A)⊥∩N(T ) . For each y∈Y , there exist unique wy ∈W and vy ∈W⊥
such that y = wy ⊕ vy . Observe that

[
0
0

]
= Ty =

[
A C
0 B

][
wy

vy

]
=

[
Awy +Cvy

Bvy

]
,

thus vy ∈ N(B) . Define U : Y → N(B) by U(y) = vy . It is clear that U is a
continuous linear operator. Let y1,y2 ∈ Y be such that U(y1) = U(y2) , then
vy1 = vy2 . This implies that y1 − y2 = wy1 −wy2 + vy1 − vy2 = wy1 −wy2 and
hence y1 − y2 ∈W . Thus A(y1 − y2) = T (y1 − y2) = Ty1 −Ty2 = 0. Therefore
y1 − y2 ∈ N(A)∩N(A)⊥(= {0}) , i.e. y1 = y2 , which implies that U is injective.
Consequently, by (3.12) and Proposition 2.2,

n(T ) = n(A)+dimY � n(A)+n(B).

Now, suppose that R(A) = R(T )∩W . Take z ∈ N(B) , then

Tz =
[
A C
0 B

][
0
z

]
=

[
Cz
Bz

]
=

[
Cz
0

]
= Cz⊕0 = Cz ∈W.
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Therefore Tz ∈ R(T )∩W (= T (W )) , thus Tz = Tw for some w ∈W . This im-
plies that z−w ∈ N(T ) , and so by (3.12), there exist x ∈ N(A) and y ∈ Y such
that z−w = x⊕ y . Finally, since y = −w− x + z , −w− x ∈ W and z ∈ W⊥ ,
it follows that U(y) = z , which implies that U is surjective. Consequently, by
Proposition 2.1, dimN(B) = dimU(Y ) � dimY , and hence

n(T ) = n(A)+dimY � dimN(A)+n(B).

(2) From the inclusion R(T ) ⊆ W ⊕ R(B) , it follows that W⊥ ∩R(B)⊥ ⊆ R(T )⊥ .
Thus,

R(T )⊥ = (W⊥∩R(B)⊥)⊕ [(W⊥∩R(B)⊥)⊥ ∩R(T )⊥].

Moreover, observe that (W⊥∩R(B)⊥)⊥∩R(T )⊥ = (W +R(B))∩R(T )⊥. There-
fore

d(T ) = dim[W⊥∩R(B)⊥]+dim[(W +R(B))∩R(T )⊥]. (3.13)

For each y ∈ R(A)⊥∩W , there exist unique ry ∈ R(T ) and sy ∈ R(T )⊥ such that
y = ry ⊕ sy . Let us consider the operator S defined on R(A)⊥∩W as S(y) = sy .
Clearly S is linear and bounded. We prove that

R(S) = (W +R(B))∩R(T )⊥.

First note that (W + R(B))∩R(T )⊥ = W +R(T)∩R(T )⊥, and by [8, Lemma

2.2], W +R(T )∩R(T )⊥ = (W +R(T))∩R(T )⊥. Thus

(W +R(B))∩R(T )⊥ = (W +R(T ))∩R(T )⊥. (3.14)

Let y ∈ R(A)⊥ ∩W , then S(y) = sy = y− ry ∈ [W +R(T )]∩R(T )⊥ . Therefore,
R(S) ⊆ (W +R(T ))∩R(T )⊥ . On the other hand, let s ∈ (W +R(T ))∩R(T )⊥ ,
then there exist w ∈ W and r ∈ R(T ) such that s = w + r . Also, there exist
u ∈ R(A) and v ∈ R(A)⊥ ∩W such that w = u+ v . Thus, v = (−u− r)+ s ∈
R(T )⊕R(T )⊥ and so S(v) = s . Therefore (W +R(T ))∩R(T )⊥ ⊆ R(S) , which
implies that

R(S) = (W +R(T ))∩R(T )⊥.

Consequently by (3.14), R(S) = (W +R(T ))∩R(T )⊥ = (W + R(B))∩R(T )⊥ .
Thus by Proposition 2.1,

dim[(W +R(B))∩R(T )⊥] = dimR(S) � dim[R(A)⊥∩W ].

Therefore by (3.13), d(T ) � d(B)+d(A) .

Now, suppose that R(A) = R(T )∩W . Let y1,y2 ∈ R(A)⊥∩W such that S(y1) =
S(y2) . Then y1− y2 = ry1 − ry2 ∈W ∩R(T ) (= R(A)) . So that y1− y2 ∈ R(A)∩
R(A)⊥ , i.e. y1 = y2 , which proves that S is injective. Consequently, by Proposi-
tion 2.2,

dim[R(A)⊥∩W ] � dim[(W +R(B))∩R(T )⊥].

Thus by (3.13),

d(A)+d(B) � dim[(W +R(B))∩R(T )⊥]+d(B) = d(T ). �
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In the same way that L. A. Coburn defined the Weyl spectrum, B. S. Yadav and S.
C. Arora in [14] did it for the α−Weyl spectrum of a weight α , ℵ0 < α < h , for an
operator T ∈ B(H) , as

ωα(T ) = ∩
K∈Iα

σ(T +K). (3.15)

L. Burlando in [5] defined the β− index of an operator T : H →H for ℵ0 � β � h
as

indβ (T ) =

⎧⎪⎨
⎪⎩

n(T )−d(T ), if either β = ℵ0 or β > ℵ0 and

max{n(T ),d(T )} � β ;

0, if β > ℵ0 and max{n(T ),d(T )} < β .

With this index S. V. Djordjević and F. Hernández-Dı́az in [7] presented a
Schechter’s manner to introduce α−Weyl operators. An operator T ∈ B(H) is said
α−Weyl operator, for some cardinal α , ℵ0 � α < h , if T is an α−Fredholm operator
with indβ (T ) = 0, for all cardinals β , ℵ0 � β < α . They proved, see [7, Theorem 3],
that the Weyl spectrum of a weight α may be characterized as the following set

ωα(T ) = {λ ∈ C | λ −T is not an α −Weyl operator}
= {λ ∈ C | λ ∈ σα(T ) or indβ (λ −T ) �= 0, for some ℵ0 � β < α}.

Let us now consider the set

NW (H) =
{

T ∈ FW (H) | R(λ −A) = R(λ −T )∩W and

R(λ −A) = R(λ −T )∩W for all λ ∈ C\ {0}
}
.

THEOREM 3.12. Let α be a cardinal number such that ℵ0 � α � h. If T ∈
NW (H) , then

ωα(T ) ⊆ ωα(A)∪ωα(B).

Proof. Take λ �∈ (ωα (A)∪ωα(B)) , then λ −A and λ −B are α−Weyl operators,
so by [7, Theorem 5], d(λ −A) = n((λ −A)∗) = n(λ −A) < α and d(λ −B) = n((λ −
B)∗) = n(λ −B) < α . Since T ∈ NW (H) , it follows by Theorem 3.11, that

n(λ −T ) = n(λ −A)+n(λ −B)

and

d(λ −T ) = d(λ −A)+d(λ −B).

Therefore n(λ − T ) = n(λ − A) + n(λ − B) = d(λ − A) + d(λ − B) = d(λ − T ) =
n((λ −T )∗) . On the other hand, λ −A and λ −B are α−Fredholm operators, hence
by Corollary 3.8, λ −T is an α−Fredholm operator, consequently by [7, Theorem 5],
λ −T is an α−Weyl operator. Thus λ �∈ ωα(T ) . �
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4. Application to spectral ν−continuity

Let A be a complex Banach algebra with identity e . A sequence (an) in A is
said to be norm convergent to a (in notation an → a ), if ‖an − a‖→ 0. Recently, M.
Ahues in [1] introduced a new mode of convergence on B(X) , named ν−convergence.
This type of convergence can be generalized in the same way to complex unital Banach
algebras. Indeed, a sequence (an) in A is said to be ν−convergent to a , denoted

by an
ν→ a , if (‖an‖) is bounded, ‖(an −a)a‖→ 0 and ‖(an−a)an‖ → 0. This con-

vergence is a pseudo-convergence in the sense that it is possible to have an
ν→ a and

an
ν→ b but a �= b , see for instance [12, Example 1]. There is a connection between

norm convergence and ν−convergence as follows: if an → a then an
ν→ a , also, if

an
ν→ a and a is right invertible then an → a . Investigation of the ν−continuity of the

spectrum on the space B(X) is relatively new, some results on this topic we can find for
example in [1], [2], [12] and [13].

A function τ , defined on A , whose values are non-empty compact subsets of C

is said to be ν−upper (resp. ν− lower) semi-continuous at a , if an
ν→ a implies that

limsupτ(an) ⊆ τ(a) (resp. τ(a) ⊆ liminfτ(an)) . If τ is both ν−upper and ν− lower
semi-continuous at a , then τ is said to be ν−continuous at a .

For a ∈ A , let σ(a) := {λ ∈ C | λe− a is not invertible in A } , the spectrum
of a . It is well known that σ(a) is a non-empty compact subset of C and σ(a) ⊆
B(0,‖a‖) . From this it follows the next proposition.

PROPOSITION 4.1. σ is ν−continuous at a if and only if σ(an) → σ(a) in the

Hausdorff metric for every an
ν→ a.

Proceeding exactly as in the proof of [1, Corollary 2.7] we obtain the next result.

THEOREM 4.2. For each a ∈ A , σ is ν−upper semi-continuous at a.

As an immediate consequence of the previous theorem for A = B(H)/Iα is that
the α−Fredholm spectrum, viewed as a function from B(H) into the space of non-
empty compact sets, is ν−upper semi-continuous.

COROLLARY 4.3. Let α be a cardinal number such that ℵ0 � α � h. For each
T ∈ B(H) , σα is ν−upper semi-continuous at T .

Proof. Let (Tn) be a sequence in B(H) such that Tn
ν→ T . Consider the natural

homomorphism π : H → B(H)/Iα defined by π(T ) = T +Iα . Then π(Tn)
ν→ π(T )

and so by Theorem 4.2, limsupσ(π(Tn)) ⊆ σ(π(T )) . On the other hand, for each n ∈
N , σα(Tn) = σ(π(Tn)) , and σα(T ) = σ(π(T )) . Thus limsupσα(Tn) ⊆ σα(T ) . �

THEOREM 4.4. Let α be a cardinal number such that ℵ0 � α � h and let T ∈
FW (H) . Suppose that one of the following conditions holds:

(i) σα(A)∩σα(B) = /0 ;
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(ii) σα(T )∩σα(A) = /0 ;

(iii) σα(T )∩σα(B) = /0 .

Then:

(1) if σα is ν−continuous at A and B, then σα is ν−continuous at T ;

(2) if σα is ν−continuous at T and A, then σα is ν−continuous at B;

(3) if for each {An} in B(W ) with An
ν→ A, AnC → AC, and if σα is ν−continuous

at T and B, then σα is ν−continuous at A.

Proof. We suppose that σα(A)∩σα(B) = /0 .

(1) Let {Tn} be a sequence in FW (H) such that Tn
ν→ T . Each Tn has the fol-

lowing 2× 2 upper triangular operator matrix representation: Tn =
[
An Cn

0 Bn

]
.

Since ‖An‖ � ‖Tn‖ and ‖Bn‖ � ‖Tn‖ , it follows that An
ν→ A and Bn

ν→ B . Let
λ ∈ σα(T ) , from Corollary 3.9 (1), λ ∈ σα(A)∪σα(B) .

We may suppose without loss of generality that λ ∈ σα (A) . Since that σα is
ν− lower semi continuous at A , λ ∈ liminf σα(An) . Thus there exists a se-
quence {λn} in C such that λn → λ and λn ∈ σα(An) for all n ∈ N . Sup-
pose that there exists a subsequence {λnk} of {λn} such that λnk �∈ σα(Tnk) .
Since λnk ∈ [σα(Ank)∪σα(Bnk)] \σα(Tnk) it follows by Corollary 3.9 (4) that
λnk ∈ σα(Ank)∩σα(Bnk) . Therefore λ ∈ limsupσα(Bn) and so, by ν−upper
semi continuity of σα at B , λ ∈ σα(B) , which implies that λ ∈ σα(A)∩σα (B) ,
a contradiction. Consequently, there exists a natural number n0 such that for
every n � n0 , λn ∈ σα(Tn) , thus λ ∈ liminfσα(Tn) .

(2) Let {Bn} be a sequence in B(W⊥) such that Bn
ν→ B . Consider the sequence

{Tn} where each operator is defined by Tn =
[
A C
0 Bn

]
. It is clear that {Tn} is a se-

quence in FW (H) , moreover, observe that ‖(Tn−T )T‖ = ‖(Bn−B)B‖ , ‖(Tn−
T )Tn‖ = ‖(Bn−B)Bn‖ and ‖Tn‖ � [max{2max{‖A‖2,‖C‖2},‖Bn‖2}]1/2 . Thus
Tn

ν→ T . Let λ ∈ σα(B) , then by Corollary 3.9 (3), λ ∈ σα(T ) and so λ ∈
liminfσα(Tn) , on the other hand, liminfσα(Tn) ⊆ liminf[σα(A)∪ σα (Bn)] ⊆
σα(A)∪ [liminfσα(Bn)] , hence λ ∈ liminfσα(Bn) .

(3) Let {An} be a sequence in B(W ) such that An
ν→ A . By hypothesis, AnC → AC .

Consider Tn =
[
An C
0 B

]
, n ∈ N . Then

‖(Tn−T)T‖ = [2max{‖(An−A)A‖2,‖(An−A)C‖2}]1/2

and
‖(Tn−T)Tn‖ = [2max{‖(An−A)An‖2,‖(An−A)C‖2}]1/2.
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Therefore Tn
ν→ T , thus

σα(A) ⊆ σα(T ) ⊆ liminfσα(Tn) ⊆ [liminfσα(An)]∪σα(B).

Consequently, σα(A) ⊆ liminfσα (An) . �
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