α-FREDHOLM OPERATORS RELATIVE TO INVARIANT SUBSPACES

S. SÁnchez-Perales*, S. Palafox and S. V. Djordjević

(Communicated by R. Curto)

Abstract

Let T be a bounded linear operator on a Hilbert space H and let W be a closed T - invariant subspace of H. Then T has a matrix representation on the space $W \oplus W^{\perp}$ by $T=\left[\begin{array}{cc}A & C \\ 0 & B\end{array}\right]$. In this paper, the relationships between the $\alpha-$ Fredholm properties of T and those of the pair of operators A and B are studied.

1. Introduction

Let H be a complex Hilbert space of dimension $h>\boldsymbol{\aleph}_{0}$ and let α be a cardinal number such that $1 \leqslant \alpha \leqslant h$. A linear subspace K of H is called α-closed if there is a closed linear subspace E of H such that $E \subseteq K$ and

$$
\operatorname{dim}\left(\overline{K \cap E^{\perp}}\right)<\alpha
$$

This concept, introduced by G. Edgar et al. in [8], allowed to generalize the definition of a Fredholm operator. For a bounded linear operator $T \in B(H)$, let $N(T)$ and $R(T)$ the null space and the range, respectively, of the mapping T. Also, let $n(T)=$ $\operatorname{dim} N(T)$ and $d(T)=\operatorname{dim} R(T)^{\perp}$. If the range $R(T)$ of $T \in B(H)$ is $\alpha-$ closed and $n(T)<\alpha$ (respectively, $d(T)<\alpha$), then T is said to be an upper semi α-Fredholm (respectively, a lower semi α-Fredholm) operator and we denote $T \in \Phi_{\alpha}^{+}(H)$ (respectively $T \in \Phi_{\alpha}^{-}(H)$). If $T \in \Phi_{\alpha}^{-}(H) \cap \Phi_{\alpha}^{+}(H)$ then we say that T is an α-Fredholm operator (in notation $T \in \Phi_{\alpha}(H)$). This notion is of interest only when $\alpha>\aleph_{0}$, since \aleph_{0}-Fredholm operators are Fredholm operators.

For each $\alpha, \aleph_{0} \leqslant \alpha \leqslant h$, let \mathscr{F}_{α} denote the two-sided ideal in $B(H)$ of all bounded linear operators such that $\operatorname{dim} \overline{R(T)}<\alpha$ and let \mathscr{I}_{α} denote the norm closure of \mathscr{F}_{α} in $B(H)$. The closed two-sided ideal \mathscr{I}_{α} of $B(H)$ permits consider the quotient space $B(H) / \mathscr{I}_{\alpha}$ as a complex unital Banach algebra. The operators which are left (resp. right) invertible modulo \mathscr{I}_{α} are precisely the upper (resp. lower) semi α-Fredholm operators. See [8],[9]. This implies that $\Phi_{\alpha}^{+}(H)$ and $\Phi_{\alpha}^{-}(H)$ are open sets in $B(H)$ for all $\alpha \geqslant \aleph_{0}$. See, for example, Theorem 2.7.

Corresponding spectra of an operator $T \in B(H)$ are defined as:

[^0]the upper semi α-Fredholm spectrum:
$$
\sigma_{\alpha u}(T)=\left\{\lambda \in \mathbb{C} \mid \lambda-T \notin \Phi_{\alpha}^{+}(H)\right\}
$$
the lower semi α-Fredholm spectrum:
$$
\sigma_{\alpha l}(T)=\left\{\lambda \in \mathbb{C} \mid \lambda-T \notin \Phi_{\alpha}^{-}(H)\right\}
$$
the α-Fredholm spectrum:
$$
\sigma_{\alpha}(T)=\left\{\lambda \in \mathbb{C} \mid \lambda-T \notin \Phi_{\alpha}(H)\right\}
$$

All of these spectra are non-empty compact subsets of the complex plane.
Let W be a closed subspace of H. We shall use $\mathscr{F}_{W}(H)$ to denote the set of all bounded operators $T: H \rightarrow H$ for which W is T-invariant. If $T \in \mathscr{F}_{W}(H)$ then T has on $W \oplus W^{\perp}$ the matrix representation

$$
T=\left[\begin{array}{cc}
A & C \\
0 & B
\end{array}\right]
$$

where $A=\left.T\right|_{W}, B=\left.Q T\right|_{W^{\perp}}$ and $C=\left.P T\right|_{W^{\perp}}$; here P is the projection of H on W and Q is the projection of H on W^{\perp}. In the present paper the relationships between the α-Fredholm properties of T and those of the pair of operators A and B are studied. This work has been influenced by the work of Bruce A. Barnes in [4].

The results obtained are applied to show that the α-Fredholm spectrum of T, A and B form ([10]) a "love knot", namely each is a subset of union of the other two. Also, we make a similar observation about the continuity of the α-Fredholm spectrum $\sigma_{\alpha}: a \rightarrow \sigma_{\alpha}(a)$, from $B(Y)$ to the collection of all non-empty compact subsets of \mathbb{C}, for each $a \in\{T, A, B\}$ and each $Y \in\left\{H, W, W^{\perp}\right\}$.

2. Preliminary results

The goal of this section consists in establishing some preliminary results which will be needed in the sequel.

Proposition 2.1. [11, Lemma 2.4]. If H, K are Hilbert spaces and $T \in B(H, K)$ then $\operatorname{dim} \overline{R(T)} \leqslant \operatorname{dim} H$.

Proposition 2.2. Let H, K be Hilbert spaces. If there exists an injective bounded linear operator $T: H \rightarrow K$ then $\operatorname{dim} H \leqslant \operatorname{dim} K$.

Proof. Let $\left\{v_{j}\right\}_{j \in J}$ be an orthonormal basis for K. Observe that if $\left\langle x, T^{*} v_{j}\right\rangle=0$ for all $j \in J$, then $x=0$. Indeed, suppose that $x \neq 0$, then since T is injective, $T x \neq$ 0 . Thus there exists $j \in J$ such that $\left\langle T x, v_{j}\right\rangle \neq 0$ and hence $\left\langle x, T^{*} v_{j}\right\rangle \neq 0$ which is a contradiction. Consequently, $\left\{T^{*} v_{j}\right\}_{j \in J}$ is a complete system in H. This implies that $H=\overline{\operatorname{span}\left(\left\{T^{*} v_{j}\right\}_{j \in J}\right)}$. On the other hand, $R\left(T^{*}\right)=\operatorname{span}\left(\left\{T^{*} v_{j}\right\}_{j \in J}\right)$, thus by Proposition 2.1, $\operatorname{dim} H=\operatorname{dim} \overline{\operatorname{span}\left(\left\{T^{*} v_{j}\right\}_{j \in J}\right)}=\operatorname{dim} \overline{R\left(T^{*}\right)} \leqslant \operatorname{dim} K$.

Proposition 2.3. If L and Y are closed subspaces of H such that $H=L \oplus^{\perp} Y$ then $\operatorname{dim} L^{\perp}=\operatorname{dim} Y$.

Proof. For each $l \in L^{\perp}$, there exist unique $s_{l} \in L$ and $t_{l} \in Y$ such that $l=s_{l}+$ t_{l}. Define the linear operator $U: L^{\perp} \rightarrow Y$ as $U(l)=t_{l}$. Since $L \perp Y$ it follows that $\|U(l)\|^{2}=\left\|t_{l}\right\|^{2} \leqslant\left\|s_{l}\right\|^{2}+\left\|t_{l}\right\|^{2}=\|l\|^{2}$, therefore U is bounded. Let $l_{1}, l_{2} \in L^{\perp}$ such that $U\left(l_{1}\right)=U\left(l_{2}\right)$, then $l_{1}-s_{l_{1}}=l_{2}-s_{l_{2}}$ and so $l_{1}-l_{2}=s_{l_{2}}-s_{l_{1}} \in L \cap L^{\perp}$, hence $l_{1}=l_{2}$. Now, let $y \in Y$ then there exist unique $u_{y} \in L$ and $w_{y} \in L^{\perp}$ such that $y=$ $u_{y}+w_{y}$. This implies that $0 \oplus y=y=u_{y}+w_{y}=\left(u_{y}+s_{w_{y}}\right) \oplus t_{w_{y}}$ and hence $y=t_{w_{y}}$. Thus $U\left(w_{y}\right)=t_{w_{y}}=y$. Consequently U is bijective.

From Proposition 2.1, $\operatorname{dim} Y=\operatorname{dim} \overline{U\left(L^{\perp}\right)} \leqslant \operatorname{dim} L^{\perp}$. And by Proposition 2.2, $\operatorname{dim} L^{\perp} \leqslant \operatorname{dim} Y$.

Proposition 2.4. If E, F, Y are closed subspaces of H such that E, F are contained in Y then

$$
\operatorname{dim}\left[(E \cap F)^{\perp} \cap F\right] \leqslant \operatorname{dim}\left(Y \cap E^{\perp}\right)
$$

Proof. Since $E=\left(E^{\perp} \cap Y\right)^{\perp} \cap Y$, it follows that

$$
\begin{aligned}
(E \cap F)^{\perp} \cap F & =\left[\left(\left(E^{\perp} \cap Y\right)^{\perp} \cap Y\right) \cap F\right]^{\perp} \cap F=\left[\left(E^{\perp} \cap Y\right)^{\perp} \cap F\right]^{\perp} \cap F \\
& =\left[E^{\perp} \cap Y+F^{\perp}\right]^{\perp \perp} \cap F=\overline{E^{\perp} \cap Y+F^{\perp} \cap F^{\perp \perp}}
\end{aligned}
$$

Moreover, since $F^{\perp} \subseteq F^{\perp}+E^{\perp} \cap Y$, from [8, Lemma 2.2] we obtain that

$$
\overline{E^{\perp} \cap Y+F^{\perp}} \cap F^{\perp \perp}=\overline{\left[E^{\perp} \cap Y+F^{\perp}\right] \cap F^{\perp \perp}} .
$$

Consequently,

$$
\begin{equation*}
(E \cap F)^{\perp} \cap F=\overline{\left[E^{\perp} \cap Y+F^{\perp}\right] \cap F} . \tag{2.1}
\end{equation*}
$$

On the other hand, observe that

$$
H=F \oplus F^{\perp}
$$

and

$$
F=(E \cap F) \oplus\left[(E \cap F)^{\perp} \cap F\right] .
$$

This implies that for each $z \in Y \cap E^{\perp}$, there exist unique $u_{z} \in E \cap F, v_{z} \in(E \cap$ $F)^{\perp} \cap F$ and $w_{z} \in F^{\perp}$ such that $z=u_{z} \oplus v_{z} \oplus w_{z}$. Define $S: Y \cap E^{\perp} \rightarrow(E \cap F)^{\perp} \cap F$ as $S(z)=v_{z}$. Clearly S is a bounded linear operator. Let $f \in\left[E^{\perp} \cap Y+F^{\perp}\right] \cap F$, then by (2.1), $f \in(E \cap F)^{\perp} \cap F$, also there exist $e^{*} \in E^{\perp} \cap Y$ and $w^{*} \in F^{\perp}$ such that $f=e^{*}+w^{*}$. Therefore $e^{*}=0 \oplus f \oplus\left(-w^{*}\right) \in[E \cap F] \oplus\left[(E \cap F)^{\perp} \cap F\right] \oplus F^{\perp}$ and so $S\left(e^{*}\right)=f$. Consequently, $\left[E^{\perp} \cap Y+F^{\perp}\right] \cap F \subseteq R(S)$. Thus by (2.1),

$$
\overline{R(S)}=(E \cap F)^{\perp} \cap F
$$

Finally, by Proposition 2.1, $\operatorname{dim}\left[(E \cap F)^{\perp} \cap F\right]=\operatorname{dim} \overline{R(S)} \leqslant \operatorname{dim} Y \cap E^{\perp}$.
It is well known that if $T \in B(H)$ and $S \in B(H)$ are α-Fredholm operators then $S T$ is an α-Fredholm operator, see [3, Lemma 3.1]. The following theorem shows a similar result for upper and lower semi α-Fredholm operators.

THEOREM 2.5. Let α be a cardinal number such that $\aleph_{0} \leqslant \alpha \leqslant h$. For every S, T operators in $B(H)$ the following statements hold:
(1) if $T \in \Phi_{\alpha}^{+}(H)$ and $S \in \Phi_{\alpha}^{+}(H)$, then $T S \in \Phi_{\alpha}^{+}(H)$;
(2) if $T \in \Phi_{\alpha}^{-}(H)$ and $S \in \Phi_{\alpha}^{-}(H)$, then $T S \in \Phi_{\alpha}^{-}(H)$;
(3) if $S T \in \Phi_{\alpha}^{+}(H)$, then $T \in \Phi_{\alpha}^{+}(H)$;
(4) if $S T \in \Phi_{\alpha}^{-}(H)$, then $S \in \Phi_{\alpha}^{-}(H)$.

Proof. We only prove (1) and (4).
(1) By [8, Theorem 2.6], the operators T, S are left invertible modulo \mathscr{I}_{α}, hence there exist $U, V \in B(H)$ such that $\left(U+\mathscr{I}_{\alpha}\right)\left(T+\mathscr{I}_{\alpha}\right)=I+\mathscr{I}_{\alpha}$ and $\left(V+\mathscr{I}_{\alpha}\right)(S+$ $\left.\mathscr{I}_{\alpha}\right)=I+\mathscr{I}_{\alpha}$. This implies that $U T-I, V S-I \in \mathscr{I}_{\alpha}$. Now, since \mathscr{I}_{α} is a twosided ideal of $B(H)$, it follows that $V U T S-V S \in \mathscr{I}_{\alpha}$. Thus

$$
[V U T S-I-(V S-I)]+(V S-I) \in \mathscr{I}_{\alpha}
$$

hence $V U T S-I \in \mathscr{I}_{\alpha}$, i.e.,

$$
\left(V U+\mathscr{I}_{\alpha}\right)\left(T S+\mathscr{I}_{\alpha}\right)=I+\mathscr{I}_{\alpha}
$$

Therefore, by [8, Theorem 2.6], $T S \in \Phi_{\alpha}^{+}(H)$.
(4) Since $S T \in \Phi_{\alpha}^{-}(H)$, by [9, Theorem 4], it follows that $S T$ is right invertible modulo \mathscr{F}_{α}, i.e., there exists $U \in B(H)$ such that $\left(S T+\mathscr{F}_{\alpha}\right)\left(U+\mathscr{F}_{\alpha}\right)=I+$ $\mathscr{F} \alpha$. Therefore $(S+\mathscr{F} \alpha)(T U+\mathscr{F} \alpha)=I+\mathscr{F} \alpha$ i.e. S is right invertible modulo $\mathscr{F} \alpha$. Thus, again by [9, Theorem 4], $S \in \Phi_{\alpha}^{-}(H)$.

PROPOSITION 2.6. Let α be a cardinal number such that $\aleph_{0} \leqslant \alpha \leqslant h$. For every operator $T \in B(H)$ the following assertions hold:
(1) $T \in \Phi_{\alpha}^{+}(H)$ if and only if $T^{*} \in \Phi_{\alpha}^{-}(H)$;
(2) $T \in \Phi_{\alpha}^{-}(H)$ if and only if $T^{*} \in \Phi_{\alpha}^{+}(H)$.

Proof. By [9, Theorem 2], $R(T)$ is α-closed if and only if $R\left(T^{*}\right)$ is α-closed. Thus the conclusion of the proposition holds, because $n(T)=\operatorname{dim} N(T)=\operatorname{dim} R\left(T^{*}\right)^{\perp}=$ $d\left(T^{*}\right)$ and $d(T)=\operatorname{dim} R(T)^{\perp}=\operatorname{dim} \overline{R(T)}{ }^{\perp}=\operatorname{dim} N\left(T^{*}\right)=n\left(T^{*}\right)$.

In [3, Lemma 2.1] was observed that $\Phi_{\alpha}(H)$ is an open set. We show in the next theorem that $\Phi_{\alpha}^{+}(H)$ and $\Phi_{\alpha}^{-}(H)$ are also open sets.

THEOREM 2.7. Let α be a cardinal number such that $\aleph_{0} \leqslant \alpha \leqslant h$. Then $\Phi_{\alpha}^{+}(H)$, $\Phi_{\alpha}^{-}(H)$ and $\Phi_{\alpha}(H)$ are open sets in $B(H)$.

Proof. Let \mathscr{G}_{l} the set of all left invertible elements in $B(H) / \mathscr{I}_{\alpha}$. From [6, Theorem], \mathscr{G}_{l} is an open set in $B(H) / \mathscr{I}_{\alpha}$. Take $T \in \Phi_{\alpha}^{+}(H)$, then by [8, Theorem 2.6], $T+\mathscr{I}_{\alpha} \in \mathscr{G}_{l}$. Thus, there exists $r>0$ such that if $\left\|U+\mathscr{I}_{\alpha}-\left(T+\mathscr{I}_{\alpha}\right)\right\|<r$ then $U+\mathscr{I}_{\alpha} \in \mathscr{G}_{l}$. Let $S \in B(H)$ such that $\|S-T\|<r$. Since $\left\|S+\mathscr{I}_{\alpha}-\left(T+\mathscr{I}_{\alpha}\right)\right\| \leqslant$ $\|S-T\|$, it follows that $S+\mathscr{I}_{\alpha} \in \mathscr{G}_{l}$, and so by [8, Theorem 2.6], $S \in \Phi_{\alpha}^{+}(H)$. The other cases are analogous.

3. α-Fredholm properties of T involving its diagonal

Throughout this paper, given a bounded operator $T \in \mathscr{F}_{W}(H)$ we shall denote by A the restriction $\left.T\right|_{W}$, by B the operator $\left.Q T\right|_{W^{\perp}}$ and by C the operator $\left.P T\right|_{W^{\perp}}$, where P is the projection of H on W and Q is the projection of H on W^{\perp}.

Proposition 3.1. Let α be a cardinal number such that $\aleph_{0} \leqslant \alpha \leqslant h$. Let $U \in$ $B(W), V \in B\left(W^{\perp}\right)$ and U_{1}, V_{1} be bounded operators defined on $W \oplus W^{\perp}$ as

$$
U_{1}=\left[\begin{array}{cc}
U & 0 \\
0 & I
\end{array}\right] \quad \text { and } \quad V_{1}=\left[\begin{array}{cc}
I & 0 \\
0 & V
\end{array}\right]
$$

Then, the following conditions hold:
(1) $R(U)$ is $\alpha-$ closed if and only if $R\left(U_{1}\right)$ is $\alpha-$ closed;
(2) $n\left(U_{1}\right)=n(U)$ and $d\left(U_{1}\right)=d(U)$.

A similar statements hold if we replace U, U_{1} by V, V_{1}.

Proof.

(1) Suppose that $R(U)$ is α-closed, namely there exists a closed linear subspace Z of W such that $Z \subseteq R(U)$ and $\operatorname{dim}\left[\overline{R(U) \cap\left(Z^{\perp} \cap W\right)}\right]<\alpha$. We set $E=Z \oplus$ W^{\perp}, then E is a closed linear subspace of H such that $E \subseteq R\left(U_{1}\right)$ and $R\left(U_{1}\right) \cap$ $E^{\perp}=R\left(U_{1}\right) \cap\left(Z \oplus W^{\perp}\right)^{\perp}=R\left(U_{1}\right) \cap Z^{\perp} \cap W=R(U) \cap\left(Z^{\perp} \cap W\right)$. Therefore $\operatorname{dim}\left(\overline{R\left(U_{1}\right) \cap E^{\perp}}\right)=\operatorname{dim}\left(\overline{R(U) \cap Z^{\perp} \cap W}\right)<\alpha$, thus $R\left(U_{1}\right)$ is $\alpha-$ closed.
Now, suppose that $R\left(U_{1}\right)$ is α-closed. Then there exists a closed linear subspace E of H such that $E \subseteq R\left(U_{1}\right)$ and $\operatorname{dim} \overline{R\left(U_{1}\right) \cap E^{\perp}}<\alpha$. Let $D=E \cap \overline{R(U)}$, so D is a closed linear subspace of W and

$$
D=E \cap \overline{R(U)} \subseteq R\left(U_{1}\right) \cap W=R(U)
$$

By [8, Lemma 2.2], $\overline{R(U) \cap D^{\perp}}=\overline{R(U)} \cap D^{\perp}$. Then by Proposition 2.4,

$$
\begin{aligned}
\operatorname{dim} \overline{R(U)} \cap D^{\perp} & =\operatorname{dim}\left[(E \cap \overline{R(U)})^{\perp} \cap \overline{R(U)}\right] \leqslant \operatorname{dim}\left[\overline{R\left(U_{1}\right)} \cap E^{\perp}\right] \\
& =\operatorname{dim} \overline{R\left(U_{1}\right) \cap E^{\perp}}<\alpha .
\end{aligned}
$$

(2) It is clear that $n\left(U_{1}\right)=\operatorname{dim} N\left(U_{1}\right)=\operatorname{dim}[N(U) \oplus\{0\}]=\operatorname{dim} N(U)=n(U)$.

Moreover, $d\left(U_{1}\right)=\operatorname{dim} R\left(U_{1}\right)^{\perp}=\operatorname{dim}\left[R(U) \oplus W^{\perp}\right]^{\perp}=\operatorname{dim}\left[R(U)^{\perp} \cap W\right]=d(U)$.
The statements with respect to the operators V and V_{1} are proved in a similar way.

REMARK 3.2. As consequence of Proposition 3.1, we have that:
(1) $U_{1} \in \Phi_{\alpha}^{-}(H)$ if and only if $U \in \Phi_{\alpha}^{-}(W)$;
(2) $U_{1} \in \Phi_{\alpha}^{+}(H)$ if and only if $U \in \Phi_{\alpha}^{+}(W)$.

Also,
(3) $V_{1} \in \Phi_{\alpha}^{-}(H)$ if and only if $V \in \Phi_{\alpha}^{-}\left(W^{\perp}\right)$;
(4) $V_{1} \in \Phi_{\alpha}^{+}(H)$ if and only if $V \in \Phi_{\alpha}^{+}\left(W^{\perp}\right)$.

THEOREM 3.3. Let α be a cardinal number such that $\aleph_{0} \leqslant \alpha \leqslant h$. For every $T \in \mathscr{F}_{W}(H)$ we have:
(1) if $A \in \Phi_{\alpha}^{+}(W)$ and $B \in \Phi_{\alpha}^{+}\left(W^{\perp}\right)$, then $T \in \Phi_{\alpha}^{+}(H)$;
(2) if $A \in \Phi_{\alpha}^{-}(W)$ and $B \in \Phi_{\alpha}^{-}\left(W^{\perp}\right)$, then $T \in \Phi_{\alpha}^{-}(H)$;
(3) if $T \in \Phi_{\alpha}^{+}(H)$, then $A \in \Phi_{\alpha}^{+}(W)$;
(4) if $T \in \Phi_{\alpha}^{-}(H)$, then $B \in \Phi_{\alpha}^{-}\left(W^{\perp}\right)$.

Proof. We only prove (1) and (3). Let A_{1}, B_{1} and C_{1} be bounded operators defined on $W \oplus W^{\perp}$ as

$$
A_{1}=\left[\begin{array}{cc}
A & 0 \\
0 & I
\end{array}\right], \quad B_{1}=\left[\begin{array}{cc}
I & 0 \\
0 & B
\end{array}\right] \quad \text { and } \quad C_{1}=\left[\begin{array}{ll}
I & C \\
0 & I
\end{array}\right] .
$$

Then $T=B_{1} C_{1} A_{1}$ and C_{1} is invertible. Assume first that $A \in \Phi_{\alpha}^{+}(W)$ and $B \in$ $\Phi_{\alpha}^{+}\left(W^{\perp}\right)$. From Remark $3.2(2)$ and (4), we have $A_{1}, B_{1} \in \Phi_{\alpha}^{+}(H)$, so by Theorem 2.5 (1), $T=B_{1} C_{1} A_{1} \in \Phi_{\alpha}^{+}(H)$.

Now, suppose that $\left(B_{1} C_{1}\right) A_{1}=T \in \Phi_{\alpha}^{+}(H)$. From Theorem 2.5 (3), we have that $A_{1} \in \Phi_{\alpha}^{+}(H)$ and, this implies by Remark $3.2(2)$, that $A \in \Phi_{\alpha}^{+}(W)$.

As an immediate consequence of parts (1) and (2) of Theorem 3.3 we have the following corollary.

COROLLARY 3.4. Let α be a cardinal number such that $\aleph_{0} \leqslant \alpha \leqslant h$. For every $T \in \mathscr{F}_{W}(H)$ we have:
(1) $\sigma_{\alpha u}(T) \subseteq \sigma_{\alpha u}(A) \cup \sigma_{\alpha u}(B)$;
(2) $\quad \sigma_{\alpha l}(T) \subseteq \sigma_{\alpha l}(A) \cup \sigma_{\alpha l}(B)$.

Lemma 3.5. Let $T \in \mathscr{F}_{W}(H)$. If there exists a closed linear subspace E of H such that $E \subseteq R(T)$, then

$$
d(A) \leqslant n(B)+\operatorname{dim}\left[\overline{R(T)} \cap E^{\perp}\right]+d(T)
$$

Proof. Suppose that E is a closed linear subspace of H such that $E \subseteq R(T)$. From $R(A)^{\perp} \subseteq(\overline{R(A)} \cap E)^{\perp}$, it follows that

$$
\begin{equation*}
\left.d(A)=\operatorname{dim}\left[R(A)^{\perp} \cap W\right] \leqslant \operatorname{dim}[\overline{R(A)} \cap E)^{\perp} \cap W\right] \tag{3.1}
\end{equation*}
$$

Consider the decompositions

$$
W=(E \cap W) \oplus\left[(E \cap W)^{\perp} \cap W\right]
$$

and

$$
E \cap W=(E \cap \overline{R(A)}) \oplus\left[(E \cap \overline{R(A)})^{\perp} \cap(E \cap W)\right]
$$

Then

$$
W=(E \cap \overline{R(A)}) \oplus\left[\left[(E \cap \overline{R(A)})^{\perp} \cap(E \cap W)\right] \oplus\left[(E \cap W)^{\perp} \cap W\right]\right]
$$

so by Proposition 2.3,

$$
\begin{equation*}
\operatorname{dim}\left[(E \cap \overline{R(A)})^{\perp} \cap W\right]=\operatorname{dim}\left[(E \cap \overline{R(A)})^{\perp} \cap(E \cap W)\right]+\operatorname{dim}\left[(E \cap W)^{\perp} \cap W\right] \tag{3.2}
\end{equation*}
$$

 since $\overline{R(T)}=E \oplus\left[E^{\perp} \cap \overline{R(T)}\right]$, it follows that $H=\overline{R(T)} \oplus R(T)^{\perp}=E \oplus\left[\left(\overline{R(T)} \cap E^{\perp}\right) \oplus\right.$ $R(T)^{\perp}$]. Consequently by Proposition 2.3, $\operatorname{dim} E^{\perp}=\operatorname{dim}\left(\overline{R(T)} \cap E^{\perp}\right)+\operatorname{dim} R(T)^{\perp}=$ $\operatorname{dim}\left(\overline{R(T)} \cap E^{\perp}\right)+d(T)$.

Therefore

$$
\begin{equation*}
\operatorname{dim}\left[(E \cap W)^{\perp} \cap W\right] \leqslant \operatorname{dim}\left(\overline{R(T)} \cap E^{\perp}\right)+d(T) \tag{3.3}
\end{equation*}
$$

We prove that $\operatorname{dim}\left[(E \cap \overline{R(A)})^{\perp} \cap(E \cap W)\right] \leqslant \operatorname{dim} N(B)$. Let

$$
\begin{equation*}
Y=N(T)^{\perp} \cap T^{-1}(E) \tag{3.4}
\end{equation*}
$$

Then, Y is a closed linear subspace of H and $\left.T\right|_{Y}$ is bounded below. Indeed, take $u \in E$, so there exists $x \in H$ such that $u=T x$. Consider the representation $x=x_{1} \oplus$ x_{2}, where $x_{1} \in N(T)$ and $x_{2} \in N(T)^{\perp}$, thus $T x_{2}=T x=u$ which implies that $x_{2} \in$ $T^{-1}(E) \cap N(T)^{\perp}(=Y)$ and hence $u \in T(Y)$. This shows that $E \subseteq T(Y)(\subseteq E)$. On the other hand, since $N(T) \cap Y=\{0\}$, it follows that $N\left(\left.T\right|_{Y}\right)=\{0\}$. Therefore, $\left.T\right|_{Y}$ is bounded below.

Then, for each $y \in E \cap W$, there exists an unique $x_{y} \in Y$ such that $y=T x_{y}$. Also, there are unique $w_{y} \in W$ and $v_{y} \in W^{\perp}$ such that $x_{y}=w_{y} \oplus v_{y}$. From $\left[A w_{y}+C v_{y}\right] \oplus$ $B v_{y}=T x_{y}=y \in W$, it follows that $v_{y} \in N(B)$. Define $U:(E \cap \overline{R(A)})^{\perp} \cap(E \cap W) \rightarrow$
$N(B)$ as $U(y)=v_{y}$. This operator is linear and bounded. Indeed, since $\left.T\right|_{Y}$ is bounded below, there exists $M>0$ such that $\|T x\| \geqslant M\|x\|$ for all $x \in Y$. Then

$$
\|U y\|=\left\|v_{y}\right\| \leqslant\left\|w_{y}+v_{y}\right\|=\left\|x_{y}\right\| \leqslant \frac{1}{M}\left\|T x_{y}\right\|=\frac{1}{M}\|y\| .
$$

Let $y_{1}, y_{2} \in(E \cap \overline{R(A)})^{\perp} \cap(E \cap W)$ be such that $U\left(y_{1}\right)=U\left(y_{2}\right)$. Then $x_{y_{1}}-w_{y_{1}}=$ $v_{y_{1}}=v_{y_{2}}=x_{y_{2}}-w_{y_{2}}$ which implies that $x_{y_{1}}-x_{y_{2}}=w_{y_{1}}-w_{y_{2}}$ and hence $y_{1}-y_{2}=$ $T\left(x_{y_{1}}-x_{y_{2}}\right)=T\left(w_{y_{1}}-w_{y_{2}}\right) \in[\overline{R(A)} \cap E] \cap(E \cap \overline{R(A)})^{\perp}=\{0\}$. Thus $y_{1}=y_{2}$, i.e. U is injective. Therefore, by Proposition 2.2,

$$
\begin{equation*}
\operatorname{dim}\left[(E \cap \overline{R(A)})^{\perp} \cap(E \cap W)\right] \leqslant \operatorname{dim} N(B) \tag{3.5}
\end{equation*}
$$

Consequently, by (3.1), (3.2), (3.3) and (3.5),

$$
d(A) \leqslant n(B)+\operatorname{dim}\left[\overline{R(T)} \cap E^{\perp}\right]+d(T)
$$

Lemma 3.6. Let $T \in \mathscr{F}_{W}(H)$. If there exists a closed linear subspace F of W such that $F \subseteq R(A)$, then

$$
n(B) \leqslant n(T)+\operatorname{dim}\left[\overline{R(A)} \cap F^{\perp}\right]+d(A)
$$

Proof. Take a closed linear subspace F of W such that $F \subseteq R(A)$. Note that $N(B)$ is contained in the pre-image $T^{-1}(W)=\{h \in H \mid T h \in W\}$, thus

$$
\begin{equation*}
\operatorname{dim} N(B) \leqslant \operatorname{dim} T^{-1}(W) \cap W^{\perp} \tag{3.6}
\end{equation*}
$$

In similar way to (3.4), it follows that A is bounded below on $Y=\left[N(A)^{\perp} \cap W\right] \cap$ $A^{-1}(F)$. Let $x \in T^{-1}(W) \cap W^{\perp}$ be arbitrary, then $T x \in W$ and so there exist unique $f_{x} \in F(\subseteq R(A))$ and $g_{x} \in F^{\perp} \cap W$ such that $T x=f_{x} \oplus g_{x}$. Take an unique $y_{x} \in Y$ such that $f_{x}=T y_{x}$, then $T\left(x-y_{x}\right)=g_{x} \in F^{\perp} \cap W$. Define $V: T^{-1}(W) \cap W^{\perp} \rightarrow$ $T^{-1}\left(F^{\perp} \cap W\right)$ as $V(x)=x-y_{x}$. It is clear that V is a linear operator. In order to prove that V is bounded, consider $M>0$ such that $\|A x\| \geqslant M\|x\|$ for all $x \in Y$. Then for every $x \in T^{-1}(W) \cap W^{\perp}$,

$$
\begin{aligned}
\|V(x)\| & =\left\|x-y_{x}\right\| \leqslant\|x\|+\left\|y_{x}\right\| \leqslant\|x\|+\frac{1}{M}\left\|A y_{x}\right\|=\|x\|+\frac{1}{M}\left\|f_{x}\right\| \\
& \leqslant\|x\|+\frac{1}{M}\left\|f_{x}+g_{x}\right\|=\|x\|+\frac{1}{M}\|T x\| \leqslant\left(1+\frac{\|T\|}{M}\right)\|x\|
\end{aligned}
$$

Thus V is bounded. Moreover V is injective, because if $x_{1}, x_{2} \in T^{-1}(W) \cap W^{\perp}$ are such that $V\left(x_{1}\right)=V\left(x_{2}\right)$ then $x_{1}-y_{x_{1}}=x_{2}-y_{x_{2}}$ and so $x_{1}-x_{2}=y_{x_{1}}-y_{x_{2}} \in W^{\perp} \cap W$ i.e. $x_{1}=x_{2}$. Therefore, by Proposition 2.2,

$$
\begin{equation*}
\operatorname{dim} T^{-1}(W) \cap W^{\perp} \leqslant \operatorname{dim} T^{-1}\left(F^{\perp} \cap W\right) \tag{3.7}
\end{equation*}
$$

On the other hand, since $N(T) \subseteq T^{-1}\left(F^{\perp} \cap W\right)$ it follows that $\operatorname{dim} T^{-1}\left(F^{\perp} \cap W\right)=\operatorname{dim} N(T)+\operatorname{dim}\left[N(T)^{\perp} \cap T^{-1}\left(F^{\perp} \cap W\right)\right] \leqslant n(T)+\operatorname{dim}\left(F^{\perp} \cap W\right)$,
where the last inequality is because the application $T: N(T)^{\perp} \cap T^{-1}\left(F^{\perp} \cap W\right) \rightarrow F^{\perp} \cap$ W is bounded and injective. From the equalities

$$
W=\overline{R(A)} \oplus\left[R(A)^{\perp} \cap W\right]
$$

and

$$
\overline{R(A)}=F \oplus\left[F^{\perp} \cap \overline{R(A)}\right]
$$

we obtain that $W=F \oplus\left[\left(\overline{R(A)} \cap F^{\perp}\right) \oplus\left(R(A)^{\perp} \cap W\right)\right]$ and so by Proposition 2.3,

$$
\begin{equation*}
\operatorname{dim}\left[F^{\perp} \cap W\right]=\operatorname{dim}\left[\overline{R(A)} \cap F^{\perp}\right]+d(A) \tag{3.9}
\end{equation*}
$$

Consequently by (3.6), (3.7), (3.8) and (3.9),

$$
n(B) \leqslant n(T)+\operatorname{dim}\left[\overline{R(A)} \cap F^{\perp}\right]+d(A)
$$

As an immediate consequence of Lemmas 3.5 and 3.6 we obtain the next theorem.

THEOREM 3.7. Let α be a cardinal number such that $\aleph_{0} \leqslant \alpha \leqslant h$ and let $T \in$ $\mathscr{F}_{W}(H)$. The following conditions hold:
(1) if $T \in \Phi_{\alpha}^{-}(H)$ and $n(B)<\alpha$, then $d(A)<\alpha$;
(2) if $T \in \Phi_{\alpha}^{+}(H)$ and $d(A)<\alpha$, then $n(B)<\alpha$.

Proof.

(1) It is an immediately consequence of Lemma 3.5.
(2) If $T \in \Phi_{\alpha}^{+}(H)$ then $n(T)<\alpha$, and from Theorem 3.3 (3), $A \in \Phi_{\alpha}^{+}(W)$. Thus there exists a closed linear subspace F of W such that $F \subseteq R(A)$ and dim $\left[\overline{R(A) \cap\left(F^{\perp} \cap W\right)}\right]<\alpha$. From [8, Lemma 2.2], $\overline{R(A) \cap\left(F^{\perp} \cap W\right)}=\overline{R(A)} \cap\left(F^{\perp} \cap\right.$ $W)$. Consequently by Lemma 3.6,

$$
n(B) \leqslant n(T)+\operatorname{dim}\left[\overline{R(A)} \cap F^{\perp}\right]+d(A)=n(T)+\overline{R(A) \cap\left(F^{\perp} \cap W\right)}+d(A)<\alpha
$$

The following corollary is a version of [4, Theorem 8] for α-Fredholm operators.
Corollary 3.8. Let $T \in \mathscr{F}_{W}(H)$ and let α be a cardinal number such that $\aleph_{0} \leqslant \alpha \leqslant h$. The following statements are equivalent:
(1) $T \in \Phi_{\alpha}(H)$ and $n(B)<\alpha$;
(2) $T \in \Phi_{\alpha}(H)$ and $d(A)<\alpha$;
(3) $A \in \Phi_{\alpha}(W)$ and $B \in \Phi_{\alpha}\left(W^{\perp}\right)$.

Proof. (1) \Rightarrow (2) It follows from Theorem 3.7 (1).
(2) \Rightarrow (3) From Theorem 3.3 (3) and (4), we have that $A \in \Phi_{\alpha}^{+}(W)$ and $B \in \Phi_{\alpha}^{-}\left(W^{\perp}\right)$. Since $d(A)<\alpha$, it follows by Theorem 3.7 (2), that $n(B)<\alpha$. Therefore $A \in \Phi_{\alpha}(W)$ and $B \in \Phi_{\alpha}\left(W^{\perp}\right)$.
$(3) \Rightarrow(1)$ By Theorem 3.3 (1) and (2), $T \in \Phi_{\alpha}(H)$. Obviously, by hypothesis, $n(B)<$ α.

Of this corollary it follows that the α-Fredholm spectrum of T, A and B form a "love knot".

Corollary 3.9. If $T \in \mathscr{F}_{W}(H)$ then:
(1) $\sigma_{\alpha}(T) \subseteq \sigma_{\alpha}(A) \cup \sigma_{\alpha}(B)$;
(2) $\sigma_{\alpha}(A) \subseteq \sigma_{\alpha}(T) \cup \sigma_{\alpha}(B)$;
(3) $\sigma_{\alpha}(B) \subseteq \sigma_{\alpha}(T) \cup \sigma_{\alpha}(A)$.

Moreover,
(4) $\left(\sigma_{\alpha}(A) \cup \sigma_{\alpha}(B)\right) \backslash \sigma_{\alpha}(T) \subseteq \sigma_{\alpha}(A) \cap \sigma_{\alpha}(B)$;
(5) $\left(\sigma_{\alpha}(T) \cup \sigma_{\alpha}(B)\right) \backslash \sigma_{\alpha}(A) \subseteq \sigma_{\alpha}(T) \cap \sigma_{\alpha}(B)$;
(6) $\left(\sigma_{\alpha}(T) \cup \sigma_{\alpha}(A)\right) \backslash \sigma_{\alpha}(B) \subseteq \sigma_{\alpha}(T) \cap \sigma_{\alpha}(A)$.

THEOREM 3.10. Let $D_{1} \in B(W), D_{2} \in B\left(W^{\perp}\right)$ and α be a cardinal number such that $\aleph_{0} \leqslant \alpha \leqslant h$. Iffor every $D \in B\left(W^{\perp}, W\right), M_{D}$ is defined on $W \oplus W^{\perp}$ by

$$
M_{D}=\left[\begin{array}{cc}
D_{1} & D \\
0 & D_{2}
\end{array}\right]
$$

then

$$
\bigcap_{D \in B\left(W^{\perp}, W\right)} \sigma_{\alpha}\left(M_{D}\right) \supseteq \sigma_{\alpha u}\left(D_{1}\right) \cup \sigma_{\alpha l}\left(D_{2}\right) \cup \mathscr{W}
$$

where $\mathscr{W}=\left\{\lambda \in \mathbb{C} \mid n\left(\lambda-D_{2}\right) \neq d\left(\lambda-D_{1}\right)\right.$ and at least one these cardinals is greater than or equal to $\alpha\}$.

Proof. From Theorem 3.3 (3) and (4), it follows that for every $D \in B\left(W^{\perp}, W\right)$,

$$
\mathbb{C} \backslash \sigma_{\alpha}\left(M_{D}\right) \subseteq \mathbb{C} \backslash\left(\sigma_{\alpha u}\left(D_{1}\right) \cup \sigma_{\alpha l}\left(D_{2}\right)\right)
$$

Consequently, $\left.\sigma_{\alpha u}\left(D_{1}\right) \cup \sigma_{\alpha l}\left(D_{2}\right)\right) \subseteq \sigma_{\alpha}\left(M_{D}\right)$ for all $D \in B\left(W^{\perp}, W\right)$. Let $\lambda \in \mathscr{W}$ and suppose that $\lambda \notin \sigma_{\alpha}\left(M_{D}\right)$ for some $D \in B\left(W^{\perp}, W\right)$. Then $\lambda-M_{D} \in \Phi_{\alpha}(H)$. This implies that $n\left(\lambda-M_{D}\right)<\alpha, d\left(\lambda-M_{D}\right)<\alpha$ and there exists a closed linear subspace E of H such that $E \subseteq R\left(\lambda-M_{D}\right)$ and $\operatorname{dim} \overline{R\left(\lambda-M_{D}\right) \cap E^{\perp}}<\alpha$. Also, by Theorem 3.3 (3), there exists a closed linear subspace F of W such that $F \subseteq R\left(\lambda-D_{1}\right)$ and $\operatorname{dim} \overline{R\left(\lambda-D_{1}\right) \cap\left(F^{\perp} \cap W\right)}<\alpha$. Therefore by Lemmas 3.5 and 3.6, we have that

$$
d\left(\lambda-D_{1}\right) \leqslant n\left(\lambda-D_{2}\right)+\operatorname{dim}\left[\overline{R\left(\lambda-M_{D}\right)} \cap E^{\perp}\right]+d\left(\lambda-M_{D}\right)
$$

and

$$
n\left(\lambda-D_{2}\right) \leqslant n\left(\lambda-M_{D}\right)+\operatorname{dim}\left[\overline{R\left(\lambda-D_{1}\right)} \cap\left(F^{\perp} \cap W\right)\right]+d\left(\lambda-D_{1}\right)
$$

Consequently,

$$
\begin{equation*}
d\left(\lambda-D_{1}\right) \leqslant n\left(\lambda-D_{2}\right)+\alpha \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
n\left(\lambda-D_{2}\right) \leqslant d\left(\lambda-D_{1}\right)+\alpha \tag{3.11}
\end{equation*}
$$

If $n\left(\lambda-D_{2}\right) \geqslant \alpha$ and $d\left(\lambda-D_{1}\right) \geqslant \alpha$ then, by inequalities (3.10) and (3.11), $n\left(\lambda-D_{2}\right)=d\left(\lambda-D_{1}\right)$. This contradicts the fact that $n\left(\lambda-D_{2}\right) \neq d\left(\lambda-D_{1}\right)$. Now, if $n\left(\lambda-D_{2}\right)<\alpha$ then by inequality (3.10), $d\left(\lambda-D_{1}\right)<\alpha$ which is a contradiction, because at least one the cardinals $n\left(\lambda-D_{2}\right)$ or $d\left(\lambda-D_{1}\right)$ is greater than or equal to α. Finally, if $d\left(\lambda-D_{1}\right)<\alpha$ then by inequality (3.11), $n\left(\lambda-D_{2}\right)<\alpha$, again a contradiction. In any case we have a contradiction. Therefore $\lambda \in \sigma_{\alpha}\left(M_{D}\right)$ for all $D \in B\left(W^{\perp}, W\right)$.

In similar way to [4, Proposition 7] we have the following theorem for arbitrary dimensions.

THEOREM 3.11. Let $T \in \mathscr{F}_{W}(H)$, then the following assertions hold:
(1) $n(T) \leqslant n(A)+n(B)$; moreover, if $R(A)=R(T) \cap W$, then $n(T)=n(A)+n(B)$;
(2) $d(T) \leqslant d(A)+d(B)$; moreover, if $\overline{R(A)}=\overline{R(T)} \cap W$, then $d(T)=d(A)+d(B)$.

Proof.
(1) Consider the decomposition

$$
\begin{equation*}
N(T)=N(A) \oplus\left[N(A)^{\perp} \cap N(T)\right] \tag{3.12}
\end{equation*}
$$

Let $Y=N(A)^{\perp} \cap N(T)$. For each $y \in Y$, there exist unique $w_{y} \in W$ and $v_{y} \in W^{\perp}$ such that $y=w_{y} \oplus v_{y}$. Observe that

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]=T y=\left[\begin{array}{cc}
A & C \\
0 & B
\end{array}\right]\left[\begin{array}{l}
w_{y} \\
v_{y}
\end{array}\right]=\left[\begin{array}{c}
A w_{y}+C v_{y} \\
B v_{y}
\end{array}\right]
$$

thus $v_{y} \in N(B)$. Define $U: Y \rightarrow N(B)$ by $U(y)=v_{y}$. It is clear that U is a continuous linear operator. Let $y_{1}, y_{2} \in Y$ be such that $U\left(y_{1}\right)=U\left(y_{2}\right)$, then $v_{y_{1}}=v_{y_{2}}$. This implies that $y_{1}-y_{2}=w_{y_{1}}-w_{y_{2}}+v_{y_{1}}-v_{y_{2}}=w_{y_{1}}-w_{y_{2}}$ and hence $y_{1}-y_{2} \in W$. Thus $A\left(y_{1}-y_{2}\right)=T\left(y_{1}-y_{2}\right)=T y_{1}-T y_{2}=0$. Therefore $y_{1}-y_{2} \in N(A) \cap N(A)^{\perp}(=\{0\})$, i.e. $y_{1}=y_{2}$, which implies that U is injective. Consequently, by (3.12) and Proposition 2.2,

$$
n(T)=n(A)+\operatorname{dim} Y \leqslant n(A)+n(B) .
$$

Now, suppose that $R(A)=R(T) \cap W$. Take $z \in N(B)$, then

$$
T z=\left[\begin{array}{cc}
A & C \\
0 & B
\end{array}\right]\left[\begin{array}{l}
0 \\
z
\end{array}\right]=\left[\begin{array}{l}
C z \\
B z
\end{array}\right]=\left[\begin{array}{c}
C z \\
0
\end{array}\right]=C z \oplus 0=C z \in W
$$

Therefore $T z \in R(T) \cap W(=T(W))$, thus $T z=T w$ for some $w \in W$. This implies that $z-w \in N(T)$, and so by (3.12), there exist $x \in N(A)$ and $y \in Y$ such that $z-w=x \oplus y$. Finally, since $y=-w-x+z,-w-x \in W$ and $z \in W^{\perp}$, it follows that $U(y)=z$, which implies that U is surjective. Consequently, by Proposition 2.1, $\operatorname{dim} N(B)=\operatorname{dim} \overline{U(Y)} \leqslant \operatorname{dim} Y$, and hence

$$
n(T)=n(A)+\operatorname{dim} Y \geqslant \operatorname{dim} N(A)+n(B)
$$

(2) From the inclusion $R(T) \subseteq W \oplus R(B)$, it follows that $W^{\perp} \cap R(B)^{\perp} \subseteq R(T)^{\perp}$. Thus,

$$
R(T)^{\perp}=\left(W^{\perp} \cap R(B)^{\perp}\right) \oplus\left[\left(W^{\perp} \cap R(B)^{\perp}\right)^{\perp} \cap R(T)^{\perp}\right]
$$

Moreover, observe that $\left(W^{\perp} \cap R(B)^{\perp}\right)^{\perp} \cap R(T)^{\perp}=(W+\overline{R(B)}) \cap R(T)^{\perp}$. Therefore

$$
\begin{equation*}
d(T)=\operatorname{dim}\left[W^{\perp} \cap R(B)^{\perp}\right]+\operatorname{dim}\left[(W+\overline{R(B)}) \cap R(T)^{\perp}\right] \tag{3.13}
\end{equation*}
$$

For each $y \in R(A)^{\perp} \cap W$, there exist unique $r_{y} \in \overline{R(T)}$ and $s_{y} \in R(T)^{\perp}$ such that $y=r_{y} \oplus s_{y}$. Let us consider the operator S defined on $R(A)^{\perp} \cap W$ as $S(y)=s_{y}$. Clearly S is linear and bounded. We prove that

$$
\overline{R(S)}=(W+\overline{R(B)}) \cap R(T)^{\perp}
$$

First note that $(W+\overline{R(B)}) \cap R(T)^{\perp}=\overline{W+\overline{R(T)}} \cap R(T)^{\perp}$, and by [8, Lemma 2.2], $\overline{W+\overline{R(T)}} \cap R(T)^{\perp}=\overline{(W+\overline{R(T)}) \cap R(T)^{\perp}}$. Thus

$$
\begin{equation*}
(W+\overline{R(B)}) \cap R(T)^{\perp}=\overline{(W+\overline{R(T)}) \cap R(T)^{\perp}} \tag{3.14}
\end{equation*}
$$

Let $y \in R(A)^{\perp} \cap W$, then $S(y)=s_{y}=y-r_{y} \in[W+\overline{R(T)}] \cap R(T)^{\perp}$. Therefore, $R(S) \subseteq(W+\overline{R(T)}) \cap R(T)^{\perp}$. On the other hand, let $s \in(W+\overline{R(T)}) \cap R(T)^{\perp}$, then there exist $w \in W$ and $r \in \overline{R(T)}$ such that $s=w+r$. Also, there exist $\underline{u \in \overline{R(A)}}$ and $v \in R(A)^{\perp} \cap W$ such that $w=u+\underline{v}$. Thus, $v=(-u-r)+s \in$ $\overline{R(T)} \oplus R(T)^{\perp}$ and so $S(v)=s$. Therefore $(W+\overline{R(T)}) \cap R(T)^{\perp} \subseteq R(S)$, which implies that

$$
R(S)=(W+\overline{R(T)}) \cap R(T)^{\perp}
$$

Consequently by (3.14), $\overline{R(S)}=\overline{(W+\overline{R(T)}) \cap R(T)^{\perp}}=(W+\overline{R(B)}) \cap R(T)^{\perp}$. Thus by Proposition 2.1,

$$
\operatorname{dim}\left[(W+\overline{R(B)}) \cap R(T)^{\perp}\right]=\operatorname{dim} \overline{R(S)} \leqslant \operatorname{dim}\left[R(A)^{\perp} \cap W\right] .
$$

Therefore by (3.13), $d(T) \leqslant d(B)+d(A)$.
Now, suppose that $\overline{R(A)}=\overline{R(T)} \cap W$. Let $y_{1}, y_{2} \in R(A)^{\perp} \cap W$ such that $S \underline{\left(y_{1}\right)}=$ $S\left(y_{2}\right)$. Then $y_{1}-y_{2}=r_{y_{1}}-r_{y_{2}} \in W \cap \overline{R(T)}(=\overline{R(A)})$. So that $y_{1}-y_{2} \in \overline{R(A)} \cap$ $R(A)^{\perp}$, i.e. $y_{1}=y_{2}$, which proves that S is injective. Consequently, by Proposition 2.2,

$$
\operatorname{dim}\left[R(A)^{\perp} \cap W\right] \leqslant \operatorname{dim}\left[(W+\overline{R(B)}) \cap R(T)^{\perp}\right]
$$

Thus by (3.13),

$$
d(A)+d(B) \leqslant \operatorname{dim}\left[(W+\overline{R(B)}) \cap R(T)^{\perp}\right]+d(B)=d(T)
$$

In the same way that L. A. Coburn defined the Weyl spectrum, B. S. Yadav and S. C. Arora in [14] did it for the α - Weyl spectrum of a weight $\alpha, \aleph_{0}<\alpha<h$, for an operator $T \in B(H)$, as

$$
\begin{equation*}
\omega_{\alpha}(T)=\underset{K \in \mathscr{I}_{\alpha}}{\cap} \sigma(T+K) . \tag{3.15}
\end{equation*}
$$

L. Burlando in [5] defined the β-index of an operator $T: H \rightarrow H$ for $\aleph_{0} \leqslant \beta \leqslant h$ as

$$
\operatorname{ind}_{\beta}(T)= \begin{cases}n(T)-d(T), & \text { if either } \beta=\aleph_{0} \text { or } \beta>\aleph_{0} \text { and } \\ & \max \{n(T), d(T)\} \geqslant \beta \\ 0, & \text { if } \beta>\aleph_{0} \text { and } \max \{n(T), d(T)\}<\beta\end{cases}
$$

With this index S. V. Djordjević and F. Hernández-Díaz in [7] presented a Schechter's manner to introduce α-Weyl operators. An operator $T \in B(H)$ is said α - Weyl operator, for some cardinal $\alpha, \aleph_{0} \leqslant \alpha<h$, if T is an α-Fredholm operator with $\operatorname{ind}_{\beta}(T)=0$, for all cardinals $\beta, \aleph_{0} \leqslant \beta<\alpha$. They proved, see [7, Theorem 3], that the Weyl spectrum of a weight α may be characterized as the following set

$$
\begin{aligned}
\omega_{\alpha}(T) & =\{\lambda \in \mathbb{C} \mid \lambda-T \text { is not an } \alpha-\text { Weyl operator }\} \\
& =\left\{\lambda \in \mathbb{C} \mid \lambda \in \sigma_{\alpha}(T) \text { or } \operatorname{ind}_{\beta}(\lambda-T) \neq 0, \text { for some } \aleph_{0} \leqslant \beta<\alpha\right\}
\end{aligned}
$$

Let us now consider the set

$$
\begin{aligned}
\mathscr{N}_{W}(H)= & \left\{T \in \mathscr{F}_{W}(H) \mid R(\lambda-A)=R(\lambda-T) \cap W\right. \text { and } \\
& \overline{R(\lambda-A)}=\overline{R(\lambda-T)} \cap W \text { for all } \lambda \in \mathbb{C} \backslash\{0\}\} .
\end{aligned}
$$

THEOREM 3.12. Let α be a cardinal number such that $\aleph_{0} \leqslant \alpha \leqslant h$. If $T \in$ $\mathscr{N}_{W}(H)$, then

$$
\omega_{\alpha}(T) \subseteq \omega_{\alpha}(A) \cup \omega_{\alpha}(B)
$$

Proof. Take $\lambda \notin\left(\omega_{\alpha}(A) \cup \omega_{\alpha}(B)\right)$, then $\lambda-A$ and $\lambda-B$ are $\alpha-$ Weyl operators, so by [7, Theorem 5], $d(\lambda-A)=n\left((\lambda-A)^{*}\right)=n(\lambda-A)<\alpha$ and $d(\lambda-B)=n((\lambda-$ $\left.B)^{*}\right)=n(\lambda-B)<\alpha$. Since $T \in \mathscr{N}_{W}(H)$, it follows by Theorem 3.11, that

$$
n(\lambda-T)=n(\lambda-A)+n(\lambda-B)
$$

and

$$
d(\lambda-T)=d(\lambda-A)+d(\lambda-B)
$$

Therefore $n(\lambda-T)=n(\lambda-A)+n(\lambda-B)=d(\lambda-A)+d(\lambda-B)=d(\lambda-T)=$ $n\left((\lambda-T)^{*}\right)$. On the other hand, $\lambda-A$ and $\lambda-B$ are α-Fredholm operators, hence by Corollary 3.8, $\lambda-T$ is an $\alpha-$ Fredholm operator, consequently by [7, Theorem 5], $\lambda-T$ is an α-Weyl operator. Thus $\lambda \notin \omega_{\alpha}(T)$.

4. Application to spectral v-continuity

Let \mathscr{A} be a complex Banach algebra with identity e. A sequence $\left(a_{n}\right)$ in \mathscr{A} is said to be norm convergent to a (in notation $a_{n} \rightarrow a$), if $\left\|a_{n}-a\right\| \rightarrow 0$. Recently, M. Ahues in [1] introduced a new mode of convergence on $B(X)$, named v-convergence. This type of convergence can be generalized in the same way to complex unital Banach algebras. Indeed, a sequence $\left(a_{n}\right)$ in \mathscr{A} is said to be v-convergent to a, denoted by $a_{n} \xrightarrow{v} a$, if $\left(\left\|a_{n}\right\|\right)$ is bounded, $\left\|\left(a_{n}-a\right) a\right\| \rightarrow 0$ and $\left\|\left(a_{n}-a\right) a_{n}\right\| \rightarrow 0$. This convergence is a pseudo-convergence in the sense that it is possible to have $a_{n} \xrightarrow{v} a$ and $a_{n} \xrightarrow{v} b$ but $a \neq b$, see for instance [12, Example 1]. There is a connection between norm convergence and v-convergence as follows: if $a_{n} \rightarrow a$ then $a_{n} \xrightarrow{v} a$, also, if $a_{n} \xrightarrow{v} a$ and a is right invertible then $a_{n} \rightarrow a$. Investigation of the v-continuity of the spectrum on the space $B(X)$ is relatively new, some results on this topic we can find for example in [1], [2], [12] and [13].

A function τ, defined on \mathscr{A}, whose values are non-empty compact subsets of \mathbb{C} is said to be v-upper (resp. v-lower) semi-continuous at a, if $a_{n} \xrightarrow{v} a$ implies that $\limsup \tau\left(a_{n}\right) \subseteq \tau(a) \quad$ (resp. $\left.\tau(a) \subseteq \liminf \tau\left(a_{n}\right)\right)$. If τ is both v-upper and v-lower semi-continuous at a, then τ is said to be v-continuous at a.

For $a \in \mathscr{A}$, let $\sigma(a):=\{\lambda \in \mathbb{C} \mid \lambda e-a$ is not invertible in $\mathscr{A}\}$, the spectrum of a. It is well known that $\sigma(a)$ is a non-empty compact subset of \mathbb{C} and $\sigma(a) \subseteq$ $B(0,\|a\|)$. From this it follows the next proposition.

Proposition 4.1. σ is v-continuous at a if and only if $\sigma\left(a_{n}\right) \rightarrow \sigma(a)$ in the Hausdorff metric for every $a_{n} \xrightarrow{v} a$.

Proceeding exactly as in the proof of [1, Corollary 2.7] we obtain the next result.
THEOREM 4.2. For each $a \in \mathscr{A}, \sigma$ is v-upper semi-continuous at a.
As an immediate consequence of the previous theorem for $\mathscr{A}=B(H) / \mathscr{I}_{\alpha}$ is that the α-Fredholm spectrum, viewed as a function from $B(H)$ into the space of nonempty compact sets, is v-upper semi-continuous.

Corollary 4.3. Let α be a cardinal number such that $\aleph_{0} \leqslant \alpha \leqslant h$. For each $T \in B(H), \sigma_{\alpha}$ is v-upper semi-continuous at T.

Proof. Let $\left(T_{n}\right)$ be a sequence in $B(H)$ such that $T_{n} \xrightarrow{v} T$. Consider the natural homomorphism $\pi: H \rightarrow B(H) / \mathscr{I}_{\alpha}$ defined by $\pi(T)=T+\mathscr{I}_{\alpha}$. Then $\pi\left(T_{n}\right) \xrightarrow{v} \pi(T)$ and so by Theorem 4.2, $\lim \sup \sigma\left(\pi\left(T_{n}\right)\right) \subseteq \sigma(\pi(T))$. On the other hand, for each $n \in$ $\mathbb{N}, \sigma_{\alpha}\left(T_{n}\right)=\sigma\left(\pi\left(T_{n}\right)\right)$, and $\sigma_{\alpha}(T)=\sigma(\pi(T))$. Thus limsup $\sigma_{\alpha}\left(T_{n}\right) \subseteq \sigma_{\alpha}(T)$.

THEOREM 4.4. Let α be a cardinal number such that $\aleph_{0} \leqslant \alpha \leqslant h$ and let $T \in$ $\mathscr{F}_{W}(H)$. Suppose that one of the following conditions holds:
(i) $\sigma_{\alpha}(A) \cap \sigma_{\alpha}(B)=\emptyset ;$
(ii) $\sigma_{\alpha}(T) \cap \sigma_{\alpha}(A)=\emptyset$;
(iii) $\sigma_{\alpha}(T) \cap \sigma_{\alpha}(B)=\emptyset$.

Then:

(1) if σ_{α} is v-continuous at A and B, then σ_{α} is v-continuous at T;
(2) if σ_{α} is v-continuous at T and A, then σ_{α} is v-continuous at B;
(3) iffor each $\left\{A_{n}\right\}$ in $B(W)$ with $A_{n} \xrightarrow{v} A, A_{n} C \rightarrow A C$, and if σ_{α} is v-continuous at T and B, then σ_{α} is v-continuous at A.

Proof. We suppose that $\sigma_{\alpha}(A) \cap \sigma_{\alpha}(B)=\emptyset$.
(1) Let $\left\{T_{n}\right\}$ be a sequence in $\mathscr{F}_{W}(H)$ such that $T_{n} \xrightarrow{v} T$. Each T_{n} has the following 2×2 upper triangular operator matrix representation: $T_{n}=\left[\begin{array}{cc}A_{n} & C_{n} \\ 0 & B_{n}\end{array}\right]$. Since $\left\|A_{n}\right\| \leqslant\left\|T_{n}\right\|$ and $\left\|B_{n}\right\| \leqslant\left\|T_{n}\right\|$, it follows that $A_{n} \xrightarrow{v} A$ and $B_{n} \xrightarrow{v} B$. Let $\lambda \in \sigma_{\alpha}(T)$, from Corollary $3.9(1), \lambda \in \sigma_{\alpha}(A) \cup \sigma_{\alpha}(B)$.
We may suppose without loss of generality that $\lambda \in \sigma_{\alpha}(A)$. Since that σ_{α} is v-lower semi continuous at $A, \lambda \in \liminf \sigma_{\alpha}\left(A_{n}\right)$. Thus there exists a sequence $\left\{\lambda_{n}\right\}$ in \mathbb{C} such that $\lambda_{n} \rightarrow \lambda$ and $\lambda_{n} \in \sigma_{\alpha}\left(A_{n}\right)$ for all $n \in \mathbb{N}$. Suppose that there exists a subsequence $\left\{\lambda_{n_{k}}\right\}$ of $\left\{\lambda_{n}\right\}$ such that $\lambda_{n_{k}} \notin \sigma_{\alpha}\left(T_{n_{k}}\right)$. Since $\lambda_{n_{k}} \in\left[\sigma_{\alpha}\left(A_{n_{k}}\right) \cup \sigma_{\alpha}\left(B_{n_{k}}\right)\right] \backslash \sigma_{\alpha}\left(T_{n_{k}}\right)$ it follows by Corollary 3.9 (4) that $\lambda_{n_{k}} \in \sigma_{\alpha}\left(A_{n_{k}}\right) \cap \sigma_{\alpha}\left(B_{n_{k}}\right)$. Therefore $\lambda \in \limsup \sigma_{\alpha}\left(B_{n}\right)$ and so, by v-upper semi continuity of σ_{α} at $B, \lambda \in \sigma_{\alpha}(B)$, which implies that $\lambda \in \sigma_{\alpha}(A) \cap \sigma_{\alpha}(B)$, a contradiction. Consequently, there exists a natural number n_{0} such that for every $n \geqslant n_{0}, \lambda_{n} \in \sigma_{\alpha}\left(T_{n}\right)$, thus $\lambda \in \liminf \sigma_{\alpha}\left(T_{n}\right)$.
(2) Let $\left\{B_{n}\right\}$ be a sequence in $B\left(W^{\perp}\right)$ such that $B_{n} \xrightarrow{v} B$. Consider the sequence $\left\{T_{n}\right\}$ where each operator is defined by $T_{n}=\left[\begin{array}{cc}A & C \\ 0 & B_{n}\end{array}\right]$. It is clear that $\left\{T_{n}\right\}$ is a sequence in $\mathscr{F}_{W}(H)$, moreover, observe that $\left\|\left(T_{n}-T\right) T\right\|=\left\|\left(B_{n}-B\right) B\right\|, \|\left(T_{n}-\right.$ T) $T_{n}\|=\|\left(B_{n}-B\right) B_{n} \|$ and $\left\|T_{n}\right\| \leqslant\left[\max \left\{2 \max \left\{\|A\|^{2},\|C\|^{2}\right\},\left\|B_{n}\right\|^{2}\right\}\right]^{1 / 2}$. Thus $T_{n} \xrightarrow{v} T$. Let $\lambda \in \sigma_{\alpha}(B)$, then by Corollary 3.9 (3), $\lambda \in \sigma_{\alpha}(T)$ and so $\lambda \in$ $\liminf \sigma_{\alpha}\left(T_{n}\right)$, on the other hand, $\liminf \sigma_{\alpha}\left(T_{n}\right) \subseteq \liminf \left[\sigma_{\alpha}(A) \cup \sigma_{\alpha}\left(B_{n}\right)\right] \subseteq$ $\sigma_{\alpha}(A) \cup\left[\liminf \sigma_{\alpha}\left(B_{n}\right)\right]$, hence $\lambda \in \liminf \sigma_{\alpha}\left(B_{n}\right)$.
(3) Let $\left\{A_{n}\right\}$ be a sequence in $B(W)$ such that $A_{n} \xrightarrow{v} A$. By hypothesis, $A_{n} C \rightarrow A C$. Consider $T_{n}=\left[\begin{array}{cc}A_{n} & C \\ 0 & B\end{array}\right], n \in \mathbb{N}$. Then

$$
\left\|\left(T_{n}-T\right) T\right\|=\left[2 \max \left\{\left\|\left(A_{n}-A\right) A\right\|^{2},\left\|\left(A_{n}-A\right) C\right\|^{2}\right\}\right]^{1 / 2}
$$

and

$$
\left\|\left(T_{n}-T\right) T_{n}\right\|=\left[2 \max \left\{\left\|\left(A_{n}-A\right) A_{n}\right\|^{2},\left\|\left(A_{n}-A\right) C\right\|^{2}\right\}\right]^{1 / 2}
$$

Therefore $T_{n} \xrightarrow{v} T$, thus

$$
\sigma_{\alpha}(A) \subseteq \sigma_{\alpha}(T) \subseteq \liminf \sigma_{\alpha}\left(T_{n}\right) \subseteq\left[\liminf \sigma_{\alpha}\left(A_{n}\right)\right] \cup \sigma_{\alpha}(B)
$$

Consequently, $\sigma_{\alpha}(A) \subseteq \liminf \sigma_{\alpha}\left(A_{n}\right)$.

Acknowledgement. The first author was supported by CONACYT.

REFERENCES

[1] M. Ahues, A. Largillier and B. V. Limaye, Spectral computations for bounded operators, Chapman \& Hall/CRC, Boca Raton, 2001.
[2] A. Ammar, Some properties of the Wolf and Weyl essential spectra of a sequence of linear operators v - convergent, Indagationes Mathematicae, 28, 2, 2017, 424-435.
[3] S. C. Arora and P. Dharmarha, On weighted Weyl spectrum. II, Bull. Korean Math. Soc., 43, 4, 2006, 715-722.
[4] B. A. Barnes, Spectral and Fredholm theory involving the diagonal of a bounded linear operator, Acta Sci. Math. (Szeged), 73, (1-2), 2007, 237-250.
[5] L. Burlando, Approximation by semi-Fredholm and semi- α-Fredholm operators in Hilbert spaces of arbitrary dimension, Acta Sci. Math. (Szeged), 65, (1-2), 1999, 217-275.
[6] S. R. Caradus, W. E. Pfaffenberger and B. Yood, Calkin algebras and algebras of operators on Banach spaces, Lect. Notes Pure Appl. Math., vol. 9, Marcel Dekker, Inc., New York, 1974.
[7] S. V. Djordjević and F. Hernández-Díaz, On α-Weyl operators, Advances in Pure Mathematics, 6, (3), 2016, 138-143.
[8] G. Edgar, J. Ernest and S. G. Lee, Weighing operator spectra, Indiana Univ. Math. J., 21, 1, 1971, 61-80.
[9] J. Ernest, Operators with α-closed range, Tôhoku Math. J., 24, 1, 1972, 45-49.
[10] R. Harte, Exactness, invertibility and the love knot, Filomat, 29, 10, 2015, 2347-2353.
[11] E. LuFT, The two-sided closed ideals of the algebra of bounded linear operators of a Hilbert space, Czechoslovak Math, 18, 4, 1968, 595-605.
[12] S. Sánchez-Perales and S. V. Djordjević, Spectral continuity using v-convergence, J. Math. Anal. Appl., 433, 1, 2016, 405-415.
[13] S. SÁNCHEZ-PERALES AND S. V. DJORDJEVIĆ, Spectral continuity relative to invariant subspaces, Complex Anal. Oper. Theory, 11, 4, 2017, 927-941.
[14] B. S. Yadav and S. C. Arora, A generalization of Weyl's spectrum, Glas. Mat. Ser. III, 15, 35, 1980, 315-419.

S. Palafox

Instituto de Física y Matemáticas Universidad Tecnológica de la Mixteca Km. 2.5 Carretera a Acatlima, 69000 Oaxaca, Mexico e-mail: sergiopalafoxd@gmail.com

S. V. Djordjević

Facultad de Ciencias Físico-Matemáticas Benemérita Universidad Autónoma de Puebla Río Verde y Av. San Claudio, San Manuel, Puebla Pue. 72570, Mexico
e-mail: slavdj@fcfm.buap.mx

Operators and Matrices

www.ele-math.com
oam@ele-math.com

[^0]: Mathematics subject classification (2010): 47A53.
 Keywords and phrases: α-closed subspaces, α-Fredholm operators, invariant subspaces.

 * Corresponding author.

