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ON THE LOCATION OF EIGENVALUES OF MATRIX POLYNOMIALS

CÔNG-TRÌNH LÊ ∗ , THI-HOA-BINH DU AND TRAN-DUC NGUYEN

(Communicated by C.-K. Li)

Abstract. A number λ ∈ C is called an eigenvalue of the matrix polynomial P(z) if there exists
a nonzero vector x ∈ Cn such that P(λ)x = 0 . Note that each finite eigenvalue of P(z) is a zero
of the characteristic polynomial det(P(z)) . In this paper we establish some (upper and lower)
bounds for eigenvalues of matrix polynomials based on the norm of their coefficient matrices
and compare these bounds to those given by N. J. Higham and F. Tisseur [8], J. Maroulas and P.
Psarrakos [12].

1. Introduction

Let Cn×n be the set of all n× n matrices whose entries are in C . For a matrix
polynomial we mean the matrix-valued function of a complex variable of the form

P(z) = Amzm + · · ·+A1z+A0, (1)

where Ai ∈ Cn×n for all i = 0, · · · ,m . If Am �= 0, P(z) is called a matrix polynomial of
degree m . When Am = I , the identity matrix in Cn×n , the matrix polynomial P(z) is
called a monic.

A number λ ∈ C is called an eigenvalue of the matrix polynomial P(z) , if there
exists a nonzero vector x ∈ Cn such that P(λ )x = 0. Then the vector x is called, as
usual, an eigenvector of P(z) associated to the eigenvalue λ . Note that each finite
eigenvalue of P(z) is a root of the characteristic polynomial det(P(z)) .

The polynomial eigenvalue problem (PEP) is to find an eigenvalue λ and a non-
zero vector x ∈ C

n such that P(λ )x = 0. For m = 1, (PEP) is actually the generalized
eigenvalue problem (GEP)

Ax = λBx,

and, in addition, if B = I , we have the standard eigenvalue problem

Ax = λx.

For m = 2 we have the quadratic eigenvalue problem (QEP).
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The theory of matrix polynomials was primarily devoted by two works, both of
which are strongly motivated by the theory of vibrating systems: one by Frazer, Duncan,
and Collar in 1938 [FDC], and the other by P. Lancaster in 1966 [10].

(QEPs), and more generally (PEPs), play an important role in applications to sci-
ence and engineering. We refer to [19] for a survey on applications of (QEP). Moreover,
we refer to the book of I. Gohberg, P. Lancaster and L. Rodman [6] for a theory of ma-
trix polynomials and their applications.

There are algorithms to solve (QEPs), see the works of Hamarling, Munro and
Tisseur [7, 2013] and Zeng and Su [20, 2014]. For (PEPs), there is some research on
bounds of eigenvalues of matrix polynomials which were constructed in terms of the
norms of coefficients of the given matrix polynomials. See, for example, the work of
Higham and Tisseur [8, 2003], Maroulas and Psarrakos [12, 1997].

Computing eigenvalues of matrix polynomials (even computing eigenvalues of
scalar matrices and finding roots of univariate polynomials) is a hard problem. There
is an iterative method to compute these eigenvalues, see Simoncini and Perotti [16,
2006]. Moreover, when computing pseudospectra of matrix polynomials, which pro-
vide information about the global sensitivity of the eigenvalues, a particular region of
the (possibly extended) complex plane must be identified that contains the eigenvalues
of interest, and bounds clearly help to determine such region [18]. Therefore, it is useful
to find the location of these eigenvalues.

Note that, if A0 is singular then 0 is an eigenvalue of P(z) , and if Am is singular
then 0 is an eigenvalue of the matrix polynomial zmP(1/z) . Therefore, to locate the
eigenvalues of these matrix polynomials, we always assume that A0 and Am are non-
singular.

The paper is organized as follows. In Section 2 we give bounds for matrix polyno-
mials whose coefficients satisfy some special properties, in particular, we give a matrix
version of Eneström-Kakeya’s theorem. In Section 3 we establish matrix versions of
some Cauchy’s type theorems. In particular, we establish a matrix version of the the-
orem of Joyal, Labelle and Rahman (cf. [9], [13, Theorem 2.14]) and some of its
corollaries. Moreover, we give also a matrix version of Datt and Govil’s theorem [3,
Theorem 1] and some other bounds. Finally, we give some numerical experiments in
Section 4.

Notation. For a matrix A ∈ C
n×n , the notation A � 0 means ”A is positive

semidefinite”, i.e. for every vector x ∈ Cn we have x∗Ax � 0; A > 0 means ”A is
positive definite”, i.e. x∗Ax > 0 for every nonzero vector x ∈ Cn . For two matrices
A,B ∈ Cn×n , the notation A � B means A−B � 0.

Throughout this paper, ‖ · ‖ denotes a subordinate matrix norm.

2. Eneström-Kakeya’s theorem for matrix polynomials

In this section we give upper and lower bounds for eigenvalues of some special
matrix polynomials. First of all we consider matrix polynomials with a dominant prop-
erty.
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THEOREM 2.1. Let P(z) = A0 +A1z+ · · ·+Amzm be a matrix polynomial whose
coefficients Ai ∈ Cn×n satisfying the following dominant property:

‖Am‖ > ‖Ai‖,∀ i = 0, · · · ,m−1.

Then all eigenvalues λ of P(z) locate in the open disk

|λ | < 1+‖Am‖‖A−1
m ‖.

In particular, for n = 1, we obtain the following corollary of Cauchy’s theorem ([11,
Theorem 27.2]; see also [2, Theorem 2.2]):

COROLLARY 2.1.1. Let p(z) = a0 +a1z+ · · ·+amzm ∈ C[z] such that |am|> |ai|
for all i = 0, · · · ,m−1 . Then all the roots of p(z) locate in the open disk |z| < 2 .

The proof of this corollary uses the fact that when n = 1 we have ‖Am‖‖A−1
m ‖ = 1.

Proof of Theorem 2.1. Let λ ∈ C be an eigenvalue of P(z) and x ∈ Cn a unit
eigenvector of P(z) associated to λ .
We have nothing to prove if |λ | � 1. Hence we may assume that |λ | > 1. Then we
have

‖P(λ )x‖ � |λ |m
[
‖Amx‖−‖

m−1

∑
i=0

Aix
λ m−i ‖

]
� |λ |m

[
‖A−1

m ‖−1−
m−1

∑
i=0

‖Ai‖
|λ |m−i

]

� |λ |m
[
‖A−1

m ‖−1−
m−1

∑
i=0

‖Am‖
|λ |m−i

]
= |λ |m‖A−1

m ‖−1

[
1−‖Am‖‖A−1

m ‖
m

∑
i=1

1
|λ |i

]

> |λ |m‖A−1
m ‖−1

[
1−‖Am‖‖A−1

m ‖
∞

∑
i=1

1
|λ |i

]
= |λ |m‖A−1

m ‖−1
[
1− ‖Am‖‖A−1

m ‖
|λ |−1

]
=

|λ |m‖A−1
m ‖−1

|λ |−1

(|λ |−1−‖Am‖‖A−1
m ‖) .

Hence, if |λ | � 1+‖Am‖‖A−1
m ‖ we have ‖P(λ )x‖ > 0, a contradiction. It follows that

|λ | < 1+‖Am‖‖A−1
m ‖ , which completes the proof. �

The following theorem of Eneström and Kakeya is well-known.

THEOREM 2.2. ([15, Corollary 3]) Let p(z) be a polynomial in one variable given
by

p(z) = a0 +a1z+ · · ·+amzm, ai ∈ R,∀i = 1, · · · ,m.

Suppose that
am � am−1 � · · · � a0 � 0; am > 0.

If z ∈ C is a root of p(z) then
a0

2am
� |z| � 1 .

A matrix version of Theorem 2.2 is given as follows.
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THEOREM 2.3. Let P(z) = A0 +A1z+ · · ·+Amzm be a matrix polynomial whose
coefficients Ai ∈ Cn×n satisfying

Am � Am−1 � · · · � A0 � 0; Am > 0.

Then each eigenvalue λ of P(z) satisfies

λmin(A0)
2λmax(Am)

� |λ | � 1,

where λmin(A0) denotes the smallest eigenvalue of A0 and λmax(Am) the largest eigen-
value of Am .

Proof. A proof for the upper bound of |λ | in this theorem was given by G. Dirr
and H. K. Wimmer [4, Theorem 2.1] (see also in [17, Theorem 5.1]). Now we give a
proof for the lower bound.

Firstly we observe that for a matrix A∈ Cn×n , its smallest eigenvalue λmin(A) and
its largest eigenvalue λmax(A) belong to the set

{x∗Ax|x ∈ C
n,‖x‖ = 1},

which is the standard numerical range of A . Hence for a unit vector x∈Cn , we always
have

λmin(A) � x∗Ax � λmax(A). (2)

Let λ ∈ C be an eigenvalue of P(z) , and u ∈ Cn,‖u‖ = 1 an eigenvector of P(z)
associated to λ . Consider the polynomial

Pu(z) := u∗P(z)u =
m

∑
i=0

(u∗Aiu)zi.

Note that λ is a root of Pu(z) . Moreover, the hypothesis on the relation of Ai ’s implies
that

u∗Amu � u∗Am−1u � · · · � u∗A0u � 0,u∗Amu > 0,

that is, the polynomial Pu(z) satisfies the conditions given in Theorem 2.2. Applying
this theorem for Pu(z) we obtain

u∗A0u
2u∗Amu

� |λ |.

Then the required lower bound for |λ | follows from (2). �
By applying Theorem 2.3 for the matrix polynomial znP( 1

z ) we obtain the follow-
ing dual version of Theorem 2.3.

THEOREM 2.4. Let P(z) = A0 +A1z+ · · ·+Amzm be a matrix polynomial whose
coefficients Ai ∈ Cn×n satisfying

A0 � A1 � · · · � Am > 0.

Then each eigenvalue λ of P(z) satisfied |λ | � 1.
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We have also the following version of Eneström-Kakeya’s theorem for polynomi-
als.

THEOREM 2.5. (Eneström-Kakeya’s theorem, Version 2, [1]) Let p(z)= a0+a1z
+ · · ·+amzm be a polynomial whose coefficients ai, i = 0, · · · ,m are positive real num-
bers. Denote

α := min
0�i�m−1

{
ai

ai+1

}
,β := max

0�i�m−1

{
ai

ai+1

}
.

Then each root z ∈ C of p(z) satisfies the following inequalities

α � |z| � β .

Using the same method as given in the proof of Theorem 2.3, applying Theorem 2.5, we
obtain the following bounds for eigenvalues of matrix polynomials whose coefficients
are positive definite.

THEOREM 2.6. Let P(z) = A0 +A1z+ · · ·+Amzm be a matrix polynomial whose
coefficients Ai ∈ Cn×n are positive definite. If λ ∈ C is an eigenvalue of P(z) , then

min
i=0,···,m−1

{
λmin(Ai)

λmax(Ai+1)

}
� |λ | � max

i=0,···,m−1

{
λmax(Ai)

λmin(Ai+1)

}
.

3. Cauchy type theorems for matrix polynomials

In this section we establish some Cauchy type theorems for matrix polynomials
of the form P(z) = A0 + A1z + · · ·+ Amzm with Am and A0 non-singular. We should
observe that the set of eigenvalues of P(z) coincides to that of the monic matrix poly-
nomial

A−1
m P(z) = (A−1

m A0)+ (A−1
m A1)z+ · · ·+ Izm.

Therefore, because of the complexity in practice, we concentrate to consider in this
section the bounds for monic matrix polynomials.

Firstly we state the Cauchy’s theorem for monic matrix polynomials.

THEOREM 3.1. (Cauchy, [8, Lemma 3.1]) Let P(z) = A0 +A1z + · · ·+ Izm be a
monic matrix polynomial. Let r resp. R be the positive root of the polynomial

h(z) = zm + zm−1 ‖Am−1‖+ · · ·+ z‖A1‖−
∥∥A−1

0

∥∥−1

resp.
g(z) = zm − zm−1‖Am−1‖− ·· ·−‖A0‖ .

Then each eigenvalue λ of P(z) satisfies

r � |λ | � R.

Now we give some Cauchy type theorem for monic matrix polynomials.
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THEOREM 3.2. Let P(z) = A0 +A1z+ · · ·+ Izm . Denote

M := max
i=0,···,m−1

‖Ai‖.

Then all eigenvalues of P(z) are contained in the closed disk

K(0,r1) := {z ∈ C| |z| � r1},
where r1 := max{1,δ} and δ �= 1 is the positive root of the equation

zm+1 − (1+M)zm +M = 0.

In particular, for n = 1 we obtain a Cauchy type theorem for polynomials [2, Theorem
3.2].

Proof. Let λ ∈ C be an eigenvalue of P(z) and x ∈ C
n a unit eigenvector of P(z)

associated to λ .
The conclusion is clear if |λ | � 1. Therefore we may assume that |λ | > 1. Then we
have

‖P(λ )x‖ �
[
‖Ix‖|λ |m−‖

m−1

∑
i=0

Aixλ i‖
]

�
[
|λ |m −

m−1

∑
i=0

‖Ai‖‖A−1
m ‖λ i

]
(3)

�
[
|λ |m −M

m−1

∑
i=0

λ i

]
(4)

=
[
|λ |m −M

|λ |m −1
|λ |−1

]
=

1
|λ |−1

(|λ |m+1− (1+M)|λ |m +M
)
.

In the lines above, from (3) to (4) we use the definition of M .
Note that the polynomial f (z) := zm+1 − (1+M)zm +M has exactly two positive real
roots 1 and δ �= 1 by the Descartes’ rule of signs, and f (0) > 0. It follows that

| f (z)| > 0 for all z > max{δ ,1}.
Hence for |λ |> r1 we have ‖P(λ )x‖> 0, a contradiction. This completes the proof. �

COROLLARY 3.2.1. Let P(z) = A0 +A1z+ · · ·+ Izm be a monic matrix polyno-
mial. Denote

M̃ := max
i=0,···,m

‖Am−i−Am−i−1‖ (Am = I and A−1 = 0).

Then all eigenvalues of P(z) are contained in the closed disk K(0,r2) , where r2 :=
max{1,δ} and δ �= 1 is the positive root of the equation

zm+2 − (1+ M̃)zm+1 + M̃ = 0.
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In particular, for n = 1 we obtain [2, Theorem 3.3].

Proof. Consider the matrix polynomial

Q(z) := (1− z)P(z) = −Izm+1 +
m

∑
i=0

(Am−i−Am−i−1)zm−i.

Applying Theorem 3.2 for the polynomial Q(z) , observing that each eigenvalue of P(z)
is also an eigenvalue of Q(z) , we obtain the required result. �

THEOREM 3.3. Let P(z) = A0 +A1z+ · · ·+ Izm . Then all eigenvalues of P(z) are
contained in the open disk

Ko(0,r3) := {z ∈ C| |z| < r3},
where r3 := 1+M and M is defined as in Theorem 3.2.

In particular, for n = 1 we obtain another Cauchy’s theorem for polynomials [11, The-
orem (27,2)].

Proof. Let λ ∈ C be an eigenvalue of P(z) and x ∈ Cn a unit eigenvector of P(z)
associated to λ .
As above, we may assume that |λ | > 1. Then we have

‖P(λ )x‖ � |λ |m
[
‖Ix‖−‖

m−1

∑
i=0

Aix
λ m−i ‖

]
� |λ |m

[
1−

m−1

∑
i=0

‖Ai‖
|λ |m−i

]

� |λ |m
[
1−M

m

∑
i=1

1
|λ |i

]
> |λ |m

[
1−M

∞

∑
i=1

1
|λ |i

]
= |λ |m

[
1− M

|λ |−1

]
=

|λ |m
|λ |−1

(|λ |−1−M).

Then, for |λ | � 1+M we have ‖P(λ )x‖> 0, a contradiction. Thus |λ |< 1+M . �

COROLLARY 3.3.1. Let P(z) = A0 + A1z + · · ·+ Izm . Then all eigenvalues of
P(z) are contained in the open disk Ko(0,r4) , where r4 := 1+ M̃ and M̃ is defined as
in Corollary 3.2.1.

In particular, for n = 1 we obtain [2, Theorem 3.4].

Proof. Consider the matrix polynomial

Q(z) := (1− z)P(z) = −Izm+1 +
m

∑
i=0

(Am−i−Am−i−1)zm−i.

Since each eigenvalue of P(z) is also an eigenvalue of Q(z) , applying Theorem 3.3 for
Q(z) we have the conclusion. �

Next we give a matrix version of the theorem of Joyal, Labelle and Rahman, cf.
[9], [13, Theorem 2.14].
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THEOREM 3.4. Let P(z) = A0 +A1z+ . . . +Am−1zm−1 + Izm be a monic matrix
polynomial. Denote

α := max
i=0,···,m−2

‖Ai‖ .

Then each eigenvalue λ of P(z) is estimated by

|λ | � 1
2

{
1+‖Am−1‖+

[
(1−‖Am−1‖)2 +4α

] 1
2
}

.

Proof. Let λ ∈ C be an eigenvalue of P(z) and x ∈ C
n a unit eigenvector of P(z)

associated to λ .
By contradiction, assume

|λ | > 1
2

{
1+‖Am−1‖+

[
(1−‖Am−1‖)2 +4α

] 1
2
}

.

It follows that
(|λ |−1)(|λ |−‖Am−1‖)−α > 0. (5)

Multiplying (5) by |λ |m−1 and then dividing by |λ |−1, we obtain

|λ |m −‖Am−1‖λ m−1−α
|λ |m−1

|λ |−1
> 0.

However,

α
|λ |m−1

|λ |−1
> α

|λ |m−1 −1
|λ |−1

= α(1+ |λ |+ · · ·+ |λ |m−2)

� ‖(A0 +A1λ + · · ·+Am−2λ m−2)x‖.
On the other hand,

|λ |m −‖Am−1‖λ m−1 � ‖(I ·λ m +Am−1λ m−1)x‖.
It follows that

0 < |λ |m −‖Am−1‖λ m−1−α
|λ |m−1

|λ |−1

< ‖(I ·λ m +Am−1λ m−1)x‖−‖(A0 +A1λ + · · ·+Am−2λ m−2)x‖
� ‖(A0 +A1λ + · · ·+Am−2λ m−2)x+(Am−1λ m−1 + I ·λ m)x‖ = ‖P(λ )x‖,

a contradiction. Thus

λ � 1
2

{
1+‖Am−1‖+

[
(1−‖Am−1‖)2 +4α

] 1
2
}

. �

By applying Theorem 3.4 for the monic matrix polynomial zmP( 1
z ) we obtain the

following lower bound for eigenvalues of P(z) .
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COROLLARY 3.4.1. Let P(z) = A0 +A1z+ · · ·+Am−1zm−1 + Izm . Denote Li :=
A−1

0 Ai ( i = 1, . . . ,m−1) , Lm = A−1
0 , and

β := max
i=2,···,m

‖Li‖ .

Then for each eigenvalue λ of P(z) we have

|λ | � 2

1+‖L1‖+
[
(1−‖L1‖)2 +4β

] 1
2

.

By applying Theorem 3.4 for the matrix polynomial (1− z)P(z) we obtain

COROLLARY 3.4.2. Let P(z) = A0 +A1z+ · · ·+Am−1zm−1 + Izm . Denote

γ := max
i=1,···,m

‖Am−i−Am−i−1‖ (A−1 = 0).

Then each eigenvalue λ of P(z) satisfies

|λ | � 1
2

{
1+‖I−Am−1‖+

[
(1−‖I−Am−1‖)2 +4γ

] 1
2
}

.

Similarly, Corollary 3.4.2 yields the following lower bound.

COROLLARY 3.4.3. Let P(z) = A0 +A1z+ . . .+Am−1zm−1 + Izm . Denote

γ ′ := max
i=1,···,m

‖Li −Li+1‖ (Lm+1 = 0).

Then each eigenvalue λ of P(z) satisfies

|λ | � 2

1+‖I−L1‖+
[
(1−‖I−L1‖)2 +4γ ′

] 1
2

.

By applying Theorem 3.4 for the matrix polynomial (Iz−Am−1)P(z) we obtain

COROLLARY 3.4.4. Let P(z) = A0 +A1z+ . . .+Am−1zm−1 + Izm . Denote

δ := max
i=0,···,m−1

‖Am−1Ai−Ai−1‖ (A−1 = 0).

Then each eigenvalue λ of P(z) satisfies

|λ | � 1
2
(1+

√
1+4δ).

Corollary 3.4.4 yields the following lower bound.
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COROLLARY 3.4.5. Let P(z) = A0 +A1z+ . . .+Am−1zm−1 + Izm . Denote

δ ′ := max
i=1,···,m

‖L1Li −Li+1‖ (Lm+1 = 0).

Then each eigenvalue λ of P(z) is bounded below by

|λ | � 2

1+
√

1+4δ ′ .

By applying Theorem 3.4 for the matrix polynomial (I · z + I − Am−1)P(z) we
obtain

COROLLARY 3.4.6. Let P(z) = A0 +A1z+ . . .+Am−1zm−1 + Izm . Denote

ε := max
i=0,···,m−1

‖(I−Am−1)Ai +Ai−1‖ (A−1 = 0).

Then each eigenvalue λ of P(z) is estimated by

|λ | � 1+
√

ε .

The following lower bound is obtained by applying Corollary 3.4.6 for the matrix
polynomial zmP( 1

z ) .

COROLLARY 3.4.7. Let P(z) = A0 +A1z+ . . .+Am−1zm−1 + Izm . Denote

ε ′ := max
i=1,···,m

‖(I−L1)Li +Li+1‖ (Lm+1 = 0).

Then each eigenvalue λ of P(z) bounded below by

|λ | � 1

1+
√

ε ′
.

Next we give the matrix version of the theorem of Datt and Govil [3, Theorem 1].

THEOREM 3.5. Let P(z) = A0 + A1z + · · ·+ Izm be a monic matrix polynomial.
Denote

M = max
i=0,···,m−1

‖Ai‖ .

Then each eigenvalue λ of P(z) satisfies∥∥A−1
0

∥∥−1

2(1+M)m−1(Mm+1)
� |λ | � 1+ λ0M,

where λ0 is a root of the equation x = 1− 1
(Mx+1)m in the interval (0,1) .



ON THE LOCATION OF EIGENVALUES OF MATRIX POLYNOMIALS 947

Proof. Let λ ∈ C be an eigenvalue of P(z) and x ∈ Cn a unit eigenvector of P(z)
associated to λ .

First we prove the upper bound for |λ | . We consider two cases:
The first case: mM � 1. In this case, if |λ | > 1, we have

‖P(λ )x‖ � |λ |m −mM |λ |m−1 � |λ |m −|λ |m−1 > 0, a contradiction.

It follows that |λ | � 1 � 1+ λ0M for all λ0 ∈ (0,1).
The second case: mM > 1. In this case the equation x = 1− 1

(Mx+1)m has a unique

root λ0 ∈ (0,1) [3, Lemma 2]. Moreover, we have

‖P(λ )x‖ � |λ |m −M
m−1

∑
j=0

|λ | j = |λ |m −M
|λ |m −1
|λ |−1

.

If |λ | > 1+Mλ0 , we can write |λ | = 1+Mα with α > λ0 . Then α > 1− 1
(Mα+1)m .

It follows that

‖P(λ )x‖ � (1+Mα)m− (1+Mα)m −1
α

> 0,

a contradiction. Thus |λ | � 1+Mλ0.

Now we prove the lower bound for |λ | . By contradiction, assume |λ |< ‖A−1
0 ‖−1

2(1+M)m−1(Mm+1) .

Let us consider the matrix polynomial G(z) := (1− z)P(z).
We have

G(z) = A0 +
m

∑
i=1

(Ai −Ai−1)zi + Izm−Am−1z
m − Izm+1 =: A0 +H(z).

Denote R := 1+M . Then for |z| = R , we have

max
|z|=R

‖H(z)x‖ � Rm+1 +Rm +‖Am−1‖Rm +
m−1

∑
i=1

‖Ai −Ai−1‖Ri

� Rm [R+1+M+2(m−1)M] = 2(1+M)m(mM +1).

It follows from the maximal module principle that for |z| � R we have

‖H(z)x‖ � 2(1+M)m(mM +1).

Then for |λ | < ‖A−1
0 ‖−1

2(1+M)m−1(Mm+1) < R we have

‖G(λ )x‖ = ‖A0x+H(λ )x‖ �
∥∥A−1

0

∥∥−1−‖H(λ )x‖

�
∥∥A−1

0

∥∥−1 − |λ |
1+M

max
|λ |�1+M

‖H(λ )x‖

�
∥∥A−1

0

∥∥−1 −2(1+M)m−1(mM +1) |λ | > 0,
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a contradiction. Therefore ∥∥A−1
0

∥∥−1

2(1+M)m−1(Mm+1)
� |λ | . �

If we do not wish to look for a root in the interval (0,1) of the equation x =
1− 1

(Mx+1)m , we use the following upper bound.

COROLLARY 3.5.1. Let P(z) = A0 +A1z+ · · ·+ Izm be a monic matrix polyno-
mial. Then each eigenvalue λ of P(z) satisfies∥∥A−1

0

∥∥−1

2(1+M)m−1(Mm+1)
� |λ | < 1+

(
1− 1

(1+M)m

)
M.

Proof. The proof follows from Theorem 3.5 and the fact that for a root λ0 of the

equation x = 1− 1
(Mx+1)m in the interval (0,1) , we have always λ0 < 1− 1

(1+M)m . �
Next we give some other bounds for the magnitude of eigenvalues of monic matrix

polynomials.

THEOREM 3.6. Let P(z) = A0 + A1z + · · ·+ Izm be a monic matrix polynomial.
Denote

M := max
i=0,···,m−1

‖Ai‖ , M′ := max
i=1,···,m

‖Ai‖ .

Then each eigenvalue λ of P(z) satisfies∥∥A−1
0

∥∥−1∥∥A−1
0

∥∥−1
+M′

< |λ | < 1+M.

In particular, for n = 1 we obtain [13, Theorem 2.2].

Proof. The upper bound is the one obtained in Theorem 3.3. Now we prove the
lower bound.
Let λ ∈ C be an eigenvalue of P(z) and x ∈ Cn a unit eigenvector of P(z) associated

to λ . If |λ | � ‖A−1
0 ‖−1

‖A−1
0 ‖−1

+M′ , we have

‖P(λ )x‖ �
∥∥A−1

0

∥∥−1−
m

∑
i=1

|λ |i ‖Ai‖ �
∥∥A−1

0

∥∥−1 −M′
m

∑
i=1

|λ |i >
∥∥A−1

0

∥∥−1−M′ |λ |
1−|λ |

=

∥∥A−1
0

∥∥−1
(1−|λ |)−M′ |λ |
1−|λ | � 0, a contradiction.

It follows that |λ | > ‖A−1
0 ‖−1

‖A−1
0 ‖−1

+M′ . This completes the proof. �
More generally, we have the following bounds.
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THEOREM 3.7. Let P(z) = A0 + A1z + · · ·+ Izm be a monic matrix polynomial.
Let p,q > 1 such that 1

p + 1
q = 1 . Denote

Mp :=

(
m−1

∑
i=0

‖Ai‖p

) 1
p

, M′
p :=

(
m

∑
i=1

‖Ai‖p

) 1
p

.

Then each eigenvalue λ of P(z) satisfies

[ ∥∥A−1
0

∥∥−q

(M′
p)q +

∥∥A−1
0

∥∥−q

] 1
q

< |λ | < (1+Mq
p)

1
q .

In particular, for n = 1 we obtain [13, Theorem 2.4]. Moreover, letting p tend to
infinity (then q tends to 1), we obtain Theorem 3.6.

Proof. Let λ ∈ C be an eigenvalue of P(z) and x ∈ Cn a unit eigenvector of P(z)
associated to λ .
If |λ | � (1+Mq

p)
1
q , we have

‖P(λ )x‖ � |λ |m −
m−1

∑
i=0

‖Ai‖|λ |i (6)

� |λ |m −
(

m−1

∑
i=0

‖Ai‖p

) 1
p
(

m−1

∑
i=0

|λ |iq
) 1

q

(7)

= |λ |m
⎡⎣1− Mp

|λ |m
(

m−1

∑
i=0

|λ |iq
) 1

q
⎤⎦= |λ |m

⎡⎣1−Mp

(
m−1

∑
i=0

|λ |(i−m)q

) 1
q
⎤⎦

> |λ |m
⎡⎣1−Mp

(
∞

∑
i=1

|λ |−iq

) 1
q
⎤⎦= |λ |m

[
1−Mp

1

(|λ |q−1)
1
q

]
� 0,

a contradiction.

In the lines above, from (6) to (7) we use the well-known Hölder’s inequality.

It follows that |λ | < (1+Mq
p)

1
q .

Similarly we have |λ | >
[ ‖A−1

0 ‖−q

(M′
p)q+‖A−1

0 ‖−q

] 1
q

. This completes the proof. �

4. Numerical experiments

We have already established several estimations for eigenvalues of matrix poly-
nomials. It is in general not possible to compare the sharpness of these bounds. We
can only compare them in some special cases by numerical examples. In order to get a
good comparison throughout practical examples, we use random data in each example.
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Moreover, we compare the sharpness of our bounds and those given by N. J. Higham
and F. Tisseur [8], J. Maroulas and P. Psarrakos [12]. We compute and compare the
bounds for two cases of the matrix coefficients: One with arbitrary random matrix co-
efficients, and the other one with symmetric matrix coefficients. The experiments were
performed using the open source software OCTAVE (version 4.4.0).

EXAMPLE 4.1. Consider a 5×5 monic matrix polynomial P(z) of degree m = 9
whose coefficient matrices are given by

Ai = 10i−3rand(5), i = 0, . . . ,8,

where rand(5) denotes a 5×5 random matrix from the normal (0,1) distribution.
The upper bounds obtained by Higham and Tisseur [8] are given in Table 5, while

our new upper bounds are given in Table 6.

Lemmas Values Comments
2.3 (2.2) 3.5422 ×105 ∞-norm based
2.3 (2.3) 2.4987 ×105 2-norm based
2.5 (2.13) 3.3493 ×105 ∞-norm based
2.6 (2.14) 3.4651×105 Ostrowski, β = 3/4
2.11 (2.18) 2.4907 ×105 2-norm based
3.1 2.4827 ×105 Cauchy’s theorem applied for P, 2-norm
3.1 2.4827 ×105 Cauchy’s theorem applied for PU , 2-norm
4.1 4.9654 ×105 2-norm based

Table 1: Higham and Tisseur’s upper bounds

Theorems/Corollaries Values Comments
3.2, 3.2.1, 3.3, 3.3.1 2.4827 ×105 applied for PU , 2-norm based
3.4, 3.4.2 2.4827 ×105 2-norm based
3.4.4, 3.4.6 2.4590 ×105 2-norm based
3.6 2.4827 ×105 applied for PU , 2-norm

Table 2: New upper bounds

The upper bound given by Maroulas and Psarrakos equals to 1+ r2 , with r2 =
max{0.0059804,0.065468,0.84200,0.87573,25.012,322.89,322.74,3.0513×104,
2.7181×105} = 2.7181×105.

We can compute the maximal modulus of the eigenvalues of P(z) , which is ex-
actly 2.4354×105 . Moreover, Corollary 3.4.4 and Corollary 3.4.6 give usually the best
upper bounds.

The lower bounds obtained by Higham and Tisseur [8] are given in Table 7, while
our new lower bounds are given in Table 8.
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Lemmas Values Comments
2.2 9.1316 ×10−10 2-norm
2.3 (2.1), 2.4 (2.5) 8.0663 ×10−10 1-norm
2.3 (2.2), 2.4 (2.6) 6.0215 ×10−10 ∞-norm
2.3 (2.3), 2.4 (2.7) 1.0456 ×10−9 2-norm
2.6 4.2286 ×10−8 applied for CL(α), β = 1/4

Table 3: Higham and Tisseur’s lower bounds

Theorems Values Comments
3.4.1, 3.4.3 3.53 ×10−5 2-norm based
3.4.5 0.71005 ×10−5 2-norm based
3.4.7 0.71034 ×10−5 2-norm based
3.5 9.4306 ×10−55 2-norm based
3.6 2.4502 ×10−10 2-norm based

Table 4: New lower bounds

The lower bound given by Maroulas and Psarrakos is r1 = 1.1436×10−7.
We can compute the minimum modulus of the eigenvalues of P(z) , which is ex-

actly 0.012037. Hence the lower bounds obtained above are in general far away the
expected one. However, compare together, Corollary 3.4.1 and Corollary 3.4.3 give
usually the best lower bounds.

In the next example we compute and compare the obtained bounds for eigenvalues
of monic matrix polynomials whose coefficients are symmetric random matrices.

EXAMPLE 4.2. Consider a 5×5 monic matrix polynomial P(z) of degree m = 9
whose coefficient matrices are given by

Ai = (Bi +B∗
i )/2, i = 0, . . . ,8,

where B0 = B1 = rand(5) , and Bj = j ∗ rand(5) for j = 2, . . . ,8. Here rand(5) de-
notes a 5×5 random matrix from the normal (0,1) distribution.

The upper bounds obtained by Higham and Tisseur [8] are given in Table 5, while
our new upper bounds are given in Table 6.

The upper bound given by Maroulas and Psarrakos equals to 1+ r2 , with r2 =
max{1.9326,1.3831,4.3089,6.3952,5.5836,8.3366,19.922,7.6824,6.9319}
= 19.922.
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Lemmas Values Comments
2.3 (2.2) 99.050 ∞-norm based
2.3 (2.3) 35.335 2-norm based
2.5 (2.13) 31.030 ∞-norm based
2.11 (2.18) 28.504 2-norm based
3.1 20.62502 Cauchy’s theorem applied for P, 2-norm
3.1 20.62502 Cauchy’s theorem applied for PU , 2-norm
4.1 39.542 2-norm based

Table 5: Higham and Tisseur’s upper bounds

Theorems/Corollaries Values Comments
3.2 20.77125 2-norm based
3.2.1 19.77125 2-norm based
3.3 20.771 2-norm based
3.3.1 19.280 2-norm based
3.4 20.632 2-norm based
3.4.2 19.455 2-norm based
3.4.4 19.892 2-norm based
3.4.6 20.697 2-norm based
3.6 20.771 applied for PU , 2-norm

Table 6: New upper bounds

We can compute the maximal modulus of the eigenvalues of P(z) , which is exactly
19.009 . Moreover, Corollary 3.3.1 gives usually the best upper bounds.

The lower bounds obtained by Higham and Tisseur [8] are given in Table 7, while
our new lower bounds are given in Table 8.

Lemmas Values Comments
2.2 0.0027435 2-norm
2.3 (2.1), 2.4 (2.5) 0.0084515 1-norm
2.3 (2.2), 2.4 (2.6) 0.0019335 ∞-norm
2.3 (2.3), 2.4 (2.7) 0.0067592 2-norm
2.6 0.0093639 applied for CL(α), β = 1/4

Table 7: Higham and Tisseur’s lower bounds

The lower bound given by Maroulas and Psarrakos is r1 = 1.3606.
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Theorems Values Comments
3.4.1 0.073516 2-norm based
3.4.3 0.068055 2-norm based
3.4.5 0.058889 2-norm based
3.5 3.9543 ×10−15 2-norm based
3.6 0.0024740 2-norm based

Table 8: New lower bounds

We can compute the minimum modulus of the eigenvalues of P(z) , which is ex-
actly 0.15023. Compare together, Corollary 3.4.1 and Corollary 3.4.3 give usually the
best lower bounds.

Acknowledgement. The authors would like to thank the anonymous referees for
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this paper.
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[13] G. V. MILOVANOVIĆ AND TH. M. RASSIAS, Inequalities for polynomial zeros, In: Survey on Clas-

sical Inequalities (Th. M. Rassias, ed.), Mathematics and Its Applications, Vol. 517, pp. 165–202,
Kluwer, Dordrecht, 2000.

[14] V. MEHRMANN AND D. WATKINS, Polynomial eigenvalue problems with Hamiltonian structure,
Electron. Trans. Numer. Anal. 13, (2002), 106–118.

[15] G. SINGH AND W. M. SHAH, On the Location of Zeros of Polynomials, Amer. J. Comp. Math. 1, 1
(2011), 1–10.
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