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GREEN’S FUNCTION OF THE PROBLEM OF BOUNDED SOLUTIONS

IN THE CASE OF A BLOCK TRIANGULAR COEFFICIENT

VITALII G. KURBATOV ∗ AND IRINA V. KURBATOVA

(Communicated by B. Jacob)

Abstract. It is well known that the equation x′(t) = Ax(t)+ f (t) , t ∈ R , where A is a bounded
linear operator, has a unique bounded solution x for any bounded continuous free term f , pro-
vided the spectrum of the coefficient A does not intersect the imaginary axis. This solution can
be represented in the form

x(t) =
∫ ∞

−∞
G (s) f (t− s)ds.

The kernel G is called Green’s function. In this paper, the case when A admits a representation
by a block triangular operator matrix is considered. It is shown that the blocks of G are sums of
special convolutions of Green’s functions of the diagonal blocks of A .

Introduction

Let us consider the equation

x′(t)−Ax(t) = f (t), t ∈ R, (1)

where A is a linear bounded operator acting in a Banach space X . We assume that
f is continuous. The bounded solutions problem is the problem of finding a bounded
solution x that corresponds to a bounded free term f . The bounded solutions problem
is closely connected with the problem of exponential dichotomy of solutions. For the
discussion of the bounded solutions problem from different points of view and related
questions, see [1, 2, 4, 9, 10, 21, 27, 28, 39, 43, 45, 47] and the references therein.

It is well known (see Theorem 5) that equation (1) has a unique bounded solution
x for any bounded continuous free term f if and only if the spectrum of the coefficient
A is disjoint from the imaginary axis. In this case, the solution can be represented in
the form

x(t) =
∫ ∞

−∞
G (s) f (t − s)ds.
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The kernel G is called Green’s function.

In this paper, we consider the case when A admits a representation in the form of a
block triangular matrix (4). The simplest 2×2 matrix representation of the coefficient
A is naturally induced by the decomposition of the space X into the direct sum X−⊕X+
of two spectral subspaces related to the parts of σ(A) that lie in the left and right
complex half-planes. This matrix representation is diagonal, but it can be ‘bad’ in the
sense that the corresponding projectors have large norms; in such a case it may be
convenient to replace one of the subspaces by the orthogonal (or close to orthogonal)
complement of the other; as a result one will arrive at a triangular matrix representation
of A . Similarly, the spectrum of A may be divided into clusters; so, it is again natural
to use a diagonal or triangular matrix representation; the phenomenon of clusterization
is discussed, e.g., in [22, lecture 12], [11, 38]. Representation by triangular operator
matrices is also natural for causal operators; in turn, causal operators are widely used in
control theory [13, 16, 54] and functional differential equations [35, 36, 37]. For other
aspects of the theory of triangular operator matrices, see [7, 8, 19, 20, 23, 24, 29, 32,
34, 46] and the references therein.

The main results of this paper are Theorems 19 and 23; see also Theorem 5. These
theorems show that Green’s function is also induced by a triangular matrix and its
blocks can be represented as the sums of special convolutions of Green’s functions of
the diagonal blocks of A ; see Example 2.

Similar representations and related formulas for the fundamental solution of equa-
tion (1) were proposed, discussed, and applied by many authors [6, 12, 14, 17, 25, 33,
42, 44, 48, 51, 52, 53]; such formulas are widely used in numerical methods and other
applications. We repeat some of these results in this paper (i) for the convenience of
their comparison with our results connected with Green’s function, and because (ii)
we propose a new proof for them (iii) and discuss the infinite-dimensional case, which
requires some additional considerations in the proof; see Section 3.

The paper is organized as follows. In Section 1, we recall the definition of an an-
alytic function with an operator argument. In Section 2, we describe the representation
of the fundamental solution of initial value problem and Green’s function of bounded
solutions problem in the form of the analytic functions exp±,t and gt , respectively, of
the coefficient A . In Section 3, we discuss the subalgebra of operators induced by block
triangular matrices. This subalgebra is not full, which leads to some technical difficul-
ties in the subsequent presentation. In Section 4, we describe a representation of blocks
of an analytic function f of a triangular matrix via contour integrals (Theorem 10). In
Section 5, the terms of the formula from Theorem 10 are represented as divided dif-
ferences of f with operator arguments (Theorem 17). In Section 6, we show that the
divided differences of exp±,t and gt can be represented as convolutions with respect to
the variable t of functions of one variable (Theorem 22). In Section 7, we describe a
representation of divided differences of exp±,t and gt with operator arguments (Theo-
rem 23). The combination of Theorems 19 and 23 allows one to represent the blocks of
the fundamental solution of initial value problem and Green’s function of the bounded
solutions problem as special convolutions of the functions exp±,t and gt applied to the
diagonal blocks of A (Examples 1 and 2).
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1. Functions of operators

Let X and Y be non-zero complex Banach spaces. We denote by B(X ,Y ) the set
of all bounded linear operators A : X → Y . If X = Y , we use the brief notation B(X) .
The symbol 1 = 1X stands for the identity operator from B(X) .

Let B be a non-zero complex Banach algebra [5, 30, 49] with the unit 1 (unital
algebra). The main example of a unital Banach algebra is the algebra B(X) ; another
important example is the algebra of all n×n matrices, n∈N . A subset R of an algebra
B is called a subalgebra if A+B,λA,AB∈ R for all A,B ∈R and λ ∈ C . If the unit 1
of an algebra B belongs to its subalgebra R , then R is called a subalgebra with a unit
or a unital subalgebra.

A unital subalgebra R of a unital algebra B is called [5, Ch. 1, § 3.6] full if it
possesses the property: if for B ∈ R there exists B−1 ∈ B such that BB−1 = B−1B =
1 , then B−1 ∈ R . In Remark 1 we will see that the subalgebra consisting of block
triangular matrices is not always full.

Let B be a (nonzero) unital algebra and A ∈B . The set of all λ ∈ C such that the
element λ1−A is not invertible is called the spectrum of the element A (in the algebra
B) and is denoted by the symbol σ(A) or σB(A) . The complement ρ(A) = ρB(A) =
C\σ(A) is called the resolvent set of A . The function Rλ = (λ1−A)−1 is called the
resolvent of the element A .

PROPOSITION 1. ([5, Ch. 1, Sec. 4, Theorem 3], [49, Theorem 10.18]) Let R be
a closed unital subalgebra of a unital algebra B . Then the spectrum σR(A) of an
element A∈R in the algebra R is the union of the spectrum σB(A) of A in the algebra
B and (possibly empty) collection of bounded connected components of the resolvent
set ρB(A) .

Let A ∈B and let U ⊆ C be an open set that contains the spectrum σ(A) . The set
U must not be connected. Let f : U → C be an analytic function. The function f of
the element A is defined [30, Ch. V, § 1], [10, p. 17] by the formula

f (A) =
1

2π i

∫
Γ

f (λ )(λ1−A)−1dλ , (2)

where the contour Γ surrounds the set σB(A) in the counterclockwise direction and the
function f is analytic inside Γ .

PROPOSITION 2. ([30, Theorem 5.2.5], [49, Theorem 10.27]) The mapping f �→
f (A) preserves algebraic operations, i. e.,

( f +g)(A) = f (A)+g(A),
(α f )(A) = α f (A),
( f g)(A) = f (A)g(A),

where f +g, α f , and f g are defined pointwise.
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COROLLARY 3. For the function rλ0
(λ ) = 1

λ0−λ , λ0 ∈ ρ(A) , we have

rλ0
(A) = (λ01−A)−1.

Proof. The proof follows from Proposition 2. �

2. The differential equation with a constant coefficient

In this Section, we describe three analytic functions that are closely related to
the representation of solutions of linear ordinary differential equations with constant
coefficients.

For λ ∈ C and t ∈ R , we consider the functions

exp+,t(λ ) =

{
eλ t , if t > 0,

0, if t < 0,

exp−,t(λ ) =

{
0, if t > 0,

−eλ t, if t < 0,

gt(λ ) =

{
exp−,t(λ ), if Reλ > 0,

exp+,t(λ ), if Reλ < 0.

These functions are undefined for t = 0. The function gt is also undefined for Reλ = 0.
For any fixed t 	= 0, all three functions are analytic on their domains.

Let X be a Banach space and A ∈ B(X) . We consider the differential equation

x′(t) = Ax(t)+ f (t), t ∈ R. (3)

We recall two well-known theorems. The first theorem is connected with the initial
value problems.

THEOREM 4. ([10, Ch. 1, § 4], [27, Ch. IV, Corollary 2.1]) Let f : R → X be a
continuous function. The solution of the initial value problem

x′(t) = Ax(t)+ f (t), t > 0,

x(0) = 0

is the function

x(t) =
∫ t

0
exp+,s(A) f (t − s)ds, t > 0.

The solution of the initial value problem

x′(t) = Ax(t)+ f (t), t < 0,

x(0) = 0

is the function

x(t) =
∫ 0

t
exp−,s(A) f (t − s)ds, t < 0.
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The function t �→ exp+,t(A) is usually called [27] the fundamental solution of
equation (3).

Now we turn to the bounded solutions problem, i. e. the problem of finding a
bounded solution x : R → X under the assumption that the free term f : R → X is a
bounded function.

THEOREM 5. ([10, Theorem 4.1, p. 81]) Let A∈B(X) . Equation (3) has a unique
solution x bounded on R for any bounded continuous function f if and only if the
spectrum σ(A) of A does not intersect the imaginary axis. This solution admits the
representation

x(t) =
∫ ∞

−∞
G (s) f (t − s)ds,

where
G (t) = gt(A), t 	= 0.

The function G is called [10] Green’s function of the bounded solutions problem for
equation (3).

3. Causal spectrum of a block triangular matrix

Let a Banach space X be represented as the direct sum of its closed nonzero sub-
spaces Xi , i = 1, . . . ,n :

X = X1⊕X2⊕ . . .⊕Xn.

This means that every x ∈ X can be uniquely represented in the form

x = x1 + x2 + . . .+ xn,

where xi ∈ Xi , i = 1, . . . ,n . It is easy to prove that the norm on X is equivalent to the
norm

‖x‖ = ‖x1‖+‖x2‖+ . . .+‖xn‖.
We denote by M = M(X1,X2, . . . ,Xn) the set of all operator matrices

{Ti j ∈ B(Xj,Xi) : i, j = 1, . . . ,n}.

We endow M with the norm ‖{Ti j }‖ = max j ∑n
i=1‖Ti j‖ . It is easy to show that M is

a unital Banach algebra with respect to the usual matrix multiplication, and the Banach
algebra M is isomorphic (not isometrically) to the algebra B(X) . As usual, we do not
distinguish very carefully matrices and operators induced by them.

We denote by M+ = M+(X1,X2, . . . ,Xn) the set of all lower triangular matrices⎛
⎜⎜⎜⎜⎝

A1,1 0 . . . 0 0
A2,1 A2,2 . . . 0 0
. . . . . . . . . . . . . . .

An−1,1 An−1,2 . . . An−1,n−1 0
An,1 An,2 . . . An,n−1 An,n

⎞
⎟⎟⎟⎟⎠ . (4)
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We denote by B+(X) the class of operators induces by M+ . Clearly, M+ is a closed
subalgebra of the algebra M . Therefore, B+(X) is a closed subalgebra of the algebra
B(X) . We call operators from the class B+(X) causal in analogy with a similar class of
operators in the control theory [13, 16, 54] and in the theory of functional differential
equations [35, 36, 37], see also the references therein. Namely, if one interprets the
indices i = 1, . . . ,n as successive instants of time, then the triangularity of a matrix A
means that the value (Ax)i of the ’output’ Ax at any instant i may depend only on
values x j of the ‘input’ x at the previous instants j � i .

REMARK 1. The subalgebra M+ (and consequently, the subalgebra B+(X)) may
be not full if the space X is infinite-dimensional. We give a corresponding example. Let
X be the space Lp(R) , 1 � p � ∞ . We represent X = Lp(R) as Lp(−∞,0]⊕Lp[0,∞) ,
where Lp(−∞,0] and Lp[0,∞) are the subspaces of functions from Lp(R) that are
equal to zero outside (−∞,0] and [0,∞) respectively. Clearly, the operator of delay(
Sx

)
(t) = x(t − 1) is induced by a lower triangular matrix (thus it is causal), but the

inverse operator
(
S−1x

)
(t) = x(t + 1) is induced by an upper triangular matrix (thus

S−1 is not causal). Consequently, in contrast to the finite-dimensional case, the (ordi-
nary) spectrum of a triangular matrix may be not the union of the spectra of its diagonal
blocks, see Proposition 7. See a more detailed discussion of this phenomenon in [26].

If an operator T ∈B+(X) is invertible and the inverse operator belongs to B+(X) ,
we say that T is causally invertible. We call the spectrum of T ∈ B+(X) in the algebra
B+(X) the causal spectrum and denote it by σ+(T ) . Clearly,

σ(T ) ⊆ σ+(T ).

We denote by ρ+(T ) the causal resolvent set C\σ+(T ) . The same terminology and
notation will be used for matrices M ∈ M+ .

We recall that an open set D ⊆ C is called simply-connected if any simple closed
curve in D can be shrunk continuously to a point.

PROPOSITION 6. Let the domain D ⊆ C of an analytic function f be simply-
connected (examples of such functions are exp±,t and gt ). Let T ∈ B+(X) . Then
σ+(T ) ⊂ D provided σ(T ) ⊂ D. Thus the function f (T ) of a causal operator T is
defined in algebras B(X) and B+(X) simultaneously.

Proof. A possible difficulty can occur when the spectrum σ(T ) is contained in the
domain D of the definition of f , but σ+(T ) � D . Therefore the resolvent (λ1−A)−1

in integral (2) is defined in B(X) , but it may not exist in B+(X) .
By Proposition 1, the causal spectrum σ+(T ) is the union of the ordinary spec-

trum σ(T ) and (possibly) some bounded components of the resolvent set ρ(A) . Since
the domain D of f is simply-connected, bounded components of the resolvent set ρ(A)
are contained in the domain D , provided the spectrum σ(T ) itself is contained in the
domain D . �
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PROPOSITION 7. ([35], [37, Proposition 2.1.7]) The causal spectrum of a lower
triangular matrix {Ti j } (and the causal spectrum of the corresponding operator) is
the union of the (ordinary) spectra σ(Tii) of the diagonal blocks Tii .

Proof. It suffices to prove that a lower triangular matrix has a lower triangular
inverse if and only if all diagonal blocks Tii are invertible.

Let the lower triangular matrix {Bi j } be the inverse of the lower triangular ma-
trix {Ti j } . Then it follows from the matrix multiplication rule that Bii are inverses
of Tii .

Conversely, let the diagonal blocks Tii be invertible. Then from the Gaussian elim-
ination algorithm, it easily follows that the inverse matrix exists and is triangular. �

4. Functions of block triangular matrices

THEOREM 8. Let a causal matrix

T =

⎛
⎜⎜⎜⎜⎝

T1,1 0 . . . 0 0
T2,1 T2,2 . . . 0 0
. . . . . . . . . . . . . . .

Tn−1,1 Tn−1,2 . . . Tn−1,n−1 0
Tn,1 Tn,2 . . . Tn,n−1 Tn,n

⎞
⎟⎟⎟⎟⎠

be causally invertible. Then the elements of the inverse matrix

B =

⎛
⎜⎜⎜⎜⎝

B1,1 0 . . . 0 0
B2,1 B2,2 . . . 0 0
. . . . . . . . . . . . . . .

Bn−1,1 Bn−1,2 . . . Bn−1,n−1 0
Bn,1 Bn,2 . . . Bn,n−1 Bn,n

⎞
⎟⎟⎟⎟⎠

have the form

Bi, j = ∑
i=i1>i2...>im= j

(−1)m+1T−1
i1,i1

Ti1,i2T
−1
i2,i2

Ti2,i3 . . .Tim−1,imT−1
im,im , i � j.

Hereinafter, the sum ∑
i=i1>i2...>im= j

consists of one term if i = j . For example, ∑
i=i1= j

Ai1 =

Ai . In particular,

Bi,i = T−1
i,i ,

Bi+1,i = −T−1
i+1,i+1Ti+1,iT

−1
i,i ,

Bi+2,i = −T−1
i+2,i+2Ti+2,iT

−1
i,i +T−1

i+2,i+2Ti+2,i+1T
−1
i+1,i+1Ti+1,iT

−1
i,i .

Proof. Let us verify that TB = 1 . Clearly, (TB)ii = 1 . We calculate, for example,
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(TB)n,1 :

(TB)n,1 =Tn,1T
−1
1,1 −Tn,2T

−1
2,2 T2,1T

−1
1,1 +Tn,3(−T−1

3,3 T3,1T
−1
1,1 +T−1

3,3 T3,2T
−1
2,2 T2,1T

−1
1,1 )+ . . .

+Tn,n ∑
n=i1>i2...>im=1

(−1)m+1T−1
n,n Tn,i2T

−1
i2,i2

Ti2,i3 . . .Tim−1,1T
−1
1,1

=Tn,1T
−1
1,1 −Tn,2T

−1
2,2 T2,1T

−1
1,1 +Tn,3(−T−1

3,3 T3,1T
−1
1,1 +T−1

3,3 T3,2T
−1
2,2 T2,1T

−1
1,1 )+ . . .

+ ∑
n=i1>i2...>im=1

(−1)m+1Tn,i2T
−1
i2,i2

Ti2,i3 . . .Tim−1,1T
−1
1,1 = 0.

In a similar way one establishes that BT = 1 . �

THEOREM 9. Let A ∈ M+ . Then the causal resolvent of A (i. e., the resolvent
(λ1−A)−1 at points λ ∈ ρ+(A)) has the form

(λ1−A)−1 =

⎛
⎜⎜⎜⎜⎝

R1,1 0 . . . 0 0
R2,1 R2,2 . . . 0 0
. . . . . . . . . . . . . . .

Rn−1,1 Rn−1,2 . . . Rn−1,n−1 0
Rn,1 Rn,2 . . . Rn,n−1 Rn,n

⎞
⎟⎟⎟⎟⎠ ,

where Ri j for i � j are defined by the formula

Ri j = ∑
i=i1>i2...>im= j

(λ1−Ai1,i1)
−1Ai1,i2(λ1−Ai2,i2)

−1Ai2,i3 . . .Aim−1,im(λ1−Aim,im)−1.

In particular,

Rii =(λ1−Aii)−1,

Ri+1,i =(λ1−Ai+1,i+1)−1Ai+1,i(λ1−Aii)−1,

Ri+2,i =(λ1−Ai+2,i+2)−1Ai+2,i(λ1−Aii)−1

+(λ1−Ai+2,i+2)−1Ai+2,i+1(λ1−Ai+1,i+1)−1Ai+1,i(λ1−Aii)−1.

Proof. The proof follows from Theorem 8. The sign (−1)m+1 disappears because
(λ1−A)i, j = −Ai, j for i > j . �

THEOREM 10. Let a function f be analytic in a neighborhood of the causal spec-
trum σ+(A) of a matrix A ∈ M+ . Then the matrix F = f (A) has the form

F =

⎛
⎜⎜⎜⎜⎝

F1,1 0 . . . 0 0
F2,1 F2,2 . . . 0 0
. . . . . . . . . . . . . . .

Fn−1,1 Fn−1,2 . . . Fn−1,n−1 0
Fn,1 Fn,2 . . . Fn,n−1 Fn,n

⎞
⎟⎟⎟⎟⎠ ,
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where Fi j for i � j are defined by the formula

Fi, j = ∑
i=i1>i2...>im= j

1
2π i

∫
Γ

f (λ )(λ1−Ai1,i1)
−1Ai1,i2(λ1−Ai2,i2)

−1Ai2,i3 . . .

×Aim−1,im(λ1−Aim,im)−1 dλ ,

where Γ surrounds the causal spectrum σ+(A) of the matrix A. In particular,

Fi,i =
1

2π i

∫
Γ

f (λ )(λ1−Aii)−1 dλ ,

Fi+1,i =
1

2π i

∫
Γ

f (λ )(λ1−Ai+1,i+1)−1Ai+1,i(λ1−Aii)−1 dλ ,

Fi+2,i =
1

2π i

∫
Γ

f (λ )(λ1−Ai+2,i+2)−1Ai+2,i(λ1−Aii)−1 dλ

+
1

2π i

∫
Γ

f (λ )(λ1−Ai+2,i+2)−1Ai+2,i+1(λ1−Ai+1,i+1)−1Ai+1,i(λ1−Aii)−1 dλ .

Proof. Substituting the representation of (λ1−A)−1 from Theorem 9 into for-
mula (2), we obtain the desired result. �

REMARK 2. Let a matrix A ∈ M+ has only two non-zero diagonals:⎛
⎜⎜⎜⎜⎝

A1,1 0 . . . 0 0
A2,1 A2,2 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . An−1,n−1 0
0 0 . . . An,n−1 An,n

⎞
⎟⎟⎟⎟⎠ .

Let a function f be analytic in a neighborhood of the causal spectrum σ+(A) of the
matrix A . Then it follows from Theorem 10 that the elements Fi j with i � j of the
matrix F = f (A) consist of exactly one summand:

Fi, j =
1

2π i

∫
Γ

f (λ )(λ1−Ai,i)−1Ai,i+1(λ1−Ai+1,i+1)−1Ai+1,i+2 . . .

×Aj−1, j(λ1−Aj, j)−1 dλ .

For the function f = exp+,t , this phenomenon was described in [6] and applied in [25].

COROLLARY 11. Let the domain D ⊆ C of an analytic function f be simply-
connected (examples of such functions are exp±,t and gt ). Then the conclusion of
Theorem 10 is true if the function f is analytic in a neighborhood of the ordinary
spectrum σ(A) of the matrix A ∈ M+ .

Proof. The proof follows from Proposition 6. �
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REMARK 3. For scalar matrices, Theorem 10 goes back to [48]. For matrices
consisting of finite-dimensional blocks, it was published in [12, Theorem 2]. More
precisely, in [12] it was considered the case of polynomial functions f ; but from the
case of polynomials, it follows the case of general analytic functions, since (if A is a
scalar matrix) any analytic function can be replaced by its interpolating polynomial.

5. Divided differences

Let f be an analytic function defined on an open (not obligatorily connected)
subset of C . Let μ1 , μ2 , . . . , μn be arbitrary numbers from the domain of f (some
of them may coincide with others); they are called points of interpolation. Divided
differences of the function f with respect to the points μ1 , μ2 , . . . , μn are defined
(see, e.g., [18, 31]) by the recurrent relations

f [0](μi) = f (μi), 1 � i � n,

f [1](μi,μi+1) =
f [0](μi+1)− f [0](μi)

μi+1− μi
, 1 � i � n−1, (5)

f [m](μi, . . . ,μi+m) =
f [m−1](μi+1, . . . ,μi+m)− f [m−1](μi, . . . ,μi+m−1)

μi+m − μi
, 1 � i � n−m.

In these formulas, if the denominator vanishes, then the quotient is understood as the
derivative with respect to one of the arguments of the previous divided difference (the
naturalness of this agreement can be derived by continuity from Corollary 13).

PROPOSITION 12. ([18, Ch. 1, Formula (54)]) Let a function f be analytic in an
open neighbourhood of the points of interpolation μ1 , μ2 , . . . , μm . Then the divided
difference f [m−1] admits the representation

f [m−1](μ1, . . . ,μm) =
1

2π i

∫
Γ

f (z)
Ω(z)

dz,

where the contour Γ encloses all the points of interpolation and

Ω(z) =
m

∏
k=1

(z− μk).

COROLLARY 13. Divided differences are differentiable functions of their argu-
ments.

Proof. The proof follows from Proposition 12. �

COROLLARY 14. If D ⊆ C is the domain of an analytic function f , then f [m−1]

is defined in Dm .

Proof. The proof follows from Proposition 12. �
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COROLLARY 15. Divided differences f [m−1](μ1, . . . ,μm) are symmetric functions,
i. e., they do not depend on the order of their arguments μ1 , . . . , μm .

Proof. The proof follows from Proposition 12. �

PROPOSITION 16. ([18, Ch. 1, formula (48)], [31, p. 19, formula (1)]) Let us as-
sume that the points of interpolation μ1, . . . ,μm are distinct. Then the divided difference
f [m−1] admits the representation

f [m−1](μ1, . . . ,μm) =
m

∑
j=1

f (μ j)
m
∏
k=1
k 	= j

(μ j − μk)
.

Proof. The proof follows from Proposition 12. �

For a function f analytic in a neighborhood of the causal spectrum of a matrix
A ∈ M+ , we denote by f [m−1](A; i1, i2, . . . , im) the summands from Theorem 10:

f [m−1](A; i1, i2, . . . , im) =
1

2π i

∫
Γ

f (λ )(λ1−Ai1,i1)
−1Ai1,i2(λ1−Ai2,i2)

−1Ai2,i3 . . .

×Aim−1,im(λ1−Aim,im)−1 dλ ,

(6)

where Γ surrounds the causal spectrum σ+(A) of the matrix A .

THEOREM 17. Let a function f be analytic in a neighborhood of the causal spec-
trum σ+(A) of a matrix A ∈ M+ . Then

f [m−1](A; i1, i2, . . . , im) =
1

(2π i)m

∫
Γi1

. . .
∫

Γim

f [m−1](λi1 , . . . ,λim)(λi11−Ai1,i1)
−1

×Ai1,i2(λi21−Ai2,i2)
−1Ai2,i3 . . .Aim−1,im(λim1−Aim,im)−1 dλi1 . . . dλim ,

(7)

where Γik surrounds the spectrum of Aik,ik .

Proof. Since f is analytic in a neighborhood of σ+(A) =
⋃n

i=1 σ(Aii) (see Propo-
sition 7), we may assume without loss of generality that Γik in (7) surrounds the whole⋃n

i=1 σ(Aii) and, moreover, Γik surrounds Γik+1 , see Figure 1.
Since the contours Γik are disjoint, the points λi1 , . . . , λim in the integrand of (7)

are distinct. Therefore we can substitute the representation of divided differences from
Proposition 16 into definition (7):

f [m−1](A; i1, i2, . . . , im) =
1

(2π i)m

∫
Γi1

. . .
∫

Γim

m

∑
j=1

f (λi j )
m
∏
k=1
k 	= j

(λi j −λik)

× (λi11−Ai1,i1)
−1Ai1,i2 . . .Aim−1,im(λim1−Aim,im)−1 dλi1 . . . dλim .

(8)
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Figure 1: The choice of the contours Γik in the proof of Theorem 17. The symbol f
means the localization of singularities of f

Let us begin with the first summand. We have

1
2π i

∫
Γii1

f (λi1)(λi11−Ai1,i1)
−1Ai1,i2

×
[
. . .

1
2π i

∫
Γim−2

1
λi1 −λim−2

× (λim−21−Aim−2,im−2)
−1Aim−2,im−1

×
[

1
2π i

∫
Γim−1

1
λi1 −λim−1

(λim−11−Aim−1,im−1)
−1Aim−1,im

×
[

1
2π i

∫
Γim

1
λi1 −λim

(λim1−Aim,im)−1 dλim

]
dλim−1

]
dλim−2 . . .

]
dλi1 .

By Corollary 3, for the internal integral, we have

1
2π i

∫
Γim

1
λi1 −λim

(λim1−Aim,im)−1 dλim = (λi11−Aim,im)−1.

Now we can calculate the next internal integral (again using Corollary 3):

1
2π i

∫
Γim−1

1
λi1 −λim−1

(λim−11−Aim−1,im−1)
−1Aim−1,im(λi11−Aim,im)−1 dλim−1

=
[

1
2π i

∫
Γim−1

1
λi1 −λim−1

(λim−11−Aim−1,im−1)
−1 dλim−1

]
Aim−1,im(λi11−Aim,im)−1

=(λi11−Aim−1,im−1)
−1Aim−1,im(λi11−Aim,im)−1.

And so on. Finally, we arrive at the representation (for the first summand in (8))

1
2π i

∫
Γi1

f (λi1)(λi11−Ai1,i1)
−1Ai1,i2(λi11−Ai2,i2)

−1Ai2,i3 . . .

×Aim−1,im(λi11−Aim,im)−1 dλi1 ,

which coincides with formula (6).
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Next we show that the other summands in (8) are zero. Let us consider, for exam-
ple, the second summand

1
(2π i)m

∫
Γi1

. . .
∫

Γim

f (λi2)
m
∏
k=1
k 	=2

(λi2 −λik)

× (λi11−Ai1,i1)
−1Ai1,i2 . . .Aim−1,im(λim1−Aim,im)−1 dλi1 . . . dλim .

Proceeding as above (i. e. successively calculating integrals over all variables except
λi1 ), at the final stage, we arrive at the integral

1
2π i

∫
Γi1

1
λi2 −λi1

(λi11−Ai1,i1)
−1 dλi1 .

We notice that the singularity of the function λi1 �→ 1
λi2

−λi1
(i. e., the point λi2 ∈Γi2 ) lies

inside the contour Γi1 . Hence the integrand λi1 �→ 1
λi2−λi1

(λi11−Ai1,i1)
−1 is analytic

outside the contour Γi1 and decreases at infinity as 1
λ 2

i1

. Therefore the integral equals

zero. �

REMARK 4. For the case of the first divided difference, a more detailed discussion
of formula (7) can be found in [40, Theorem 41], see also the references therein.

COROLLARY 18. Let a function f be analytic in a neighborhood of the causal
spectrum σ+(A) of a matrix A ∈ M+ . Then the matrix F = f (A) has the form

F =

⎛
⎜⎜⎜⎜⎝

F11 0 . . . 0 0
F21 F22 . . . 0 0
. . . . . . . . . . . . . . .

Fn−1,1 Fn−1,2 . . . Fn−1,n−1 0
Fn,1 Fn,2 . . . Fn,n−1 Fn,n

⎞
⎟⎟⎟⎟⎠ ,

where Fi, j , i � j , admit the representation

Fi, j = ∑
i=i1>i2...>im= j

f [m−1](A; i1, i2, . . . , im).

Proof. The proof follows from Theorems 10 and 17. �

THEOREM 19. Let A ∈ M+ . Then

exp±,t(A) =

⎛
⎜⎜⎜⎜⎝

E±,1,1 0 . . . 0 0
E±,2,1 E±,2,2 . . . 0 0
. . . . . . . . . . . . . . .

E±,n−1,1 E±,n−1,2 . . . E±,n−1,n−1 0
E±,n,1 E±,n,2 . . . E±,n,n−1 E±,n,n

⎞
⎟⎟⎟⎟⎠ ,
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where E±,i, j , i � j , admit the representation

E±,i, j = ∑
i=i1>i2...>im= j

exp[m−1]
±,t (A; i1, i2, . . . , im);

and (provided the spectrum σ(A) does not intersect the imaginary axis)

gt(A) =

⎛
⎜⎜⎜⎜⎝

G1,1 0 . . . 0 0
G2,1 G2,2 . . . 0 0
. . . . . . . . . . . . . . .

Gn−1,1 Gn−1,2 . . . Gn−1,n−1 0
Gn,1 Gn,2 . . . Gn,n−1 Gn,n

⎞
⎟⎟⎟⎟⎠ ,

where Gi, j , i � j , admit the representation

Gi, j = ∑
i=i1>i2...>im= j

g[m−1]
t (A; i1, i2, . . . , im).

Proof. The proof follows from Corollary 11 and Theorem 17. �

6. Divided differences of the functions exp±,t and gt

LEMMA 20. Let the points of interpolation λ1 , λ2 , . . . , λn be distinct. Then for
any λ ∈ C , the divided differences of the function rλ (ν) = 1

λ−ν admit the representa-
tion

r[n−1]
λ (λ1, . . . ,λn) =

1

∏n
j=1(λ −λ j)

.

Proof. The proof is by induction on n . For n = 1 we have

r[1]
λ (λ1,λ2) =

1
λ−λ1

− 1
λ−λ2

λ1−λ2
=

1
(λ −λ1)(λ −λ2)

.

Assuming that the formula holds for n−2, we prove it for n−1. We have

r[n−1]
λ (λ1, . . . ,λn) =

r[n−1]
λ (λ1, . . . ,λn−2,λn−1)− r[n−1]

λ (λ1, . . . ,λn−2,λn)
λn−1−λn

=

1
∏n−2

j=1(λ−λ j)
1

λ−λn−1
− 1

∏n−2
j=1(λ−λ j)

1
λ−λn

λn−1−λn

=
1

∏n−2
j=1(λ −λ j)

1
λ−λn−1

− 1
λ−λn

λn−1−λn
=

1

∏n
j=1(λ −λ j)

. �
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We recall [15, 41, 50] that the bilateral (or two-sided) Laplace transform of a
function f : R → C is the function

(
B f

)
(λ ) =

∫ ∞

−∞
e−λ t f (t)dt.

The value
(
B f

)
(λ ) at the point λ ∈ C is defined if the integral converges absolutely.

If f equals zero on (−∞,0) (as the function exp+,(·) ), this definition takes the form

(
B f

)
(λ ) =

∫ ∞

0
e−λ t f (t)dt.

Usually in this case, the integral converges absolutely if Reλ is sufficiently large. If f
equals zero on (0,∞) (as the function exp−,(·) ), the definition of the bilateral Laplace
transform takes the form

(
B f

)
(λ ) =

∫ 0

−∞
e−λ t f (t)dt.

In this case, we assume that the integral converges absolutely if Reλ is sufficiently
small.

We recall the following statement.

LEMMA 21. Let λ0 ∈ C .

(a) The bilateral Laplace transform of the function t �→ exp+,t(λ0) is the function

(
B exp+,(·)(λ0)

)
(λ ) =

1
λ −λ0

, Reλ > Reλ0.

(b) The bilateral Laplace transform of the function t �→ exp−,t(λ0) is the function

(
B exp−,(·)(λ0)

)
(λ ) =

1
λ −λ0

, Reλ < Reλ0.

(c) The bilateral Laplace transform of the function t �→ gt(λ0) , Reλ0 	= 0 , is the
function (the complete domain of the function of B g(·)(λ0) is Reλ > Reλ0 if
Reλ0 < 0 and is Reλ < Reλ0 if Reλ0 > 0)

(
B g(·)(λ0)

)
(λ ) =

1
λ −λ0

, |Reλ | < |Reλ0|.

Proof. Assertion (a) is widely known [41, pp. 300, 305]. The proofs of all asser-
tions are reduced to straightforward calculations. The proof of assertion (c) can also be
obtained from the definition of gt and (a) and (b). �

We recall [49, Ch. 6] that the convolution of two summable functions f ,g : R→C
is the function (

f ∗ g
)
(t) =

∫ ∞

−∞
f (s)g(t − s)ds.
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If f (t) = 0 and g(t) = 0 for t < 0, then this formula takes the form

(
f ∗ g

)
(t) =

{∫ t
0 f (s)g(t − s)ds, for t > 0,

0, for t < 0.

If f (t) = 0 and g(t) = 0 for t > 0, then the definition of convolution takes the form

(
f ∗ g

)
(t) =

{
0, for t > 0,∫ 0
t f (s)g(t − s)ds, for t < 0.

THEOREM 22.

(a) The divided differences of the function t �→ exp+,t admit the representation

exp[n−1]
+,(·) (λ1, . . . ,λn) = exp+,(·)(λ1)∗ . . .∗ exp+,(·)(λn).

For example, for t > 0 , we have

exp[1]
+,t(λ1,λ2) =

∫ t

0
exp+,s(λ1)exp+,t−s(λ2)ds,

exp[2]
+,t(λ1,λ2,λ3) =

∫ t

0

∫ r

0
exp+,s(λ1)exp+,r−s(λ2)exp+,t−r(λ3)dsdr.

(b) The divided differences of the function t �→ exp−,t admit the representation

exp[n−1]
−,(·) (λ1, . . . ,λn) = exp−,(·)(λ1)∗ . . .∗ exp−,(·)(λn).

For example, for t < 0 , we have

exp[1]
−,t(λ1,λ2) =

∫ 0

t
exp−,s(λ1)exp−,t−s(λ2)ds,

exp[2]
−,t(λ1,λ2,λ3) =

∫ 0

t

∫ 0

r
exp−,s(λ1)exp−,r−s(λ2)exp−,t−r(λ3)dsdr.

(c) The divided differences of the function t �→ gt admit the representation

g[n−1]
(·) (λ1, . . . ,λn) = g(·)(λ1)∗ . . .∗ g(·)(λn), Reλ1, . . . ,Reλn 	= 0.

For example, for t 	= 0 , we have

g[1]
t (λ1,λ2) =

∫ ∞

−∞
gs(λ1)gt−s(λ2)ds,

g[2]
t (λ1,λ2,λ3) =

∫ ∞

−∞

∫ ∞

−∞
gs(λ1)gr−s(λ2)gt−r(λ3)dsdr.
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REMARK 5. Assertion (a) is established in [52]. Assertion (b) is proved in a sim-
ilar way. Assertion (c) is proved in [21, p. 53] for other aims. For completeness, we
give here an independent proof of (c).

Proof. Suppose that the points of interpolation λ1 , λ2 , . . . , λn are distinct. By
Proposition 16, we have

g[n−1]
t (λ1, . . . ,λn) =

n

∑
j=1

gt(λ j)
n
∏
k=1
k 	= j

(λ j −λk)
.

Form this representation and Lemma 21, it easily follows that the bilateral Laplace

transform of the function t �→ g[n−1]
t (λ1, . . . ,λn) is

(
B g[n−1]

(·) (λ1, . . . ,λn)
)
(λ ) =

n

∑
j=1

1
λ −λ j

1
n
∏
k=1
k 	= j

(λ j −λk)
.

By Proposition 16, the last expression is the (n−1)-th divided difference of the func-
tion rλ (ν) = 1

λ−ν . By Lemma 20,

r[n−1]
λ (λ1, . . . ,λn) =

1

∏n
j=1(λ −λ j)

.

We apply the inverse Laplace transform to the function λ �→ r[n−1]
λ (λ1, . . . ,λn) .

Clearly, the restriction of the bilatiral Laplace transform to the imaginary axis is the
Fourier transform. The Fourier transform maps the convolution of functions to the
product of their images [41, p. 337], which implies assertion (c).

The case of coinciding points of interpolation λ j follows from continuity. �

7. The divided differences exp[m]
±,t and g[m]

t with operator arguments

In this Section, we apply previous results to the representation of the functions

exp[m]
±,t and g[m]

t with operator arguments.

THEOREM 23. Let A ∈ M+ . Then for t > 0 , we have

exp[m−1]
+,t (A; i1, i2, . . . , im−1, im) =

∫ t

0

∫ sm−1

0
. . .

∫ s2

0
exp+,s1(Ai1,i1)Ai1,i2 exp+,s2−s1(Ai2,i2)

×Ai2,i3 . . .exp+,sm−1−sm−2
(Aim−1,im−1)Aim−1,im exp+,t−sm−1

(Aim,im)ds1 . . . dsm−1;

for t < 0 , we have

exp[m−1]
−,t (A; i1, i2, . . . , im−1, im) =

∫ 0

t

∫ 0

sm−1

. . .

∫ 0

s2
exp−,s1(Ai1,i1)Ai1,i2 exp−,s2−s1(Ai2,i2)

×Ai2,i3 . . .exp−,sm−1−sm−2
(Aim−1,im−1)Aim−1,im exp−,t−sm−1

(Aim,im)ds1 . . . dsm−1;
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and (if the spectrum σ(A) is disjoint from the imaginary axis) for t 	= 0 , we have

g[m−1]
t (A; i1, i2, . . . , im−1, im) =

∫ ∞

−∞
. . .

∫ ∞

−∞
gs1(Ai1,i1)Ai1,i2 gs2−s1(Ai2,i2)

×Ai2,i3 . . .gsm−1−sm−2(Aim−1,im−1)Aim−1,im gt−sm−1(Aim,im)ds1 . . . dsm−1.

Proof. For simplicity of notation, we prove only the formula

g[2]
t (A;3,2,1) =

∫ ∞

−∞

∫ ∞

−∞
gs1(A3,3)A3,2 gs2−s1(A2,2)A2,1 gt−s2(A1,1)ds1 ds2.

By Theorem 17, we have

g[2]
t (A;3,2,1) =

1
(2π i)3

∫
Γ1

∫
Γ2

∫
Γ3

g[2]
t (λ1,λ2,λ3)

× (λ31−A3,3)−1A3,2(λ21−A2,2)−1A2,1(λ11−A1,1)−1 dλ1 dλ2 dλ3.

By Theorem 22, we have

g[2]
t (λ1,λ2,λ3) =

∫ ∞

−∞

∫ ∞

−∞
gs(λ1) gr−s(λ2) gt−r(λ3)dsdr.

Substituting the latter formula into the former one and performing the integration over
λ1 , λ2 , and λ3 , we arrive at the desired formula. �

Combining Theorems 19 and 23, we obtain the following examples.

EXAMPLE 1. Let A be the block matrix

A =

⎛
⎝A1,1 0 0

A2,1 A2,2 0
A3,1 A3,2 A3,3

⎞
⎠ . (9)

Then for t > 0, we have

exp+,t(A) =

⎛
⎜⎝

exp+,t(A1,1) 0 0

exp[1]
+,t(A;2,1) exp+,t(A2,2) 0

exp[1]
+,t(A;3,1)+ exp[2]

+,t(A;3,2,1) exp[1]
+,t(A;3,2) exp+,t(A3,3)

⎞
⎟⎠ ,

(10)
where

exp[1]
+,t(A; i1, i2) =

∫ t

0
exp+,s(Ai1,i1)Ai1,i2 exp+,t−s(Ai2,i2)ds, (11)

exp[2]
+,t(A;3,2,1) =

∫ t

0

∫ r

0
exp+,s(A3,3)A3,2 exp+,r−s(A2,2)A2,1 exp+,t−r(A1,1)dsdr.

REMARK 6. Integral (11) was first obtained in [3, Ch. 10, § 14, Formula (5)] in a
different context. Formula (10) for a triangular block matrix (with blocks consisting of
scalars) of the size less than or equal to 4×4 has appeared in [52, theorem 1] and for a
triangular block matrix of any size in [6].
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EXAMPLE 2. Let A be block matrix (9), whose spectrum is disjoint from the
imaginary axis. Then for t 	= 0, we have the representation of Green’s function

G (t) = gt(A) =

⎛
⎜⎝

gt(A1,1) 0 0

g[1]
t (A;2,1) gt(A2,2) 0

g[1]
t (A;3,1)+g[2]

t (A;3,2,1) g[1]
t (A;3,2) gt(A3,3)

⎞
⎟⎠ ,

where

g[1]
t (A; i1, i2) =

∫ ∞

−∞
gs(Ai1,i1)Ai1,i2gt−s(Ai2,i2)ds,

g[2]
t (A;3,2,1) =

∫ ∞

−∞

∫ ∞

−∞
gs(A3,3)A3,2gr−s(A2,2)A2,1gt−r(A1,1)dsdr.
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