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(Communicated by V. V. Peller)

Abstract. We introduce and investigate H∞ -functional calculus for commuting finite families
of Ritt operators on Banach space X . We show that if either X is a Banach lattice or X or
X∗ has property (α) , then a commuting d -tuple (T1, . . . ,Td) of Ritt operators on X has an
H∞ joint functional calculus if and only if each Tk admits an H∞ functional calculus. Next for
p ∈ (1,∞) , we characterize commuting d -tuple of Ritt operators on Lp(Ω) which admit an H∞

joint functional calculus, by a joint dilation property. We also obtain a similar characterisation
for operators acting on a UMD Banach space with property (α) . Then we study commuting
d -tuples (T1, . . . ,Td) of Ritt operators on Hilbert space. In particular we show that if ‖Tk‖ � 1
for every k = 1, . . . ,d , then (T1, . . . ,Td ) satisfies a multivariable analogue of von Neumann’s
inequality. Further we show analogues of most of the above results for commuting finite families
of sectorial operators.

1. Introduction

H∞ -functional calculus of Ritt operators on Banach spaces has received a lot of
attention recently, in connection with discrete square functions, maximal inequalities
for discrete semigroups and ergodic theory. See in particular [3, 4, 7, 13, 21, 22, 23]
and the references therein. This topic is closely related to H∞ -functional calculus of
sectorial operators, which itself is fundamental for the study of harmonic analysis of
semigroups and regularity of evolution problems. Many functional calculus results
on sectorial operators turn out to have discrete versions for Ritt operators, however
with different fields of applications. We refer the reader to [13, 14, 18] for general
information on H∞ -functional calculus of sectorial operators.

The main purpose of this paper is to investigate H∞ -functional calculus for com-
muting finite families of Ritt operators. On the one hand, this naturally relates to the
longstanding studied polynomial functional calculus associated to a commuting family
of Hilbert space contractions and to extensions of von Neumann’s inequality. On the
other hand, this is a natural discrete analogue of H∞ -functional calculus for commuting
finite families of sectorial operators considered in [2] and [12] (see also [19] and [16]).

For any γ ∈ (0, π
2 ) , let Bγ denote the Stolz domain of angle γ . Given a d -tuple

(T1, . . . ,Td) of commuting Ritt operators on some Banach space X , we say that it admits
an H∞(Bγ1 ×·· ·×Bγd ) joint functional calculus if it satisfies an estimate

‖ f (T1, . . . ,Td)‖ � K ‖ f‖∞,Bγ1×···×Bγd
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for a large class of bounded holomorphic functions f : Bγ1 × ·· ·×Bγd → C . Here the
notation ‖ f‖∞,Bγ1×···×Bγd

stands for the supremum norm of f on Bγ1 × ·· ·×Bγd . See
Section 2 for precise definitions and basic properties of functional calculus associated
with (T1, . . . ,Td) . These extend the definitions and properties established in [21] for a
single Ritt operator.

Let us now present the main results of this paper. In Section 3 we prove the
following.

THEOREM 1.1. Let X be a Banach space. Assume that either X is a Banach
lattice, or X or X∗ has property (α) . Let (T1, . . . ,Td) be a commuting d -tuple of Ritt
operators on X and assume that for some 0 < γ1, . . . ,γd < π

2 , Tk has an H∞(Bγk) func-
tional calculus for any k = 1, . . . ,d . Then for any γ ′k ∈ (γk,

π
2 ), k = 1, . . . ,d , (T1, . . . ,Td)

admits an H∞(Bγ ′1 ×·· ·×Bγ ′d) joint functional calculus.

Note that this property does not hold true on general Banach spaces.
In Section 4 we characterize H∞ joint functional calculus on Lp -spaces, for p ∈

(1,∞)), as follows.

THEOREM 1.2. Let Σ be a measure space and let p ∈ (1,∞) . Let T1, . . . ,Td be
commuting Ritt operators on Lp(Σ) . Then the d -tuple (T1, . . . ,Td) admits an H∞(Bγ1 ×
·· ·×Bγd ) joint functional calculus for some γk ∈ (0, π

2 ) , k = 1, . . . ,d , if and only if there
exist a measure space Ω , commuting positive contractive Ritt operators R1, . . . ,Rd on
Lp(Ω) , and two bounded operators J : Lp(Σ) → Lp(Ω) and Q : Lp(Ω) → Lp(Σ) such
that

Tn1
1 · · ·Tnd

d = QRn1
1 · · ·Rnd

d J, (n1, . . . ,nd) ∈ Nd .

The case d = 1 was proved in [3, Theorem 5.2]. The extension to d -tuples relies
on the construction in [3] and a new approach allowing to combine dilations associated
to single operators to obtain a dilation associated to a d -tuple. Section 4 also includes
a variant of Theorem 1.2 for d -tuples of commuting Ritt operators acting on a UMD
Banach space with property (α) .

Section 5 is devoted to operators acting on Hilbert space. It was shown in [21]
that if H is a Hilbert space and T : H →H is a Ritt operator, then it admits an H∞(Bγ )
functional calculus for some γ ∈ (0, π

2 ) if and only if it is similar to a contraction,
that is, there exists an invertible S : H → H such that ‖S−1TS‖ � 1. Here we show
that if (T1, . . . ,Td) is a commuting d -tuple of Ritt operators on H , then (T1, . . . ,Td)
admits an H∞(Bγ1 ×·· ·×Bγd ) joint functional calculus for some γ1, . . . ,γd ∈ (0, π

2 ) if
and only if T1, . . . ,Td are jointly similar to contractions, that is, there exists a common
invertible S : H → H such that ‖S−1TjS‖ � 1 for any j = 1, . . . ,d . We also establish
the following estimate.

THEOREM 1.3. Let d � 3 be an integer and let H be a Hilbert space. Let
T1, . . . ,Td be commuting contrations on H . Assume that for every j in {1, . . . ,d−2} ,
Tj is a Ritt operator. Then there exists a constant C � 1 such that for any polynomial
φ in d variables,

‖φ(T1, . . . ,Td)‖ � C‖φ‖∞,Dd . (1.1)
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Note that without any Ritt type assumptions, the question whether any commuting
d -tuple (T1, . . . ,Td) of contractions on Hilbert space satisfies an estimate (1.1) is an
open problem. See e.g. [33, Chapter 1] for more about this.

In [12], E. Franks and A. McIntosh established a fundamental decomposition
of bounded holomorphic functions defined on (products of) sectors(s), which is now
known as the “Franks-McIntosh decomposition”. Many results in Sections 3-5 heavily
rely of an analogue of this decomposition for bounded holomorphic functions defined
on products of Stolz domains. Such a decomposition can be regarded as a consequence
of [12, Section 4]. However the proofs in this section of [12] are very sketchy and the
case of Stolz domains is much simpler than the general case considered in [12]. For the
sake of completeness we provide an ad-hoc proof in Section 6.

In parallel to commuting families of Ritt operators, we treat commuting families
of sectorial operators. In Section 2 we give a general definition of H∞ joint functional
calculus for a d -tuple of commuting sectorial operators which refines [2]. In Section 3,
we give a sectorial analogue of Theorem 1.1. In the case when d = 2, this result goes
back to [19]. Section 4 includes a characterisation of H∞ joint functional calculus in
terms of dilations, either on Lp -spaces or on UMD Banach spaces with property (α) .

We end this section by fixing some notations. Throughout we let B(X) denote the
Banach algebra of all bounded operators on some Banach space X . We let IX denote
the identity operator on X . For any (possibly unbounded) operator A on X , we let σ(A)
denote the spectrum of A and for every λ in C\σ(A) , we let R(λ ,A) = (λ IX −A)−1

denote the resolvent operator. Next, we let Ker(A) and Ran(A) denote the kernel and
the range of A , respectively.

For any a ∈ C and r > 0, D(a,r) will denote the open disc centered at a with
radius r . Then we let D = D(0,1) denote the unit disc of C and we set T = D\D .

If O is an open non empty subset of Cd , for some integer d � 1, we will denote
by H∞(O) the algebra of all bounded holomorphic functions f : O → C , which is a
Banach algebra for the norm

‖ f‖∞,O = sup{| f (z1, . . . ,zd)| : (z1, . . . ,zd) ∈ O} .

If X is a Banach space, (Ω,μ) is a measure space and p ∈ (1,∞) , we denote
by Lp(Ω;X) the Bochner space of all measurable functions f : Ω → X such that∫

Ω ‖ f (ω)‖p dμ(ω) < ∞ , and we let Lp(Ω) = Lp(Ω;C) . We refer the reader e.g. to
[15] for more details.

The set of nonnegative integers will be denoted by N = {0,1,2, ...} . We set N∗ =
N\ {0} .

In certain proofs, we use the notation � to indicate an inequality valid up to a
constant which does not depend on the particular elements to which it applies.

2. Functional calculus and its basic properties

We first introduce H∞ -functional calculus for a commuting family of sectorial
operators. The construction and properties for a single operator go back to [26, 8] (see
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also [14, 18]). The following construction is an extension (or a variant) of those in [2]
or [19].

Throughout we let X be an arbitrary Banach space. For any θ ∈ (0,π) , we let

Σθ = {z ∈ C∗ : |Arg(z)| < θ} .

We say that a closed linear operator A : D(A) → X with dense domain D(A) ⊂ X is
sectorial of type ω ∈ (0,π) if σ(A) ⊂ Σω and for any θ in (ω ,π) , there exists a
constant Cθ such that

‖zR(z,A)‖ � Cθ , z ∈ C\Σθ . (2.1)

It is well known that A is a sectorial operator of type ω < π
2 if and only if it is the

negative generator of a bounded analytic semigroup.
Let d � 1 be an integer and let θ1, . . . ,θd be elements of (0,π) . For any subset

J ⊂ {1, . . . ,d} , we denote by H∞
0

(
∏i∈J Σθi

)
the subalgebra of H∞ (Σθ1 ×·· ·×Σθd

)
of

all holomorphic bounded functions depending only on the variables (zi)i∈J and such
that there exist positive constants c and (si)i∈J verifying

| f (z1, . . . ,zd)| � c ∏
i∈J

|zi|si
1+ |zi|2si

, (zi)i∈J ∈ ∏
i∈J

Σθi . (2.2)

When J = /0 , H∞
0

(
∏i∈ /0 Σθi

)
is the space of constant functions on Σθ1 ×·· ·×Σθd .

Let (A1, . . . ,Ad) be a family of commuting sectorial operators on X . Here the
commuting property means that for any k, l in {1, . . . ,d} , the resolvent operators
R(zk,Ak) and R(zl,Al) commute for any zk in C\σ(Ak) and zl in C\σ(Al) . Assume
that for every k = 1, . . . ,d , Ak is of type ωk ∈ (0,θk) and let νk ∈ (ωk,θk) .

For any f in H∞
0 (∏i∈J Σθi) with J ⊂ {1, . . . ,d} , J �= /0 , we let

f (A1, . . . ,Ad) =
(

1
2π i

)|J| ∫
∏i∈J ∂Σνi

f (z1, . . . ,zd)∏
i∈J

R(zi,Ai)∏
i∈J

dzi, (2.3)

where the boundaries ∂Σνi are oriented counterclockwise for all i in J . By the com-
muting assumption on (A1, . . . ,Ad) , the product operator ∏i∈J R(zi,Ai) is well-defined.
Further the conditions (2.1) and (2.2) ensure that this integral is absolutely convergent
and defines an element of B(X) . By Cauchy’s theorem, this definition does not depend
on the choice of the νi ’s. Moreover the linear mapping f 	→ f (A1, . . . ,Ad) is an algebra
homomorphism from H∞

0 (∏i∈J Σθi) into B(X) . The proofs of these facts are similar to
the ones for a single operator and are omitted.

If f ≡ a is a constant function on Σθ1 ×·· ·×Σθd (the case when J = /0), then we
set f (A1, . . . ,Ad) = aIX .

Next we let

H∞
0,1(Σθ1 ×·· ·×Σθd ) ⊂ H∞(Σθ1 ×·· ·×Σθd )

be the sum of all the H∞
0

(
∏i∈J Σθi

)
, with J ⊂ {1, . . . ,d} . We claim that this sum is a

direct one, so that we actually have

H∞
0,1(Σθ1 ×·· ·×Σθd ) =

⊕
J⊂{1,...,d}

H∞
0

(
∏
i∈J

Σθi

)
. (2.4)
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Let us prove this fact. For any i in {1, . . . ,d} , let pi be the operator defined on the
space H∞

0,1(Σθ1 ×·· ·×Σθd ) by[
pi( f )

]
(z1, . . . ,zd) = f (z1, . . . ,zi−1,0,zi+1, . . . ,zd), f ∈ H∞

0,1(Σθ1 ×·· ·×Σθd ).
(2.5)

In this definition, f (z1, . . . ,zi−1,0,zi+1, . . . ,zd) stands for the limit, when z ∈ Σθi and
z → 0, of f (z1, . . . ,zi−1,z,zi+1, . . . ,zd) , provided that this limit exists. This is the case
when f belongs to H∞

0,1(Σθ1 ×·· ·×Σθd ) . Note that the operators pi commute.
For any J ⊂ {1, . . . ,d} , we can therefore define

PJ = ∏
i∈J

(I− pi) ∏
i∈Jc

pi. (2.6)

It is easy to check that PJ( f ) = f if f belongs to H∞
0

(
∏i∈J Σθi

)
and PJ( f ) = 0 if f

belongs to H∞
0

(
∏i∈J′ Σθi

)
for some J′ �= J . The direct sum property (2.4) follows at

once.
Moreover,

PJ : H∞
0,1(Σθ1 ×·· ·×Σθd ) −→ H∞

0,1(Σθ1 ×·· ·×Σθd )

is the projection onto H∞
0

(
∏i∈J Σθi

)
with kernel equal to the direct sum of the

H∞
0

(
∏i∈J′ Σθi

)
, with J′ �= J .

For any function f = ∑J⊂{1,...,d} fJ in H∞
0,1(Σθ1 × ·· · ×Σθd ) , where each fJ be-

longs to H∞
0

(
∏i∈J Σθi

)
, we naturally set

f (A1, . . . ,Ad) = ∑
J⊂{1,...,d}

fJ(A1, . . . ,Ad), (2.7)

the operator fJ(A1, . . . ,Ad) being defined by (2.3). In the sequel, f 	→ f (A1, . . . ,Ad) is
called the functional calculus mapping associated with (A1, . . . ,Ad) .

We note that if fJ is in H∞
0

(
∏i∈J Σθi

)
and fJ′ is in H∞

0

(
∏i∈J′ Σθi

)
, then fJ fJ′ is in

H∞
0

(
∏i∈J∪J′ Σθi

)
. Thus H∞

0,1(Σθ1 ×·· ·×Σθd ) is a subalgebra of H∞(Σθ1 ×·· ·×Σθd ) .

LEMMA 2.1. The functional calculus mapping f 	→ f (A1, . . . ,Ad) is an algebra
homomorphism from H∞

0,1(Σθ1 ×·· ·×Σθd ) into B(X) .

Proof. The linearity being obvious, it suffices to check that for any subsets J,J′
of {1, . . . ,d} , for any fJ in H∞

0

(
∏i∈J Σθi

)
and fJ′ in H∞

0

(
∏i∈J′ Σθi

)
, we have

fJ(A1, . . . ,Ad) fJ′ (A1, . . . ,Ad) = ( fJ fJ′ )(A1, . . . ,Ad). (2.8)

We let J0 = J∩ J′ and we set J1 = J \ J0 and J′1 = J′ \ J0 . For convenience we set, for
any subset K of {1, . . . ,d} ,

zK = (zi)i∈K , dzK = ∏
i∈K

dzi, RK(zK) = ∏
i∈K

R(zi,Ai) and ΓK = ∏
i∈K

∂Σνi .
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Using Fubini’s theorem, we have

fJ(A1, . . . ,Ad) fJ′ (A1, . . . ,Ad)

=
(

1
2π i

)|J|+|J′ |(∫
ΓJ

fJ(z1, . . . ,zd)RJ(zJ)dzJ

)(∫
ΓJ′

fJ′ (z1, . . . ,zd)RJ′(zJ′ )dzJ′

)
=
(

1
2π i

)|J|+|J′ | ∫
ΓJ1

(∫
ΓJ0

fJ(z1, . . . ,zd)RJ0(zJ0)dzJ0

)
RJ1(zJ1 )dzJ1

×
∫

ΓJ′1

(∫
ΓJ0

fJ′ (z1, . . . ,zd)RJ0(zJ0 )dzJ0

)
RJ′1(zJ′1)dzJ′1

=
(

1
2π i

)|J|+|J′ | ∫
ΓJ1

×ΓJ′1

[(∫
ΓJ0

fJ(z1, . . . ,zd)RJ0(zJ0)dzJ0

)

×
(∫

ΓJ0

fJ′ (z1, . . . ,zd)RJ0(zJ0 )dzJ0

)]
RJ1(zJ1 )RJ′1(zJ′1)dzJ1dzJ′1 .

For fixed variables zi , for i /∈ J0 , the two functions

(zi)i∈J0 	→ fJ(z1, . . . ,zd) and (zi)i∈J0 	→ fJ′ (z1, . . . ,zd)

both belong to H∞
0

(
∏i∈J0 Σθi

)
. We noticed before that the functional calculus mapping

is a homomorphism from H∞
0

(
∏i∈J0 Σθi

)
into B(X) . Consequently,(

1
2π i

)2|J0|
(∫

ΓJ0

fJ(z1, . . . ,zd)RJ0(zJ0)dzJ0

)(∫
ΓJ0

fJ′ (z1, . . . ,zd)RJ0(zJ0)dzJ0

)

=
(

1
2π i

)|J0| ∫
ΓJ0

fJ fJ′ (z1, . . . ,zd)RJ0(zJ0)dzJ0 .

Hence the above computation leads to

fJ(A1, . . . ,Ad) fJ′ (A1, . . . ,Ad)

=
(

1
2π i

)|J|+|J′ |−|J0| ∫
ΓJ1

×ΓJ′1

∫
ΓJ0

fJ fJ′(z1, . . . ,zd)RJ0(zJ0)dzJ0 RJ1(zJ1 )RJ′1(zJ′1)dzJ1dzJ′1

=
(

1
2π i

)|J|+|J′ |−|J0| ∫
ΓJ∪J′

fJ fJ′ (z1, . . . ,zd)RJ∪J′ (zJ∪J′ )dzJ∪J′

=( fJ fJ′ )(A1, . . . ,Ad),

since J∪ J′ is the disjoint union of J0,J1 and J′1 . This proves (2.8). �

DEFINITION 2.2. We say that (A1, . . . ,Ad) admits an H∞(Σθ1 × ·· ·×Σθd ) joint
functional calculus if the functional calculus mapping associated with (A1, . . . ,Ad) is
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bounded, that is, there exists a constant K > 0 such that for every f in H∞
0,1(Σθ1 ×·· ·×

Σθd ) ,
‖ f (A1, . . . ,Ad)‖ � K ‖ f‖∞,Σθ1

×···×Σθd
.

Each pi from (2.5) is a contraction, hence each PJ from (2.6) is a bounded operator
on H∞

0,1(Σθ1 ×·· ·×Σθd ) . This implies that (A1, . . . ,Ad) admits an H∞(Σθ1 ×·· ·×Σθd )
joint functional calculus if and only if f 	→ f (A1, . . . ,Ad) is bounded on H∞

0

(
∏i∈J Σθi

)
for any J ⊂ {1, . . . ,d} . Consequently if (A1, . . . ,Ad) admits an H∞(Σθ1 × ·· · ×Σθd )
joint functional calculus, then every subfamily (Ai)i∈J , where J ⊂ {1, . . . ,d} , also ad-
mits an H∞(∏i∈J Σθi) joint functional calculus. In particular, for every k = 1, . . . ,d , Ak

admits an H∞(Σθk ) functional calculus in the usual sense (see [14, Chapter 5]).
We now turn to Ritt operators. Recall that a bounded operator T : X → X is called

a Ritt operator if there exists a constant C > 0 such that

‖Tn‖ � C and
∥∥n(Tn−Tn−1)

∥∥� C, n � 1.

Ritt operators have a spectral characterisation. Namely T is a Ritt operator if and only
if σ(T ) ⊂ D and there exists a constant K > 0 such that

‖(λ −1)R(λ ,T)‖ � K, λ ∈ C, |λ | > 1.

There is a simple link between sectorial operators and Ritt operators. Indeed if we
let A = IX − T , then T is a Ritt operator if and only if σ(T ) ⊂ D∪ {1} and A is
a sectorial operator of type ω < π

2 . Equivalently, T is a Ritt operator if and only if
σ(T ) ⊂ D∪{1} and (e−t(IX−T))t�0 is a bounded analytic semigroup.

For any α in (0, π
2 ) , let Bα denote the Stolz domain of angle α , defined as the

interior of the convex hull of 1 and the disc D(0,sin(α)) .

Bα

T

1

It turns out that if T is a Ritt operator, then σ(T ) ⊂ Bα for some α in (0, π
2 ) .

More precisely (see [21, Lemma 2.1]), one can find α ∈ (0, π
2 ) such that σ(T ) ⊂ Bα
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and for any β ∈ (α, π
2 ) , there exists a constant Kβ > 0 such that

‖(λ −1)R(λ ,T )‖ � Kβ , λ ∈ C\Bβ . (2.9)

If this property holds, then we say that T is a Ritt operator of type α . We refer to [25,
27, 28] for the above facts and also to [21] and the references therein for complements
on the class of Ritt operators.

H∞ -functional calculus for Ritt operators was formally introduced in [21]. We
now extend this definition to commuting families. We follow the same pattern as for
families of sectorial operators.

Let d � 1 be an integer and let γ1, . . . ,γd be elements of (0, π
2 ) . For any subset

J of {1, . . . ,d} , we denote by H∞
0

(
∏i∈J Bγi

)
the subalgebra of H∞ (Bγ1 ×·· ·×Bγd

)
of all holomorphic bounded functions f depending only on variables (λi)i∈J and such
that there exist positive constants c and (si)i∈J verifying

| f (λ1, . . . ,λd)| � c ∏
i∈J

|1−λi|si , (λi)i∈J ∈ ∏
i∈J

Bγi . (2.10)

When J = /0 , H∞
0

(
∏i∈ /0 Bγi

)
is the space of constant functions on Bγ1 ×·· ·×Bγd .

Let (T1, . . . ,Td) be a d -tuple of commuting Ritt operators. Assume that for any
k = 1, . . . ,d , Tk is of type αk ∈ (0,γk) and let βk ∈ (αk,γk) .

For any f in H∞
0 (∏i∈J Bγi) with J ⊂ {1, . . . ,d} , J �= /0 , we let

f (T1, . . . ,Td) =
(

1
2π i

)|J| ∫
∏i∈J ∂Bβi

f (λ1, . . . ,λd)∏
i∈J

R(λi,Ti)∏
i∈J

dλi, (2.11)

where the ∂Bβi
are oriented counterclockwise for all i ∈ J . This integral is abso-

lutely convergent, hence defines an element of B(X) , its definition does not depend on
the βi and the linear mapping f 	→ f (T1, . . . ,Td) is an algebra homomorphism from
H∞

0 (∏i∈J Bγi) into B(X) . If f ≡ a is a constant function, then we let f (T1, . . . ,Td) =
aIX .

Next we define

H∞
0,1(Bγ1 ×·· ·×Bγd ) =

⊕
J⊂{1,...,d}

H∞
0

(
∏
i∈J

Bγi

)
.

As in the sectorial case, the above sum is indeed a direct one. More precisely, set[
qi( f )

]
(λ1, . . . ,λd) = f (λ1, . . . ,λi−1,1,λi+1, . . . ,λd), f ∈ H∞

0,1(Bγ1 ×·· ·×Bγd),

for i = 1, . . . ,d , and
QJ = ∏

i∈J
(I−q j) ∏

i∈Jc
qi, (2.12)

for J ⊂ {1, . . . ,d} . These mappings are well-defined and

QJ : H∞
0,1(Bγ1 ×·· ·×Bγd ) −→ H∞

0,1(Bγ1 ×·· ·×Bγd )
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is the projection onto H∞
0

(
∏i∈J Bγi

)
with kernel equal to the direct sum of the spaces

H∞
0

(
∏i∈J′ Bγi

)
, with J′ �= J .

For any function f =∑J⊂{1,...,d} fJ in H∞
0,1(Bγ1×·· ·×Bγd ) , with fJ ∈H∞

0

(
∏i∈JBγi

)
,

we let f (T1, . . . ,Td) = ∑J⊂{1,...,d} fJ(T1, . . . ,Td) , where every fJ(T1, . . . ,Td) is defined
by (2.11). The mapping f 	→ f (T1, . . . ,Td) is called the functional calculus mapping
associated with (T1, . . . ,Td) . As in the sectorial case (see Lemma 2.1), one shows that
this is an algebra homomorphism from H∞

0,1(Bγ1 ×·· ·×Bγd ) into B(X) .

DEFINITION 2.3. We say that (T1, . . . ,Td) admits an H∞(Bγ1 × ·· · × Bγd ) joint
functional calculus if the above functional calculus mapping is bounded, that is, there
exists a constant K > 0 such that for every f in H∞

0,1(Bγ1 ×·· ·×Bγd ) , we have

‖ f (T1, . . . ,Td)‖ � K ‖ f‖∞,Bγ1×···×Bγd
. (2.13)

As in the sectorial case, we observe that (T1, . . . ,Td) admits an H∞(Bγ1 ×·· ·×Bγd )
joint functional calculus if and only if f 	→ f (T1, . . . ,Td) is bounded on H∞

0

(
∏i∈J Bγi

)
,

for any J ⊂ {1, . . . ,d} . This follows from the fact that each qi is a contraction, hence
each QJ is bounded.

Further if (T1, . . . ,Td) admits an H∞(Bγ1 × ·· · × Bγd ) joint functional calculus,
then for every k = 1, . . . ,d , Tk admits an H∞(Σθk ) functional calculus in the sense of
[21, Definition 2.4].

It is natural to consider polynomial functional calculus in this context. We let P d

denote the algebra of all complex valued polynomials in d variables. Clearly P d can
be regarded as a subalgebra of H∞

0,1(Bγ1 ×·· ·×Bγd ) and for φ ∈ P d , the definition of
φ(T1, . . . ,Td) given by replacing the variables (z1, . . . ,zd) by the operators (T1, . . . ,Td)
coincides with the one given by the functional calculus mapping. This follows from the
basic properties of the Dunford-Riesz functional calculus. We will show below that to
obtain an H∞(Bγ1 × ·· · ×Bγd ) joint functional calculus for (T1, . . . ,Td) , it suffices to
consider polynomials in (2.13).

To prove this result, we will use the following form of Runge’s lemma.

LEMMA 2.4. Let d � 1 be an integer and V1, . . . ,Vd be compact subsets of C

such that C\Vi is connected, for all i = 1, . . . ,d . Let Ω1, . . . ,Ωd be open subsets of C

such that Vi ⊂ Ωi , for all i = 1, . . . ,d . Let f : Ω1 × ·· · ×Ωd → C be a holomorphic
function. Then there exists a sequence (φm)m�1 in Pd which converges uniformly to
f on V1×·· ·×Vd .

In the case d = 1, this statement is [34, Theorem 13.7]. The proof of the latter
readily extends to the d -variable case so we omit it.

PROPOSITION 2.5. Let d � 1 be an integer and let (T1, . . . ,Td) be a commuting
family of Ritt operators. Let γi ∈ (0, π

2 ) , for i = 1, . . . ,d . The following assertions are
equivalent.

(i) (T1, . . . ,Td) admits an H∞(Bγ1 ×·· ·×Bγd ) joint functional calculus.
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(ii) There exists a constant K > 0 such that for any φ ∈ Pd we have

‖φ(T1, . . . ,Td)‖ � K ‖φ‖∞,Bγ1×···×Bγd
. (2.14)

Proof. The implication (i) ⇒ (ii) is obvious. Conversely assume (ii). As noticed
after (2.13) it suffices, to prove (i), to establish the boundedness of f 	→ f (T1, . . . ,Td)
on H∞

0

(
∏i∈J Bγi

)
, for any J ⊂ {1, . . . ,d} . By induction, it actually suffices to prove

the estimate
‖ f (T1, . . . ,Td)‖ � K ‖ f‖∞,Bγ1×···×Bγd

, (2.15)

for any f in H∞
0 (Bγ1 ×·· ·×Bγd ) .

Let f be such a function and consider r∈ (0,1) and r′ ∈ (r,1) . Let Γ = ∂ (r′Bγ1)×
·· · × ∂ (r′Bγd ) , where all the ∂ (r′Bγi) are oriented counterclockwise. By Lemma 2.4
applied with Vi = r′Bγi and Ωi = Bγi , there exists a sequence (φm)m�1 of Pd such that
φm → f uniformly on the compact set r′Bγ1 ×·· ·× r′Bγd .

Since we have σ(rTi) ⊂ r′Bγi , for all i = 1, . . . ,d , the Dunford-Riesz functional
calculus provides

φm(rT1, . . . ,rTd) =
(

1
2π i

)d ∫
Γ

φm(λ1, . . . ,λd)R(λ1,rT1) · · ·R(λd ,rTd)dλ1 · · ·dλd

and

f (rT1, . . . ,rTd) =
(

1
2π i

)d ∫
Γ

f (λ1, . . . ,λd)R(λ1,rT1) · · ·R(λd ,rTd)dλ1 · · ·dλd.

The uniform convergence of (φm)m�1 to f on r′Bγ1 ×·· ·× r′Bγd implies that

φm(rT1, . . . ,rTd) −→
m→∞

f (rT1, . . . ,rTd) and ‖φm‖∞,r′Bγ1×···×r′Bγd
−→
m→∞

‖ f‖∞,r′Bγ1×···×r′Bγd
.

Using (2.14) we have, for any interger m � 1,

‖φm(rT1, . . . ,rTd)‖ � K ‖φm‖∞,rBγ1×···×rBγd
� K ‖φm‖∞,r′Bγ1×···×r′Bγd

.

Passing to the limit when m → ∞ , we deduce that

‖ f (rT1, . . . ,rTd)‖ � K ‖ f‖∞,r′Bγ1×···×r′Bγd
.

Finally, we have lim
r→1

f (rT1, . . . ,rTd) = f (T1, . . . ,Td) by Lebesgue’s dominated conver-

gence theorem. We deduce (2.15). �

3. Automaticity of the H∞ joint funtional calculus

Let (T1, . . . ,Td) be a commuting family of Ritt operators on some Banach space
X . If this d -tuple admits an H∞ joint functional calculus, then each Tk admits an
H∞ functional calculus (see Section 2). The purpose of this section is to show that
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the converse holds true if either X is a Banach lattice or X (or its dual space X∗ ) has
property (α) . A similar result is also established in the sectorial case, see Theorem 3.1
below.

We refer the reader to [24] for definitions and basic properties of Banach lattices.
In order to define property (α) , and also for further purposes, we need some

background on Rademacher averages. Let I be a countable set and let (rk)k∈I be an
independent family of Rademacher variables on some probability space (Ω0,P) . Let
X be a Banach space. If (xk)k∈I is a finitely supported family in X , we let

∥∥∥∥∥∑
k∈I

rk ⊗ xk

∥∥∥∥∥
Rad(I;X)

=

⎛⎝∫
Ω0

∥∥∥∥∥∑
k∈I

rk(t)xk

∥∥∥∥∥
2

X

dP(t)

⎞⎠ 1
2

.

This is the norm of ∑k∈I rk ⊗ xk is L2(Ω0;X) . The closure of all finite sums ∑k∈I rk ⊗
xk in L2(Ω0;X) will be denoted by Rad(I;X) . In the case when I = N∗ , we write
Rad(X) = Rad(N∗;X) for simplicity.

We say that X has property (α) if there exists a constant C > 0 such that for
any integer n � 1, for any family (ai, j)1�i, j�n of complex numbers and for any family
(xi, j)1�i, j�n in X , we have∥∥∥∥∥ ∑

1�i, j�n

ai, jri ⊗ r j ⊗ xi, j

∥∥∥∥∥
Rad(Rad(X))

� C sup
i, j

{∣∣ai, j
∣∣}∥∥∥∥∥ ∑

1�i, j�n

ri ⊗ r j ⊗ xi, j

∥∥∥∥∥
Rad(Rad(X))

.

(3.1)
This property was introduced by Pisier in [31]. It plays a key role in many issues related
to H∞ -functional calculus, see in particular [16, 17, 19, 21].

We recall that all Banach lattices with finite cotype have property (α) . In par-
ticular for any p ∈ [1,∞) , Lp -spaces have property (α) . On the contrary, infinite
dimensional noncommutative Lp -spaces (for p �= 2) do not have property (α) . This
goes back to [31].

The main result of this section is the following.

THEOREM 3.1. Let X be a Banach space. Assume that either X is a Banach
lattice, or X or X∗ has property (α) . Let d � 2 be an integer. Then the following two
properties hold.

(P1) Let (T1, . . . ,Td) be a commuting d -tuple of Ritt operators on X and assume
that for some 0 < γ1, . . . ,γd < π

2 , Tk has an H∞(Bγk ) functional calculus, for
any k = 1, . . . ,d . Then for any γ ′k ∈ (γk,

π
2 ), k = 1, . . . ,d , (T1, . . . ,Td) admits an

H∞(Bγ ′1 ×·· ·×Bγ ′d ) joint functional calculus.

(P2) Let (A1, . . . ,Ad) be a commuting d -tuple of sectorial operators on X and assume
that for some 0 < θ1, . . . ,θd < π , Ak has an H∞(Σθk ) functional calculus, for
any k = 1, . . . ,d . Then for any θ ′

k ∈ (θk,π), k = 1, . . . ,d , (A1, . . . ,Ad) admits an
H∞(Σθ ′

1
×·· ·×Σθ ′

d
) joint functional calculus.
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Property (P2) for d = 2 was proved in [19]. The proof for d � 3 is a simple
adaptation of the argument devised in the latter paper. In the special case when X is
an Lp -space for p ∈ [1,∞) , property (P2) goes back to [2]. Proving property (P1) will
require the Franks-McIntosh decomposition presented in the Appendix.

To proceed we need more ingredients on Rademacher averages. Let d � 1 be an
integer.

We denote by Radd(X) the closure in L2(Ωd
0;X) of the space of all elements of

the form

∑
1�i1,...,id�n

ri1 ⊗·· · ⊗ rid ⊗ xi1,...,id , n ∈ N∗, xi1,...,id ∈ X .

Clearly we can rewrite this space as

Radd(X) = Rad(Rad(· · ·Rad︸ ︷︷ ︸
d times

(X) · · ·)). (3.2)

For convenience we set

Nd
(
[xi1,...,id ]

)
=

∥∥∥∥∥ ∑
1�i1,...,id�n

ri1 ⊗·· ·⊗ rid ⊗ xi1,...,id

∥∥∥∥∥
Radd(X)

, (3.3)

for any family (xi1,...,id )1�i1,...,id�n in X .
We will say that X satisfies property (Ad) if there exists a constant C > 0 such

that for any integer n � 1, for any family of complex numbers (ai1,...,id )1�i1,...,id�n and
for any families (xi1,...,id )1�i1,...,id�n in X and (x∗i1,...,id )1�i1,...,id�n in X∗ , we have∣∣∣∣∣ ∑

i1,...,id

ai1,...,id 〈x∗i1,...,id ,xi1,...,id 〉
∣∣∣∣∣� C sup

i1,...,id

{∣∣ai1,...,id

∣∣} Nd
(
[xi1,...,id ]

)
Nd

(
[x∗i1,...,id ]

)
.

(3.4)
Theorem 3.1 is a straightforward consequence of the next three propositions, that

will be proved in the rest of this section.

PROPOSITION 3.2. If X satisfies property (Ad) for some integer d � 2 , then (P1)
and (P2) hold true.

PROPOSITION 3.3. Every Banach lattice satisfies property (Ad) , for every integer
d � 2 .

PROPOSITION 3.4. If X or X∗ has property (α) , then X satisfies property (Ad) ,
for every integer d � 2 .

Proof of Proposition 3.2. Assume that X satisfies property (Ad) for some d � 2.
We only prove (P1), the proof of (P2) being similar. We consider commuting Ritt
operators T1, . . . ,Td such that, for every k = 1, . . . ,d , Tk has a bounded H∞(Bγk) func-
tional calculus. Let γ ′k in (γk,

π
2 ) . By Section 2, and a simple induction argument,
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it suffices to have an estimate ‖h(T1, . . . ,Td)‖ � ‖h‖∞,Bγ′1
×···×Bγ′d

, for functions h in

H∞
0 (Bγ ′1 ×·· ·×Bγ ′d ) .

For h ∈ H∞
0 (Bγ ′1 × ·· · × Bγ ′d ) , we consider the Franks-McIntosh decomposition

given by Theorem6.1. According to this statement we may write, for every (ζ1, . . . ,ζd)∈
∏d

k=1 Bγk ,

h(ζ1, . . . ,ζd) = ∑
(i1,...,id)∈N∗d

ai1,...,id Ψ1,i1(ζ1)Ψ̃1,i1(ζ1) · · ·Ψd,id (ζd)Ψ̃d,id (ζd), (3.5)

where (ai1,...,id ) is a family of complex numbers satisfying an estimate∣∣ai1,...,id

∣∣� ‖h‖∞,Bγ′1
×···×Bγ′d

, (i1, . . . , id) ∈ N∗d , (3.6)

the functions Ψk,ik and Ψ̃k,ik belong to H∞
0 (Bγk) and they satisfy inequalities

sup

{
∞

∑
ik=1

∣∣Ψk,ik(ζk)
∣∣ : ζk ∈ Bγk

}
� C and sup

{
∞

∑
ik=1

∣∣Ψ̃k,ik(ζk)
∣∣ : ζk ∈ Bγk

}
� C,

(3.7)
for every k = 1, . . . ,d , and for a constant C > 0 not depending on h .

We consider the partial sums in (3.5), defined for every n � 1 and every (ζ1, . . . ,ζd)
in ∏d

k=1 Bγk by

hn(ζ1, . . . ,ζd) = ∑
1�i1,...,id�n

ai1,...,id Ψ1,i1(ζ1)Ψ̃1,i1(ζ1) · · ·Ψd,id (ζd)Ψ̃d,id (ζd). (3.8)

The functions Ψk,ik and Ψ̃k,ik both belong to H∞
0 (Bγk) hence this implies

hn(T1, . . . ,Td) = ∑
1�i1,...,id�n

ai1,...,id Ψ1,i1(T1)Ψ̃1,i1(T1) · · ·Ψd,id (Td)Ψ̃d,id (Td). (3.9)

Let us prove the existence of a constant K > 0, not depending either on n or h ,
such that

‖hn(T1, . . . ,Td)‖ � K ‖h‖∞,Bγ′1
×···×Bγ′d

. (3.10)

We let x ∈ X and x∗ ∈ X∗ . Applying (3.9), we write

〈x∗,hn(T1, . . . ,Td)x〉
= ∑

1�i1,...,id�n

ai1,...,id

〈
Ψ̃1,i1(T1)∗ · · ·Ψ̃d,id (Td)∗x∗,Ψ1,i1(T1) · · ·Ψd,id (Td)x

〉
.

We let

xi1,...,id = Ψ1,i1(T1) · · ·Ψd,id (Td)x and x∗i1,...,id = Ψ̃1,i1(T1)∗ · · ·Ψ̃d,id (Td)∗x∗.

Using property (Ad) and the estimate (3.6), we have

|〈x∗,hn(T1, . . . ,Td)x〉| � ‖h‖∞,Bγ′1
×···×Bγ′d

Nd
(
[xi1,...,id ]

)
Nd

(
[x∗i1,...,id ]

)
.
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Let us momentarily fix some (t1, . . . ,td) in Ωd
0 . By (3.7) and the H∞(Bγk) functional

calculus property of Tk for all k = 1, . . . ,d , we have estimates∥∥∥∥∥ ∑
1�i1,...,id�n

ri1(t1) · · · rid (td)Ψ1,i1(T1) · · ·Ψd,id (Td)x

∥∥∥∥∥
�

d

∏
k=1

(∥∥∥∥∥ n

∑
ik=1

rik (tk)Ψk,ik(Tk)

∥∥∥∥∥
)
‖x‖ �

d

∏
k=1

⎛⎝∥∥∥∥∥ n

∑
ik=1

rik (tk)Ψk,ik

∥∥∥∥∥
∞,Bγk

⎞⎠‖x‖

�
d

∏
k=1

⎛⎝∥∥∥∥∥ n

∑
ik=1

∣∣Ψk,ik

∣∣∥∥∥∥∥
∞,Bγk

⎞⎠‖x‖ � ‖x‖ .

Now taking the average on (t1, . . . ,td) , we deduce that

Nd
(
[xi1,...,id ]

)
� ‖x‖ .

The same method yields a similar estimate Nd([x∗i1,...,id ]) � ‖x∗‖ . We deduce an esti-
mate

|〈x∗,hn(T1, . . . ,Td)x〉| � ‖h‖∞,Bγ′1
×···×Bγ′d

‖x‖‖x∗‖ .

Next the Hahn-Banach theorem yields the inequality (3.10).
The same estimate holds true when (T1, . . . ,Tn) is replaced by (rT1, . . . ,rTn) , for

any r ∈ (0,1) . Further the above argument also shows that (hn)n�1 is a bounded se-
quence of the space H∞

0 (Bγ ′1 × ·· ·×Bγ ′d ) . Moreover, the sequence (hn)n�1 converges
pointwise to h . Hence applying Lebesgue’s dominated convergence theorem twice we
have

lim
n→∞

hn(rT1, . . . ,rTn) = h(rT1, . . . ,rTn),

for any r ∈ (0,1) and

lim
r→1−

h(rT1, . . . ,rTn) = h(T1, . . . ,Tn).

We therefore deduce from (3.10) that

‖h(T1, . . . ,Td)‖ � K ‖h‖∞,Bγ′1
×···×Bγ′d

,

which concludes the proof. �

Proof of Proposition 3.3. Let X be a Banach lattice and let d � 2 be an integer.
For any integer n � 1, for any family of complex numbers (ai1,...,id )1�i1,...,id�n and for
any families (xi1,...,id )1�i1,...,id�n in X and (x∗i1,...,id )1�i1,...,id�n in X∗ , we have∣∣∣∣∑ai1,...,id 〈x∗i1,...,id ,xi1,...,id 〉

∣∣∣∣� sup
{∣∣ai1,...,id

∣∣}∥∥∥∥(∑ ∣∣xi1,...,id

∣∣2) 1
2

∥∥∥∥
X

∥∥∥∥(∑ ∣∣x∗i1,...,id ∣∣2) 1
2

∥∥∥∥
X∗

,
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where
(

∑
∣∣xi1,...,id

∣∣2) 1
2

and
(

∑
∣∣xi1,...,id

∣∣2) 1
2

are defined in [24, Section 1.d]. This fol-

lows from basic properties of Krivine’s functional calculus on Banach lattices.
By the d -variable Khintchine inequality, there exists a constant C > 0 (not de-

pending on the xi1,...,id ) such that we have an inequality

(
∑
∣∣xi1,...,id

∣∣2) 1
2 � C

∫
Ωd

0

∣∣∣∑ ri1(t1) . . . rid (td)xi1,...,id

∣∣∣dPd(t1, . . . ,td)

in X . By the triangle inequality, this implies that∥∥∥∥(∑
∣∣xi1,...,id

∣∣2) 1
2

∥∥∥∥
X

� CNd
(
[xi1,...,id ]

)
.

Likewise, we have ∥∥∥∥(∑ ∣∣x∗i1,...,id ∣∣2) 1
2

∥∥∥∥
X∗

� CNd
(
[x∗i1,...,id ]

)
.

Combining these three estimates we obtain that X satisfies property (Ad) . �
Before giving the proof of Proposition 3.4, we show that any Banach space with

property (α) verifies a d -variable version of (3.1).

LEMMA 3.5. Let X be a Banach space with property (α) . For any integer
d � 2 , there exists a constant C > 0 such that for any integer n � 1 , any family
(ai1,...,id )1�i1,...,id�n of complex numbers and any family (xi1,...,id )1�i1,...,id�n in X ,

Nd
(
[ai1,...,id xi1,...,id ]

)
� C sup

1�i1,...,id�n

{∣∣ai1,...,id

∣∣}Nd
(
[xi1,...,id ]

)
. (3.11)

Proof. According to [31, Remark 2.1], property (α) is equivalent to the fact that
the linear mapping

∑
i, j

ri, j ⊗ xi, j 	→ ∑
i, j

ri ⊗ r j ⊗ xi, j

induces an isomorphism from Rad(N∗2;X) onto Rad(Rad(X)) = Rad2(X) . This read-
ily implies that for any countable sets I1, I2 , we have a natural isomorphism

Rad(I1× I2;X) ≈ Rad(I1;Rad(I2;X)),

when X has property (α) .
Under this assumption, we thus have

Rad(Rad(N∗2;X)) ≈ Rad(N∗ ×N∗2;X) = Rad(N∗3;X)

and
Rad(Rad(N∗2;X)) ≈ Rad(Rad(Rad(X))) = Rad3(X),
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whence a natural isomorphism

Rad(N∗3;X) ≈ Rad3(X).

Proceeding by induction, we obtain that

Rad(N∗d ;X) ≈ Radd(X).

This means that for finite families (xi1,...,id ) of X , Nd([xi1,...,id ]) and
∥∥∑ ri1,...,id ⊗ xi1,...,id

∥∥
are equivalent. Now recall that by the unconditionality property of Rademacher aver-
ages, ∥∥∥∥∥ ∑

1�i1,...,id�n

ai1,...,id ri1,...,id ⊗ xi1,...,id

∥∥∥∥∥
Rad(N∗d ;X)

�2 sup
{|ai1,...,id |

}∥∥∥∥∥ ∑
1�i1,...,id�n

ri1,...,id ⊗ xi1,...,id

∥∥∥∥∥
Rad(N∗d ;X)

,

for every finite family (ai1,...,id ) of complex numbers. The inequality (3.11) follows at
once. �

Proof of Proposition 3.4. Assume that X has property (α) . Let (xi1,...,id ) , (x∗i1,...,id )
and (ai1,...,id ) be finite families of X , X∗ and C , respectively, indexed by (i1, . . . , id) ∈
N∗d .

By the independence of Rademacher variables, we have

∑
i1,...,id

ai1,...,id 〈x∗i1,...,id ,xi1,...,id 〉

=
∫

Ωd
0

〈
∑

i1,...,id

ri1(t1) · · · rid (td)x
∗
i1,...,id , ∑

i1,...,id

ai1,...,id ri1(t1) · · · rid (td)xi1,...,id

〉
dPd(t1, . . . ,td).

By the Cauchy-Schwarz inequality, this implies that∣∣∣∣∣ ∑
i1,...,id

ai1,...,id 〈x∗i1,...,id ,xi1,...,id 〉
∣∣∣∣∣�

∥∥∥∥∥ ∑
i1,...,id

ri1 ⊗·· ·⊗ rid ⊗ x∗i1,...,id

∥∥∥∥∥
Radd(X∗)

×
∥∥∥∥∥ ∑

i1,...,id

ai1,...,id ri1 ⊗·· ·⊗ rid ⊗ xi1,...,id

∥∥∥∥∥
Radd(X)

.

By Lemma 3.5, we deduce an estimate∣∣∣∣ ∑
i1,···,id

ai1,···,id 〈x∗i1,···,id ,xi1,···,id 〉
∣∣∣∣

�C sup
{∣∣ai1,···,id

∣∣}×∥∥∥∥∥ ∑
i1,···,id

ri1 ⊗·· ·⊗ rid ⊗ x∗i1,···,id

∥∥∥∥∥
Radd(X∗)

×
∥∥∥∥∥ ∑

i1,···,id
ri1 ⊗·· ·⊗ rid ⊗ xi1,···,id

∥∥∥∥∥
Radd(X)

,



H∞ -FUNCTIONAL CALCULUS FOR COMMUTING FAMILIES 1071

which proves (Ad) .
The same proof holds true if X∗ verifies the property (α) . �

4. Characterisation by dilation on UMD spaces with property (α)

In this section, we give characterisations of H∞ joint functional calculus for com-
muting families of either Ritt or sectorial operators acting on a UMD Banach space X
with property (α) . We pay a special attention to the case when X in an Lp -space, for
p ∈ (1,∞) . These characterisations generalise some of the main results of [3].

We refer the reader to [6] and to [30, Chapter 5] for information on the UMD
property.

We first establish a general result about combining dilations of commuting opera-
tors through Bochner spaces. Given any p ∈ [1,∞) , any measure space Ω , any Banach
space X , and any bounded operators T : Lp(Ω) → Lp(Ω) and S : X → X , consider the
operator T ⊗S acting on Lp(Ω)⊗X . If this operator extends to a bounded operator on
Lp(Ω;X) , we denote this extension by

T⊗S : Lp(Ω;X) −→ Lp(Ω;X).

By the density of Lp(Ω)⊗X in Lp(Ω;X) , this extension is necessarily unique. We
recall that if T is a positive operator (meaning that T (x) � 0 for every x � 0), then
T ⊗S has a bounded extension as described above.

LEMMA 4.1. Let d � 2 be an integer, let T1, . . . ,Td be commuting operators on a
Banach space X and let p ∈ [1,∞) . Let 1 � m � d . Assume that:

(1) for every k = 1, . . . ,m, there exist a positive operator Vk on some Lp(Ω) and two
bounded operators Jk : X → Lp(Ω;X) and Qk : Lp(Ω;X) → X such that

Tnk
k = Qk(Vk⊗IX)nkJk, nk ∈ N; (4.1)

(2) if m < d , there exist a Banach space Y , two bounded operators Jm+1 : X → Y
and Qm+1 : Y → X as well as commuting bounded operators Vm+1, . . . ,Vd on Y
such that

Tnm+1
m+1 · · ·Tnd

d = Qm+1V
nm+1
m+1 · · ·Vnd

d Jm+1, (nm+1, . . . ,nd) ∈ Nd−m; (4.2)

(3) for every i = 1, . . . ,m and j = 1, . . . ,d , we have

JiTj = (ILp(Ω)⊗Tj)Ji. (4.3)

Then there exist two bounded operators J : X → Lp(Ωm;Y ) and Q : Lp(Ωm;Y ) → X
such that

T n1
1 · · ·Tnd

d = QUn1
1 · · ·Und

d J, (n1, . . . ,nd) ∈ Nd , (4.4)
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where the operators U1, . . . ,Ud : Lp(Ωm;Y ) → Lp(Ωm;Y ) are given by

Uk = I⊗k−1 ⊗ Vk ⊗I⊗m−k ⊗ IY , k = 1, . . . ,m; (4.5)

Uk = I⊗m⊗ Vk, k = m+1, . . . ,d. (4.6)

Here I = ILp(Ω) and I⊗l = I⊗·· ·⊗I︸ ︷︷ ︸
l factors

, for every integer l � 1 .

Proof. We define Q̃m : Lp(Ωm;X) → X and J̃m : X → Lp(Ωm;X) by letting

Q̃m = Q1(I⊗Q2)(I⊗2⊗Q3) · · · (I⊗m−1⊗Qm) (4.7)

and
J̃m = (I⊗m−1⊗Jm) · · · (I⊗2⊗J3)(I⊗J2)J1. (4.8)

Then we define Sk,m : Lp(Ωm;X) → Lp(Ωm;X) by

Sk,m = I⊗k−1 ⊗ Vk ⊗I⊗m−k ⊗ IX , 1 � k � m. (4.9)

Our first aim is to prove by induction on m that we have the following dilation property,

Tn1
1 · · ·Tnm

m = Q̃mSn1
1,m · · ·Snm

m,mJ̃m, (n1, . . . ,nm) ∈ Nm. (4.10)

We will see that this property only depends on the assumptions (4.1) and (4.3).
The case m = 1 is trivial. Let m � 2, suppose that (4.7), (4.8), (4.9) and (4.10)

hold true for m− 1, and let us prove the latter dilation property for m . For every
(n1, . . . ,nm) ∈ Nm , we write

Tn1
1 · · ·Tnm−1

m−1 Tnm
m = Q̃m−1S

n1
1,m−1 · · ·Snm−1

m−1,m−1J̃m−1T
nm
m . (4.11)

We compute the last term J̃m−1Tnm
m . First by (4.3), we have

J1T
nm
m = (I⊗Tnm

m )J1.

Applying (4.3) again, we then have

(I⊗J2)(I⊗Tnm
m )J1 = (I⊗2⊗Tnm

m )(I⊗J2)J1.

Repeating this process with each factor of J̃m−1 , we obtain

J̃m−1T
nm
m = (I⊗m−1⊗Tnm

m )J̃m−1. (4.12)

Using (4.1) for Tm , we see that

I⊗m−1⊗Tnm
m = (I⊗m−1⊗Qm)(I⊗m−1⊗Vm⊗IX)nm(I⊗m−1⊗Jm).

Combining with (4.11) and (4.12), and using the fact that I⊗m−1⊗Vm⊗IX = Sm,m , we
deduce that

Tn1
1 · · ·Tnm

m = Q̃m−1S
n1
1,m−1 · · ·Snm−1

m−1,m−1(I
⊗m−1⊗Qm)Snm

m,m(I⊗m−1⊗Jm)J̃m−1.
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A thorough look at (4.9) reveals that for any k = 1, . . . ,m−1,

Sk,m−1(I⊗m−1⊗Qm) = (I⊗m−1⊗Qm)Sk,m.

Consequently

Tn1
1 · · ·Tnm

m = Q̃m−1(I⊗m−1⊗Qm)Sn1
1,m · · ·Snm−1

m−1,mSnm
m,m(I⊗m−1⊗Jm)J̃m−1.

Since
Q̃m = Q̃m−1(I⊗m−1⊗Qm) and J̃m = (Im−1⊗Jm)J̃m−1,

this yields property (4.10).
If m = d , the preceding computation proves the lemma. Assume now that m �

d−1. It follows from (4.10) that for any (n1, . . . ,nd) ∈ Nd , we have

Tn1
1 · · ·Tnd

d = Q̃mSn1
1,m · · ·Snm

m,mJ̃mTnm+1
m+1 · · ·Tnd

d .

Using (4.3) we obtain that for any k = m+1, . . . ,d ,

J̃mTnk
k = (I⊗m⊗Tk)nk J̃m. (4.13)

Applying (4.2), we therefore obtain that

Tn1
1 · · ·Tnd

d

=Q̃mSn1
1,m · · ·Snm

m,m × (I⊗m⊗Qm+1)(I⊗m⊗Vm+1)nm+1 · · · (I⊗m⊗Vd)nd (I⊗m⊗Jm+1)J̃m.

Using (4.6), this yields

Tn1
1 · · ·Tnd

d = Q̃mSn1
1,m · · ·Snm

m,m(I⊗m⊗Qm+1)U
nm+1
m+1 · · ·Und

d (I⊗m⊗Jm+1)J̃m. (4.14)

Now it follows from (4.9) that for any k = 1, . . . ,m ,

Snk
k,m(I⊗m⊗Qm+1) = (I⊗m⊗Qm+1)Uk, (4.15)

where the Uk are given by (4.5). Set

Q = Q̃m(I⊗m⊗Qm+1) and J = (I⊗m⊗Jm+1)J̃m.

Then (4.4) follows from the factorisation (4.14) and the relation (4.15). �
The following result is a d -variable version of [3, Theorem 4.1]. We refer the

reader to [9, Chapter 11] for the definitions and basic properties of spaces with finite
cotype.

THEOREM 4.2. Let X be a reflexive Banach space such that X and X∗ have
finite cotype. Let T1, . . . ,Td be commuting Ritt operators on X such that every Tk has
an H∞(Bγk) functional calculus for some γk ∈ (0, π

2 ) . Let p ∈ (1,∞) . Then there exist
a measure space Ω , commuting isometric isomorphisms U1, . . . ,Ud on Lp(Ω;X) , and
two bounded operators J : X → Lp(Ω;X) and Q : Lp(Ω;X) → X such that

T n1
1 · · ·Tnd

d = QUn1
1 · · ·Und

d J, (n1, . . . ,nd) ∈ Nd . (4.16)
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Proof. We shall apply Lemma 4.1 in the case m = d , using the construction de-
vised in the proof of [3, Theorem 4.1].

We recall this construction. Following Section 3, we let (rn)n∈Z be an independent
sequence of Rademacher variables on some probability space Ω0 .

For any k = 1, . . . ,d , recall the ergodic decomposition X=Ker(I−Tk)⊕Ran(I−Tk).
It is shown in [3] that the operator

Jk :
X = Ker(I−Tk)⊕Ran(I−Tk) → X ⊕p Lp(Ω0;X)

x0 + x1 	→ (
x0,∑∞

n=1 rn ⊗Tn
k (I−Tk)

1
2 (I +Tk)(x1)

)
(4.17)

is well-defined and bounded, under the assumption that Tk has an H∞(Bγk) functional
calculus for some γk ∈ (0, π

2 ) . More precisely, the series

∞

∑
n=1

rn ⊗Tn
k (I−Tk)

1
2 (I +Tk)(x1)

converges in Lp(Ω0;X) for any x1 ∈ X and the norm of the resulting sum is � ‖x1‖ .
Define Ω as the disjoint union of Ω0 and a singleton, so that

X ⊕p Lp(Ω0;X) � Lp(Ω;X).

It also follows from the proof of [3, Theorem 4.1] that there exist an isometric isomor-
phism U : Lp(Ω) → Lp(Ω) (which does not depend on k ) and operators Qk : Lp(Ω;X)
→ X such that

Tnk
k = Qk(U⊗IX)nk Jk, nk ∈ N.

We set Vk = U for any k = 1, . . . ,d , so that T1, . . . ,Td satisfy (4.1).
Let us show that T1, . . . ,Td also satisfy (4.3). Consider arbitrary i, j in {1, . . . ,d} ,

and an element x0 + x1 ∈ X = Ker(I −Ti)⊕Ran(I−Ti) . Since Ti and Tj commute,
Tj(x0) belongs to Ker(Ti) . Consequently,

Ji(Tj(x0 + x1)) =
(
Tj(x0),

∞

∑
n=1

rn⊗Tn
i (I−Ti)

1
2 (I +Ti)Tj(x1)

)
=
(
Tj(x0),

∞

∑
n=1

rn⊗TjT
n
i (I−Ti)

1
2 (I +Ti)(x1)

)
=
(
Tj(x0),

(
ILp(Ω0)⊗Tj

)( ∞

∑
n=1

rn ⊗ (Tn
i (I−Ti)

1
2 (I +Ti)(x1)

))
=
(
ILp(Ω)⊗Tj

)
Ji(x0 + x1).

This proves (4.3).
Applying Lemma 4.1, we deduce the existence of two bounded operators Q :

Lp(Ωd ;X) → X and J : X → Lp(Ωd ;X) such that

Tn1
1 · · ·Tnd

d = QUn1
1 · · ·Und

d J, (n1, . . . ,nd) ∈ Nd ,
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where U1, . . . ,Ud are given by

Uk = I⊗k−1 ⊗U ⊗I⊗d−k−1 ⊗ IX .

Since U is an isometric isomorphism of Lp(Ω) , it is clear that each Uk is an isometric
isomorphism as well. �

We are now in position to extend [3, Theorem 5.1] to d -tuples of Ritt operators.

THEOREM 4.3. Let X be a UMD Banach space with property (α) and let d � 1
be an integer. Let T1, . . . ,Td be commuting Ritt operators on X and let p ∈ (1,∞) . The
following two conditions are equivalent.

(1) (T1, . . . ,Td) admits an H∞(Bγ1 × ·· · ×Bγd ) joint functional calculus for some
γk ∈ (0, π

2 ) , k = 1, . . . ,d .

(2) There exist a measure space Ω , commuting contractive Ritt operators R1, . . . ,Rd

on Lp(Ω;X) such that every Rk admits an H∞(Bγ ′k) functional calculus for some

γ ′k ∈ (0, π
2 ) , k = 1, . . . ,d , as well as two bounded operators J : X → Lp(Ω;X)

and Q : Lp(Ω;X) → X such that

T n1
1 · · ·Tnd

d = QRn1
1 · · ·Rnd

d J, (n1, . . . ,nd) ∈ Nd . (4.18)

Proof. The implication “(2) ⇒ (1)” is easy. Indeed (4.18) implies that for any
φ ∈ P d (the algebra of complex polynomials in d variables), we have

φ(T1, . . . ,Td) = Qφ(R1, . . . ,Rd)J,

and hence
‖φ(T1, . . . ,Td)‖ � ‖Q‖‖J‖‖φ(R1, . . . ,Rd)‖ .

By assumption each Rk has an H∞(Bγ ′k ) functional calculus, with γ ′k ∈ (0, π
2 ) . Since X

has property (α) , the Bochner space Lp(Ω;X) has property (α) as well. It therefore
follows from Theorem 3.1 that the d -tuple (R1, . . . ,Rd) has an H∞(Bγ1 × ·· · ×Bγd )
joint functional calculus for some γk ∈ (0, π

2 ) . Applying Proposition 2.5, we deduce
that (T1, . . . ,Td) also has an H∞(Bγ1 ×·· ·×Bγd ) joint functional calculus.

To prove the converse (and main) implication “(1) ⇒ (2)”, we assume (1). Every
UMD Banach space is reflexive and has finite cotype, so we can apply Theorem 4.2 on
X .

As in [3, Section 3], set

(Tk)a = IX − (IX −Tk)a, a > 0.

Since (T1, . . . ,Td) has an H∞ joint functional calculus, every Tk has an H∞ functional
calculus. Hence according to [3, Proposition 3.2], there exists a > 1 such that every
(Tk)a has an H∞ functional calculus. Applying Theorem 4.2, we deduce a dilation
property

((T1)a)n1 · · ·((Td)a)nd = QUn1
1 · · ·Und

d J, (n1, . . . ,nd) ∈ Nd ,
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where J : X → Lp(Ω;X) and Q : Lp(Ω;X) → X are bounded operators and U1, . . . ,Ud

are isometric isomorphisms on Lp(Ω;X) .
Let b = 1

a , so that 0 < b < 1. Arguing as in the proof of [3, Theorem 5.1] (see
also [10], where this argument appeared for the first time), we derive that

Tn1
1 · · ·Tnd

d = Q((U1)b)n1 · · · ((Ud)b)nd J, (n1, . . . ,nd) ∈ Nd .

We let Rk = (Uk)b for every k = 1, . . . ,d . By [3, Theorem 3.1 and 3.3], and the assump-
tion that X is a UMD Banach space, every Rk is a contractive Ritt operator having an
H∞(Bγ ′k ) functional calculus for some γ ′k ∈ (0, π

2 ) , which proves (2). �

REMARK 4.4. It follows from the proof of [3, Theorem 4.1] that the isometric
isomorphism U : Lp(Ω) → Lp(Ω) appearing in the proof of Theorem 4.2 is positive.
This implies that if X is an ordered Banach space, then the isometric isomorphisms
U1, . . . ,Ud : Lp(Ω;X) → Lp(Ω;X) in the latter theorem are positive operators. It there-
fore follows from [3, Theorem 3.1 (c)] that if X is an ordered Banach space in Theorem
4.3, then the contractive Ritt operators R1, . . . ,Rd : Lp(Ω;X) → Lp(Ω;X) in this theo-
rem are positive operators.

We note that any UMD Banach lattice has property (α) . Hence any UMD Banach
lattice satisfies Theorem 4.3.

We also observe that thanks to Theorem 3.1, assumption (1) of Theorem 4.3 is
equivalent to the property that each Tk admits an H∞(Bγk ) functional calculus for some
γk ∈ (0, π

2 ) .
We now give a specific result on Lp -spaces. This is a d -variable version of [3,

Theorem 5.2].

THEOREM 4.5. Let Σ be a measure space and let p ∈ (1,∞) . Let T1, . . . ,Td be
commuting Ritt operators on Lp(Σ) . The following two conditions are equivalent.

(1) (T1, . . . ,Td) admits an H∞(Bγ1 × ·· · ×Bγd ) joint functional calculus for some
γk ∈ (0, π

2 ) , k = 1, . . . ,d .

(2) There exist a measure space Ω , commuting positive contractive Ritt operators
R1, . . . ,Rd on Lp(Ω) , and two bounded operators J : Lp(Σ) → Lp(Ω) and Q :
Lp(Ω) → Lp(Σ) such that

T n1
1 · · ·Tnd

d = QRn1
1 · · ·Rnd

d J, (n1, . . . ,nd) ∈ Nd .

Proof. We apply Theorem 4.3 above with X = Lp(Σ) , which is a UMD Banach
space with property (α) . We note that for any measure space Ω , Lp(Ω;Lp(Σ)) is an
Lp -space. Further conditions (1) in Theorem 4.3 and Theorem 4.5 are identical.

Assuming (1) and applying Theorem 4.3 together with Remark 4.4, we obtain
condition (2) in Theorem 4.5.

The converse implication follows from Theorem 4.3 and the fact that any positive
contractive Ritt operator on an Lp -space has an H∞(Bγ) functional calculus for some
γ ∈ (0, π

2 ) . This result is proved in [22, Theorem 3.3]. �
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A celebrated theorem of Akcoglu and Sucheston (see [1]) asserts that if T : Lp(Σ)→
Lp(Σ) is a positive contraction, with p∈ (1,∞) , then there exist a measure space Σ′ , an
isometric isomorphism V : Lp(Σ′) → Lp(Σ′) and two contractions J : Lp(Σ) → Lp(Σ′)
and Q : Lp(Σ′) → Lp(Σ) such that Tn = QVnJ , for any n ∈ N . It is an open prob-
lem whether the Akcoglu-Sucheston theorem extends to pairs. The question reads as
follows.

Consider a commuting pair (T1,T2) of positive contractions on Lp(Σ) . Does there
exist a commuting pair (V1,V2) of isometric isomorphisms acting on some Lp(Σ′) , as
well as bounded (or even contractive) operators J : Lp(Σ) → Lp(Σ′) and Q : Lp(Σ′) →
Lp(Σ) such that Tn1

1 Tn2
2 = QVn1

1 Vn2
2 J , for any (n1,n2) ∈ N2 ?

The next result shows that the answer is positive if either T1 or T2 is a Ritt operator.
More generally we have the following.

THEOREM 4.6. Let Σ be a measure space and let p ∈ (1,∞) . Let T1, . . . ,Td be
commuting positive contractions on Lp(Σ) . Assume further that T1, . . . ,Td−1 are Ritt
operators.

Then there exist a measure space Ω , two bounded operators J : Lp(Σ) → Lp(Ω)
and Q : Lp(Ω) → Lp(Σ) , as well as commuting isometric isomorphisms U1, . . . ,Ud :
Lp(Ω) → Lp(Ω) such that

T n1
1 · · ·Tnd

d = QUn1
1 · · ·Und

d J, (n1, . . . ,nd) ∈ Nd .

Proof. We aim at applying Lemma 4.1 with m = d−1 and X = Lp(Σ) . For any
k = 1, . . . ,d−1, Tk is a positive Ritt contraction on Lp(Σ) . According to [22, Theorem
3.3], this implies that it has an H∞(Bγk) functional calculus for some γk ∈ (0, π

2 ) . By
[3, Theorem 4.1] and its proof, this implies that T1, . . . ,Td−1 satisfy the assumption (1)
of Lemma 4.1.

According to the Ackoglu-Sucheston theorem quoted above, Td satisfies the as-
sumption (2) of Lemma 4.1, with Y = Lp(Σ′) .

Moreover the argument in the proof of Theorem 4.2 shows that (T1, . . . ,Td) veri-
fies the assumption (3) of Lemma 4.1.

The result now follows from this lemma and the fact that Lp(Ωm;Y ) =
Lp(Ωd−1;Lp(Σ′)) is an Lp -space. Details are left to the reader. �

In the last part of this section, we give analogues of our previous results for sec-
torial operators and semigroups. Since the proofs are similar to the ones in the discrete
case, we will be deliberately brief.

We refer the reader to e.g. [29] for definitions and basic properties of C0 -semi-
groups and bounded analytic semigroups. We recall that if (Tt)t�0 is a C0 -semigroup
on X , with generator −A , then A is sectorial of type < π

2 if and only if (Tt)t�0 is a
bounded analytic semigroup.

We say that two C0 -semigroups (T1,t)t�0 and (T2,t)t�0 on X commute provided
that

T1,t1T2,t2 = T2,t2T1,t1 , t1 � 0, t2 � 0. (4.19)
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Assume that (T1,t)t�0 and (T2,t)t�0 are bounded analytic semigroups with respective
generators −A1 and −A2 . Then (4.19) holds true if and only if the sectorial operators
A1,A2 commute (in the resolvent sense, see Section 2).

It is easy to adapt the proof of Lemma 4.1 to semigroups to obtain the following
result. We skip the proof.

LEMMA 4.7. Let d � 2 be an integer, let (T1,t)t�0, . . . ,(Td,t)t�0 be commuting
C0 -semigroups on a Banach space X and let p ∈ [1,∞) . Let 1 � m � d . Assume that:

(1) for every k = 1, . . . ,m, there exist a C0 -semigroup (Vk,t)t�0 of positive operators
on some Lp(Ω) and two bounded operators Jk : X → Lp(Ω;X) and Qk : Lp(Ω;X)
→ X such that

Tk,t = Qk(Vk,t⊗IX)Jk, t � 0;

(2) if m < d , there exist a Banach space Y , two bounded operators Jm+1 : X → Y
and Qm+1 : Y →X as well as commuting C0 -semigroups (Vm+1,t)t�0, . . . ,(Vd,t)t�0

on Y such that

Tm+1,tm+1 · · ·Td,td = Qm+1Vm+1,tm+1 · · ·Vd,td Jm+1, tm+1 � 0, . . . ,td � 0;

(3) for every i = 1, . . . ,m and j = 1, . . . ,d , and for any t � 0 , we have

JiTj,t = (ILp(Ω)⊗Tj,t)Ji.

Then there exist two bounded operators J : X → Lp(Ωm;Y ) and Q : Lp(Ωm;Y ) → X
such that

T1,t1 · · ·Td,td = QU1,t1 · · ·Ud,td J, t1 � 0, . . . ,td � 0,

where (U1,t)t�0, . . . ,(Ud,t)t�0 are C0 -semigroups on Lp(Ωm;Y ) given by

Uk,t = I⊗k−1⊗Vk,t ⊗I⊗m−k⊗IY , k = 1, . . . ,m;

Uk,t = I⊗m⊗Vk,t , k = m+1, . . . ,d.

The construction in the proof of [3, Theorem4.5] is an analogue of the construction
in the proof of [3, Theorem 4.1] where discrete square functions based on Rademacher
averages are replaced by continuous square functions provided by Brownian motion.
Using this construction and using Lemma 4.7 instead of Lemma 4.1, we obtain the
following sectorial version of Theorem 4.2.

THEOREM 4.8. Let X be a reflexive Banach space such that X and X∗ have finite
cotype. Let A1, . . . ,Ad be commuting sectorial operators on X such that every Ak has
an H∞(Σθk ) functional calculus for some θk in (0, π

2 ) . Let p∈ (1,∞) . Then there exist
a measure space Ω , commuting C0 -groups of isometries (U1,t)t∈R, . . . ,(Ud,t)t∈R on
Lp(Ω;X) , and two bounded operators J : X → Lp(Ω;X) and Q : Lp(Ω;X) → X such
that

e−t1A1 · · ·e−tdAd = QU1,t1 · · ·Ud,td J, t1 � 0, . . . ,td � 0.
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Using the previous result and adapting the proof of [3, Theorem 5.6] to the d -
variable case, we obtain the following sectorial version of Theorem 4.3.

THEOREM 4.9. Let X be a UMD Banach space with property (α) and let d � 1
be an integer. Let A1, . . . ,Ad be commuting sectorial operators and let p ∈ (1,∞) . The
following two conditions are equivalent.

(1) (A1, . . . ,Ad) admits an H∞(Σθ1 × ·· · ×Σθd ) joint functional calculus for some
θk ∈ (0, π

2 ) , k = 1, . . . ,d .

(2) There exist a measure space Ω , commuting sectorial operators B1, . . . ,Bd on
Lp(Ω;X) such that every Bk admits an H∞(Σθ ′

k
) functional calculus for some

θ ′
k ∈ (0, π

2 ) , k = 1, . . . ,d , as well as two bounded operators J : X → Lp(Ω;X)
and Q : Lp(Ω;X) → X such that

e−t1A1 · · ·e−tdAd = Qe−t1B1 · · ·e−tdBd J, t1 � 0, . . . ,td � 0,

and all the (e−tBk)t�0 are semigroups of contractions.

We now give the sectorial version of Theorem 4.5.

THEOREM 4.10. Let Σ be a measure space and let p ∈ (1,∞) . Let A1, . . . ,Ad be
commuting sectorial operators on Lp(Σ) . The following conditions are equivalent.

(1) (A1, . . . ,Ad) admits an H∞(Σθ1 × ·· · ×Σθd ) joint functional calculus for some
θk ∈ (0, π

2 ) , k = 1, . . . ,d .

(2) There exist a measure space Ω , commuting sectorial operators B1, . . . ,Bd on
Lp(Ω) of type < π

2 , and two bounded operators J : Lp(Σ)→ Lp(Ω) and Q : Lp(Ω)
→ Lp(Σ) such that

e−t1A1 · · ·e−tdAd = Qe−t1B1 · · ·e−tdBd J, t1 � 0, . . . ,td � 0,

and all the (e−tBk)t�0 are semigroups of positive contractions.

Proof. If B is a sectorial operator of type < π
2 on Lp(Ω) such that e−tB is a

positive contraction for any t � 0, then B has an H∞(Σθ ) functional calculus for some
θ < π

2 . This result is due to Weis, see [35, 16]. Using this and arguing as in the proof
of Theorem 4.5, the result follows at once. �

We conclude with a semigroup version of Theorem 4.6. We first recall that Fendler
[11] proved the following semigroup version of the Akcoglu-Sucheston theorem: Let
(Tt)t�0 be a C0 -semigroups of positive contractions on Lp(Σ) , with p ∈ (1,∞) . Then
there exist a measure space Σ′ , a C0 -group (Vt)t�0 of isometric isomorphisms on
Lp(Σ′) and two contractions J : Lp(Σ) → Lp(Σ′) and Q : Lp(Σ′) → Lp(Σ) such that
Tt = QVtJ , for any t � 0.

Using this result and Lemma 4.7, and arguing as in the proof of Theorem 4.6, we
obtain the following.
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THEOREM 4.11. Let Σ be a measure space and let p ∈ (1,∞) . Let (T1,t)t�0, . . . ,
(Td,t)t�0 be C0 -semigroups of positive contractions on Lp(Σ) . Assume further that
(T1,t)t�0, . . . ,(Td−1,t)t�0 are bounded analytic semigroups.

Then there exist a measure space Ω , two bounded operators J : Lp(Σ) → Lp(Ω)
and Q : Lp(Ω) → Lp(Σ) , as well as commuting C0 -groups (U1,t)t�0, . . . ,(Ud,t)t�0 of
isometric isomorphisms on Lp(Ω) such that

T1,t1 · · ·Td,td = QU1,t1 · · ·Ud,td J, t1 � 0, . . . ,td � 0.

5. The Hilbert space case

This section is devoted to commuting operators on Hilbert space H . We will be
interested in the following two issues.

First recall that if T : H → H is a Ritt operator, then T has an H∞(Bγ ) functional
calculus for some γ < π

2 if and only if T is similar to a contraction, that is, there exists
a bounded invertible operator S : H → H such that S−1TS is a contraction on H . This
is proved in [21, Theorem 8.1]. We will extend this characterisation to d -tuples of Ritt
operators, see Corollary 5.2 below.

Second let (T1, . . . ,Td) be a d -tuple of commuting contractions on H . If d = 2,
Ando’s theorem [5] (see also [33, Theorem 1.2]) asserts that ‖φ(T1,T2)‖ � ‖φ‖∞,D2 ,
for any polynomial φ ∈ P 2 . This result does not extend to d � 3 and it is unknown
whether there exists a universal constant C � 1 such that

‖φ(T1, . . . ,Td)‖ � C‖φ‖∞,Dd , (5.1)

for any φ ∈ P d (see [33, Chapter 1] for more on this problem). Theorem 5.1 below
shows that an estimate (5.1) holds true when at least d−2 of these contractions are Ritt
operators.

THEOREM 5.1. Let d � 3 be an integer and let H be a Hilbert space. Let
T1, . . . ,Td be commuting operators on H such that:

(i) for every j in {1, . . . ,d−2} , Tj is a Ritt operator which is similar to a contrac-
tion;

(ii) there exists a bounded invertible operator S : H → H such that S−1Td−1S and
S−1TdS are both contractions.

Then we have the following three properties:

(1) there exist a Hilbert space K , two bounded operators J : H →K and Q : K →H
and commuting unitary operators U1, . . . ,Ud on K such that

T n1
1 · · ·Tnd

d = QUn1
1 · · ·Und

d J, (n1, . . . ,nd) ∈ Nd ; (5.2)

(2) there exists C � 1 such that for any polynomial φ in Pd ,

‖φ(T1, . . . ,Td)‖ � C‖φ‖∞,Dd ; (5.3)
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(3) there exists a bounded invertible operator S : H → H such that for any j =
1, . . . ,d , S−1TjS is a contraction.

Proof. The proof of (1) will rely on Lemma 4.1. The Ritt operators T1, . . . ,Td−2
are similar to contractions hence according to [21, Theorem 8.1], Tk has an H∞(Bγk )
functional calculus for some γk in (0, π

2 ) , for all k = 1, . . . ,d−2. The argument in the
proof of Theorem 4.2 shows that there exist a measure space Ω , unitaries V1, . . . ,Vd−2
on L2(Ω) and bounded operators

J1, . . . ,Jd−2 : H −→ L2(Ω;H) and Q1, . . . ,Qd−2 : L2(Ω;H) −→ H,

such that for any k = 1, . . . ,d−2,

Tnk
k = Qk(Vk⊗IH)nkJk, nk ∈ N,

and
JkR = (IL2(Ω)⊗R)Jk,

for any R : H → H commuting with Tk .
By assumption there exists an invertible W : H → H such that W−1Td−1W and

W−1TdW are contractions. By Ando’s theorem [5], there exist a Hilbert space L con-
taining H as a closed subspace and two unitaries Vd−1,Vd : L → L such that

(W−1Td−1W )nd−1(W−1TdW )nd = PHVd−1
d−1 Vnd

d JH , (nd−1,nd) ∈ N2, (5.4)

where JH : H → L and PH = J∗H : L → H denote the inclusion map and the orthogonal
projection, respectively. This can be written as

T
nd−1
d−1 Tnd

d = Qd−1V
d−1
d−1 Vnd

d Jd−1, (nd−1,nd) ∈ N2, (5.5)

with Qd−1 = WPH and Jd−1 = HHW−1 .
We can therefore apply Lemma 4.1 to (T1, . . . ,Td) , with m = d − 2 and Y = L .

Thus there exist two bounded operators J : H → L2(Ωd−2;L) and Q : L2(Ωd−2;L) →
H , as well as operators U1, . . . ,Ud on L2(Ωd−2;L) such that

Tn1
1 ...Tnd

d = QUn1
1 · · ·Und

d J, (n1, . . . ,nd) ∈ Nd , (5.6)

and the operators Uk are given by

Uk = I⊗k−1 ⊗ Vk ⊗I⊗d−2−k ⊗ IL, k = 1, . . . ,d−2;

Uk = I⊗d−2⊗Uk, k = d−1,d.

Clearly K = L2(Ωd−2;L) is a Hilbert space and U1, . . . ,Ud are commuting unitaries.
This shows (1).

(2) is a direct consequence of (1). Indeed for any φ ∈ Pd , (1) implies

‖φ(T1, . . . ,Td)‖ � ‖Q‖‖J‖‖φ(U1, . . . ,Ud)‖ , (5.7)
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and by the functional calculus of unitary operators,

‖φ(U1, . . . ,Ud)‖ � ‖φ‖∞,Dd . (5.8)

We turn now to the proof of (3). We appeal to [3, Proposition 2.4]. Consider the
algebraic semigroup G = (Nd ,+) and its representations

π :
G → B(H)
(n1, . . . ,nd) 	→ Tn1

1 · · ·Tnd
d

and ρ :
G → B(K)
(n1, . . . ,nd) 	→ Un1

1 · · ·Und
d

, (5.9)

where K and U1, . . . ,Ud are provided by (1).
According to (5.6), we have two bounded operators J : H → K and Q : K → H

such that
π(n1, . . . ,nd) = Qρ(n1, . . . ,nd)J, (n1, . . . ,nd) ∈ G . (5.10)

Hence by [3, Proposition 2.4], there exist two ρ -invariant closed subspaces M ⊂
N ⊂ K , as well as an isomorphism S : H → N/M such that the compressed representa-
tion ρ̃ : G → B(N/M) satisfies

π(n1, . . . ,nd) = S−1ρ̃(n1, . . . ,nd)S, (n1, . . . ,nd) ∈ G . (5.11)

For any k = 1, . . . ,d , define Rk : N/M → N/M by Rk(ẋ) =

•︷ ︸︸ ︷
Uk(x) , for any x ∈ N ,

where ẋ denotes its class modulo M . Then R1, . . . ,Rd are contractions and (5.11) can
be equivalenty written as

Tn1
1 · · ·Tnd

d = S−1Rn1
1 · · ·Rnd

d S, (n1, . . . ,nd) ∈ G .

This implies that
Tk = S−1RkS,

for any k = 1, . . . ,d . By construction, N/M is a Hilbert space. Since it is isomorphic
to H , through S , it is isometrically isomorphic to H . In other words, there exists a
unitary V : N/M → H . The above identity can be written as

Tk = S−1V ∗VRkV
∗VS,

for any k = 1, . . . ,d . Now changing S into VS and Rk into VRkV ∗ , property (3) follows
at once. �

The next corollary is a straighforward consequence of the previous theorem.
Before stating it, we recall that Pisier showed in [32] the existence of a pair (T1,T2)

of commuting operators on Hilbert space H such that T1 and T2 are both similar to
contractions (that is, there exist bounded invertible operators S1,S2 : H → H such that
S−1

1 T1S1 and S−1
2 T2S2 are contractions), but there is no common bounded invertible

S : H → H such that S−1T1S and S−1T2S are contractions.

COROLLARY 5.2. Let d � 2 be an integer and let (T1, . . . ,Td) be a commuting
family of Ritt operators on Hilbert space H . The following assertions are equivalent.
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(1) (T1, . . . ,Td) admits an H∞(Bγ1 × ·· · ×Bγd ) functional calculus for some γk ∈
(0, π

2 ) , k = 1, . . . ,d .

(2) There exists a bounded invertible operator S : H → H such that for any k =
1, . . . ,d , S−1TkS is a contraction.

We finally mention that Theorem 5.1 and Corollary 5.2 have semigroup versions,
that can be obtained by adapting the previous arguments. However we omit their state-
ment as they were already proved in the paper [20] (by using the notion of complete
boundedness and Paulsen’s similarity theorem).

6. Appendix: The Franks-McIntosh decomposition on Stolz domains

In this section we provide a detailed proof of the Franks-McIntosh decomposition
on Stolz domains used in Section 3. As indicated in the Introduction, this result is
implicit in [12, Section 4], however no proof has been written yet. The one we provide
here is close to the one for sectors given in [12, Section 3], and much simpler that the
one which is sketched in [12, Section 4] for domains having several points of contact.

THEOREM 6.1. Let d � 1 be an integer, let βk in (0, π
2 ) and αk in (0,βk) , k =

1, . . . ,d . There exist sequences (Ψk,ik )ik�1 and (Ψ̃k,ik )ik�1 in H∞
0 (Bαk) verifying the

following properties.

(1) For every real number p > 0 and for any k = 1, . . . ,d ,

sup

{
∞

∑
ik=1

∣∣Ψk,ik (ζk)
∣∣p : ζk ∈ Bαk

}
< ∞ and

sup

{
∞

∑
ik=1

∣∣Ψ̃k,ik (ζk)
∣∣p : ζk ∈ Bαk

}
< ∞.

(6.1)

(2) There exists a constant C > 0 such that for every h in H∞(Bβ1
×·· ·×Bβd

) , there
exists a family (ai1,...,id )i1,...,id�1 of complex numbers such that∣∣ai1,...,id

∣∣� C‖h‖∞,Bβ1
×···×Bβd

, (i1, . . . , id) ∈ N∗d , (6.2)

and for every (ζ1, . . . ,ζd) in ∏d
k=1 Bαk ,

h(ζ1, . . . ,ζd) = ∑
i1,···,id�1

ai1,...,id Ψ1,i1(ζ1)Ψ̃1,i1(ζ1) · · ·Ψd,id (ζd)Ψ̃d,id (ζd). (6.3)

The main part of the proof will consist in showing the following one-variable
result.
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PROPOSITION 6.2. Let 0 < α < β < π
2 . There exist a sequence (Φi)i�1 in H∞

0 (Bα)
and a constant C > 0 such that

sup

{
∞

∑
i=1

|Φi(ζ )|p : ζ ∈ Bα

}
< ∞,

for any p > 0 , and for any h ∈ H∞(Bβ ) , there exists a sequence (ai)i�1 of complex
numbers such that |ai| � C‖h‖∞,Bβ , for any i � 1 , and

h(ζ ) =
∞

∑
i=1

aiΦi(ζ ), ζ ∈ Bα . (6.4)

REMARK 6.3. Since Bα is a simply connected domain bounded by a rectifiable
Jordan curve, any element of H∞(Bα) admits boundary values. Further, for any Φ ∈
H∞

0 (Bα) , there exist Ψ,Ψ̃ in H∞
0 (Bα) such that

|Ψ(ζ )| = |Ψ̃(ζ )| = |Φ(ζ )| 1
2 , ζ ∈ ∂Bα . (6.5)

Indeed, given Φ ∈H∞
0 (Bα) , there exist s > 0 and F ∈H∞(Bα) such that (1−ζ )sΦ(ζ )

= F(ζ ) , for any ζ ∈ Bα . Then using inner-outer factorisation, we may write F = ϕϕ̃ ,

with |ϕ |= |ϕ̃ |= |F| 1
2 on the boundary of Bα . Then we obtain (6.5) by taking Ψ(ζ ) =

(1− ζ )
s
2 ϕ(ζ ) and Ψ̃(ζ ) = (1− ζ )

s
2 ϕ̃(ζ ) .

Combining the above factorization property with Proposition 6.2, we immediately
obtain Theorem 6.1 in the case d = 1.

Before proceeeding to the proof of Proposition 6.2, we need some preliminary
constructions. We fix some 0 < α < μ < β < π

2 .
We let Γ0 denote the arc of the circle centered at 0 with radius sin(μ) , joining

sin(μ)ei( π
2 −μ) to sin(μ)ei(μ− π

2 ) counterclockwise. Then we let Γ1 and Γ2 denote the

segments joining 1 to sin(μ)ei( π
2 −μ) and sin(μ)ei(μ− π

2 ) to 1, respectively. Clearly
Γ0 , Γ1 and Γ2 divide ∂Bμ .

We divide Γ0 into a finite number of arcs
{

γ0,k
}N

k=0 , with fixed length δ �
1
2dist(∂Bα ,Γ0) . For any 0 � k � N , we denote by z0,k the center of γ0,k and we let
D0,k be the open ball centered at z0,k with radius δ . Thus D0,k does not intersect ∂Bα .

Let l = cos(μ) ; this is the length of the segment Γ1 . We introduce the sequence
of segments

γ1,k =
{

z ∈ Γ1 : lρ−k−1 � |1− z|� lρ−k
}

, k � 0,

for some ρ > 1, which will be chosen below. These segments divide Γ1 . Let z1,k be
the center of γ1,k and let D1,k be the open ball centered at z1,k with radius

sk = l(ρ−k −ρ−k−1). (6.6)

We choose ρ such that for every k � 0, the closure of D1,k does not intersect ∂Bα .
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We divide Γ2 in the same manner by setting, for any k � 0,

γ2,k =
{
z : z ∈ γ1,k

}
, z2,k = z1,k and D2,k =

{
z : z ∈ D1,k

}
.

For any ζ in Bα and any z in the union of ∪N
k=0D0,k , ∪∞

k=0D1,k and ∪∞
k=0D2,k ,

we let

K(z,ζ ) =
(1− z)

1
2 (1− ζ )

1
2

z− ζ
.

For z,ζ as above, elementary computations yield estimates

|1− ζ |� |z− ζ | and |1− z|� |z− ζ | . (6.7)

We derive that for m = 1,2 and for any r ∈ N , we have estimates

sup
{|K(z,ζ )| : z ∈ Dm,k, ζ ∈ Bα , lρ−r−1 � |1− ζ |� lρ−r}� ρ− |k−r|

2 . (6.8)

Indeed for z,ζ as above, we have |1− z| � ρ−k , |1− ζ | � ρ−r and by (6.7), we have
ρ−min(k,r) � |z− ζ | . These three estimates yield (6.8).

It readily follows from the above definitions that for m = 1,2 and k � 0, we have∫
γm,k

∣∣∣ dz
1− z

∣∣∣ = log(ρ). (6.9)

For m = 1,2 and k � 0, we let
{
em,k, j

}∞
j=0 be an orthonormal family of

L2
(
γm,k,

∣∣ dz
1−z

∣∣) such that for any n∈N , Span{em,k,0, . . . ,em,k,n} is equal to the subspace
of polynomial functions with degree less than or equal to n . Likewise, for 0 � k � N ,
we let

{
e0,k, j

}∞
j=0 be an orthonormal family of L2

(
γ0,k,

∣∣ dz
z

∣∣) such that for any n ∈ N ,
Span{em,k,0, . . . ,em,k,n} is equal to the subspace of polynomial functions with degree
less than or equal to n .

Next for any m ∈ {0,1,2} and any k � 0 (with the convention that k � N if
m = 0), we define Φm,k, j : Bα → C by

Φm,k, j(ζ ) =
1

2π i

∫
γm,k

em,k, j(z)K(z,ζ )
dz

1− z
, ζ ∈ Bα .

These functions are well defined holomorphic functions belonging to H∞
0 (Bα) . Indeed,

according to the definition of K and the Cauchy-Schwarz inequality, we have

∣∣Φm,k, j(ζ )
∣∣� 1

2π

(∫
γm,k

|K(z,ζ )|2 |dz|
|1− z|

) 1
2

� |1− ζ | 1
2

2π

(∫
γm,k

|dz|
|ζ − z|2

) 1
2

� |1−ζ | 1
2 ,

since |z− ζ | � dist(Bα ,γm,k) > 0.

LEMMA 6.4. There exists a constant c > 0 such that if ζ ∈ Bα satisfies

lρ−r−1 � |1− ζ |� lρ−r (6.10)

for some r ∈ N , then for any k � 0 , j � 1 and m = 1,2 , we have∣∣Φ0,k, j(ζ )
∣∣ � c 2− j and

∣∣Φm,k, j(ζ )
∣∣ � c 2− jρ− |k−r|

2 . (6.11)
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Proof. We start proving the second estimate. Let m ∈ {1,2} and k � 0. For any
fixed ζ ∈ Bα , the restriction of K(·,ζ ) to Dm,k is analytic. Recall (6.6) and consider
the normalised power series expansion,

K(z,ζ ) =
∞

∑
n=0

bm,k,n

(
z− zm,k

sk

)n

.

Assume the estimate (6.10). Then according to (6.8), we have

sup
{|K(z,ζ )| : z ∈ Dm,k

}
� ρ− |k−r|

2 . (6.12)

Using Bessel-Parseval in H = L2
(

∂Dm,k,
|dz|
2πsk

)
and (6.12), one obtains

(
∞

∑
n=0

∣∣bm,k,n

∣∣2) 1
2

= ‖K(·,ζ )‖H =
(∫

∂Dm,k

|K(z,ζ )|2 |dz|
2πsk

) 1
2

� ρ− |k−r|
2 . (6.13)

By construction, γm,k is included in the ball centered at zm,k with radius sk
2 . Hence

for any z ∈ γm,k and any integer N � 0, we have

∞

∑
n= j

∣∣∣∣bm,k,n

(
z− zm,k

sk

)n∣∣∣∣�
(

∞

∑
n= j

∣∣bm,k,n

∣∣2) 1
2
(

∞

∑
n= j

∣∣∣∣ z− zm,k

sk

∣∣∣∣2n
) 1

2

�
(

∞

∑
n= j

∣∣bm,k,n

∣∣2) 1
2
(

∞

∑
n= j

4−n

) 1
2

� ρ− |k−r|
2 2− j.

Now recall that in L2
(
γm,k,

∣∣ dz
1−z

∣∣) , em,k, j is orthogonal to every polynomial function

with degree < j , hence orthogonal to (z− zm,k)n , for any n < j . Further dz
1−z is the

opposite of
∣∣ dz
1−z

∣∣ . This implies that

∣∣Φm,k, j(ζ )
∣∣ =

∣∣∣∣∣ 1
2π i

∫
γm,k

em,k, j(z)
∞

∑
n= j

bm,k,n

(
z− zm,k

sk

)n dz
1− z

∣∣∣∣∣
� ρ− |k−r|

2 2− j
∫

γm,k

∣∣em,k, j(z)
∣∣ ∣∣∣∣ dz

1− z

∣∣∣∣ .
Applying (6.9), we deduce the second estimate in (6.11).

The proof of the first estimate is similar, using the fact that on each γ0,k , dz
z is

proportional to
∣∣ dz

z

∣∣ , and replacing (6.12) by the observation that the set{
zK(z,ζ )

1− z
: z ∈

N⋃
k=0

D0,k, ζ ∈ Bα

}
is bounded. �



H∞ -FUNCTIONAL CALCULUS FOR COMMUTING FAMILIES 1087

Proof of Proposition 6.2. Lemma 6.4 implies that for any p > 0 and m∈ {0,1,2} ,

sup

{
∞

∑
k, j=0

∣∣Φm,k, j(ζ )
∣∣p : ζ ∈ Bα

}
< ∞. (6.14)

Let h ∈ H∞(Bβ ) . By Cauchy’s formula,

h(ζ ) =
1

2π i

∫
∂Bμ

h(z)K(z,ζ )
dz

1− z
, ζ ∈ Bα . (6.15)

For m = 1,2, k � 0 and j � 0, set

am,k, j =
∫

γm,k

h(z)em,k, j(z)
∣∣∣∣ dz
1− z

∣∣∣∣ . (6.16)

Likewise, for 0 � k � N and j � 0, set

a0,k, j =
∫

γ0,k

h(z)e0,k, j(z)
∣∣∣∣dz

z

∣∣∣∣ . (6.17)

By the Cauchy-Schwarz inequality and (6.9), we have a uniform estimate∣∣am,k, j

∣∣� ‖h‖∞,Bβ
, (6.18)

for m ∈ {0,1,2} , k � 0 and j � 0.
For m = 1,2 and k � 0, let Hm,k denote the subspace of all polynomial functions

of L2(γm,k,
∣∣ dz
1−z

∣∣) . This is a dense subspace. Hence we have a series expansion

h|γm,k
=

∞

∑
j=0

am,k, jem,k, j (6.19)

in the latter space.
Likewise, for 0 � k � N , let H0,k denote the subspace of all polynomial func-

tions of L2(γ0,k,
∣∣ dz

z

∣∣) . This is no longer a dense subspace. However, by Runge’s ap-
proximation theorem (see e.g. [34, Theorem 13.8]), every holomorphic function on an
open neighborhood of γ0,k is uniformly approximated by polynomials, hence belongs

to H0,k
‖·‖2 . This implies that the series expansion (6.19) holds true as well in this case.

From (6.15), we can write h(ζ ) = h0(ζ )+h1(ζ )+h2(ζ ) for any ζ ∈ Bα , where

hm(ζ ) =
1

2π i

∫
Γm

h(z)K(z,ζ )
dz

1− z
,

for each m = 0,1,2. The L2 -convergence in (6.19) a fortiori holds in the L1 -sense,
hence

hm(ζ ) =
1

2π i

∞

∑
k=0

∫
γm,k

h(z)K(z,ζ )
dz

1− z
=

1
2π i

∞

∑
k=0

∞

∑
j=0

am,k, j

∫
γm,k

em,k, j(z)K(z,ζ )
dz

1− z
,
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and hence

hm(ζ ) =
∞

∑
k=0

∞

∑
j=0

am,k, jΦm,k, j(z). (6.20)

After a suitable reindexing, we obtain the result by combining (6.18), (6.20) and
(6.14). �

Proof of Theorem 6.1. The case d = 1 was settled at the end of Remark 6.3.
Assume that d = 2. Let h ∈ H∞(Bβ1

× Bβ2
) . Let (Φ2,i)i�1 be the sequence

of H∞
0 (Bα2) obtained by applying Proposition 6.2 to the couple (α2,β2) . For any

ζ1 ∈ Bβ1
, the one variable function h(ζ1, ·) belongs to H∞(Bβ2

) . Hence we have a
decomposition

h(ζ1,ζ2) =
∞

∑
i=1

ai(ζ1)Φ2,i(ζ2), ζ1 ∈ Bβ1
, ζ2 ∈ Bα2 ,

with a uniform estimate |ai(ζ1)| � C2‖h‖∞,Bβ1
×Bβ2

. Recall from the proof of Proposi-

tion 6.2 that the complex numbers ai(ζ1) are defined by (6.16) and (6.17). This implies
that each ai : Bβ1

→ C is a holomorphic function. Further the above estimates show
that for any i � 1, ai ∈ H∞(Bβ1

) , with ‖ai‖∞,Bβ1
� C2‖h‖∞,Bβ1

×Bβ2
.

Let (Φ1,i)i�1 be the sequence of H∞
0 (Bα1) obtained by applying Proposition 6.2

to the couple (α1,β1) . Applying the latter to each ai , we deduce the existence of a
family (ai j)i, j�1 of complex numbers such that

|ai j| � C1C2‖h‖∞,Bβ1
×Bβ2

, i, j � 1,

for some constant C1 > 0 and

ai(ζ1) =
∞

∑
j=1

ai jΦ1, j(ζ1), ζ1 ∈ Bα1 , i � 1.

Since ∑ j |Φ1, j(ζ1)| < ∞ and ∑i |Φ2,i(ζ2)| < ∞ , for any (ζ1,ζ2) ∈ Bα1 ×Bα2 , we de-
duce from above that

h(ζ1,ζ2) =
∞

∑
i, j=1

ai jΦ1, j(ζ1)Φ2,i(ζ2), (ζ1,ζ2) ∈ Bα1 ×Bα2 .

Now using Remark 6.3 as in the case d = 1, we deduce the result in the case d = 2.
The general case is obtained by iterating this process. �
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25030 Besançon Cedex, France

e-mail: olivier.arrigoni@univ-fcomte.fr

Christian Le Merdy
Laboratoire de Mathématiques de Besançon
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