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THE MATRIX TODA EQUATIONS FOR COEFFICIENTS OF

A MATRIX THREE–TERM RECURRENCE RELATION

ABDON E. CHOQUE–RIVERO

(Communicated by F. Gesztesy)

Abstract. For q× q positive measures of the form e−xtσ(dx) on [0,∞) with respect to x and
t � 0 , we derive the matrix Toda equations for the three-term recurrence relation coefficients of
the corresponding orthogonal matrix polynomials. Additionally, relations for the matrix version
of the Volterra lattice and associated orthogonal polynomials are attained.

1. Introduction

The transformed scalar Toda lattice

α̇n = λn+1−λn, λ̇n+1 = λn+1(αn+1−αn), n = 1,2, . . . , (1.1)

where αn = αn(t) and λn = λn(t) are the coefficients of the three-term recurrence
relation

pn(z, t) = (z−αn(t))pn−1(z,t)−λn(t)pn−2(z,t), n = 1,2, . . .

with p0 := 1 and p−1 := 0, was considered in [30], [3], [35], [36], [34], [40], [38],
[41], [4] and references therein. In these works, the complete integrability, the relations
to orthogonal polynomials, inverse problems and the physical application of the Toda
lattice are discussed. Here and in the sequel, the overdot denotes the derivative with
respect to t .

The operator and matrix version of the Toda lattice was considered by Berezanskii
and Gekhtman in [6] under the assumption that the Lax equation is satisfied. In [33], a
perturbation of a measure similar to that considered in the present work but defined on
the full line is studied. In [1], non-Abelian 2D Toda hierarchies via orthogonal matrix
polynomials are studied. In [10], the bidimensional Toda lattice related to matrix coeffi-
cients of three-term relations is discussed. The Toda system for a certain Laguerre-type
perturbation with the help of orthogonal matrix polynomials is treated in [11].
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In this work, we derive the matrix version of the Toda equations (1.1) for the q×q
matrix coefficients Ar, j(t) , Br, j(t) of the relation

Pr, j+1(z, t) =(zIq−Ar, j(t))Pr, j(z,t)−B∗
r, j−1(t)Pr, j−1(z,t), j � 1, (1.2)

Pr,0(z, t) =Iq, Pr,1(z,t) = zIq−Ar,0(t) (1.3)

for r = 1,2 and t ∈ [0,+∞) . The q× q matrices Ar, j(t) , Br, j(t) , Pr, j(z,t) are con-
structed via the sequence of moments (s j(t))∞

j=0 with

s j(t) :=
∫

[0,∞)

x je−txσ(dx) (1.4)

and t ∈ [0,+∞) , which are well-defined for j � 0. Here Iq denotes the q× q iden-
tity matrix, and A∗ stands for the conjugate transpose of A . We assume that σ is a
matrix-valued positive measure on [0,∞) . Furthermore, in the sequel we assume that
the Hankel block matrices

H1, j(t) :=

⎛⎜⎜⎜⎝
s0(t) s1(t) . . . s j(t)
s1(t) s2(t) . . . s j+1(t)

...
...

...
...

s j(t) s j+1(t) . . . s2 j(t)

⎞⎟⎟⎟⎠ ,H2, j(t) :=

⎛⎜⎜⎜⎝
s1(t) s2(t) . . . s j+1(t)
s2(t) s3(t) . . . s j+1(t)

...
...

...
...

s j+1(t) s j+1(t) . . . s2 j+1(t)

⎞⎟⎟⎟⎠
(1.5)

are both positive definite for j � 0 and t ∈ [0,+∞) . An accurate definition of the matri-
ces Ar, j(t) , Br, j(t) , and Pr, j(x,t) will be given in Definitions 2.3 and 2.2, respectively.
A proof of the three-term relation (1.2) is given without using the orthogonality proper-
ties of the matrix polynomials Pr, j (as in [33, Proposition 3] and [19, Proposition 3.7]).
We employ certain identities instead. See Section 3.

Note that s0(t) is the Laplace transform of the measure σ(x) ; such a transform
was studied in [7, Chapter II] by Christian Berg, Jens Christensen and Paul Ressel. See
also [21], [39] and references therein.

Additionally, the matrix version of the Volterra lattice is proved in Proposition 5.1.
The scalar version of the Volterra lattice is given by the relation [35, Equation (1.5)]

λ̇n = λn(λn+1−λn−1), n = 2,3, . . . . (1.6)

Moreover, we prove some relations that involve the derivative of the associated matrix
polynomials of order k , where k is a nonnegative integer. See Section 6. The scalar
version of these polynomials is defined by the recurrence relation [36, Equation (1.3)]:

p(k)
n (z, t) = (z−αn+k(t))p

(k)
n−1(z,t)−λn+k(t)p

(k)
n−2(z,t), n = 1,2, . . . ,

with p(k)
0 := 1 and p(k)

−1 := 0.

It is well-known that if the the matrices H1, j(t) and H2, j(t) are nonnegative def-
inite matrices for j � 0 there is a solution to the Stieltjes matrix moment problem:
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Given a sequence (s j(t)) j�0 of q× q matrices, find the set Mt of positive measures
e−txσ(dx) for x belonging to [0,+∞) and t ∈ [0,+∞) such that (1.4) holds for j � 0.
Let e−txσ(dx) ∈ Mt . The function

s(z,t) :=
∫

[0,+∞)

e−xtσ(dx)
x− z

, z ∈ C\ [0,+∞)

is called the Stieltjes transform of e−txσ(dx) . The asymptotic relation between the
Stieltjes transform s(z,t) and the moments s j(t) near the point z = +∞ reads

s(z,t) = − s0(t)
z

− s1(t)
z2 − . . .− s j(t)

z j+1 − . . . . (1.7)

From (1.4) for [0,+∞) , we get the following obvious equality:

ṡ j(t) = −s j+1(t). (1.8)

On other hand, by employing (1.7) and (1.8) we attain the following relation:

ṡ(z,t) = −s0(t)− zs(z,t).

Further properties of the Stieltjes transform s(z,t) will be studied elsewhere.
Throughout the work, we use some results and notations from [13]; in particular,

we repeatedly employ the Schur complements Ĥr, j (2.5), (2.6), as well as certain block
partitions of the Hankel block matrices Hr, j and their inverses. The main results of
the present work are principally based on explicit algebraic and differential identities
between the mentioned parts. See Section 3. Similar identities, in the frame of the
Potapov approach [37], appeared in a number of works on matrix interpolation prob-
lems, which include matrix moment problems on the real axis and orthogonal matrix
polynomials as well as orthogonal matrix functions. The Potapov approach consists
of reducing a general interpolation problem (which includes the moment problem) into
certain matrix inequalities for analytic functions that are solved with the help of the
construction of the resolvent matrix, also known as the Nevanlinna matrix. See [31],
[27], [20], [28], [15] and references therein.

The present work differs from previous works concerning the matrix Toda equa-
tions [6], [33], [1] as follows: Firstly, the perturbed measure σ is defined on [0,+∞)
instead of on all real axis. Secondly, we decisively make use of the Schur complements
Ĥr, j to handle the coefficients Ar, j and Br, j , and we do not employ their integral repre-
sentations. Thirdly, we do not use the orthogonality properties of polynomials Pr, j .

Future work can be devoted to the study of Lax pairs corresponding to the matrix
Toda sequence; see Definition 4.1. Our motivation is to follow the papers [14], [17] and
[16] in order to attain applications of the polynomials Pr, j(x,t) to the control theory
of systems described by differential equations and to the problem of the stability of
polynomials with interval coefficients.
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2. Preliminaries and notations

Throughout this paper, let q and p be positive integers. We will use C , N0 and
N to denote the set of all complex numbers, the set of all nonnegative integers and the
set of all positive integers, respectively. The notation C

q×q stands for the set of all
complex q×q matrices. For the null matrix that belongs to Cp×q , we will write 0p×q .
We denote by 0q the null matrix in Cq×q , respectively. In cases where the sizes of the
null and the identity matrix are clear, we will omit the indices.

Let
y[ j,k](t) := column(s j(t),s j+1(t), . . . ,sk(t)), 0 � j � k

and y[ j,k](t) = 0q , if j > k ,

u1,0(t) := 0q, u1, j(t) :=
(

0q

−y[0, j−1](t)

)
, u2, j(t) := −y[0, j](t) , j � 1. (2.1)

Consider

Y1, j(t) := y[ j,2 j−1](t), Y2, j(t) := y[ j+1,2 j](t), j � 1. (2.2)

Let Rj : C → C( j+1)q×( j+1)q be given by

Rj(z) := (I( j+1)q− zTj)−1, j � 0, (2.3)

with

T0 := 0q, Tj :=
(

0q× jq 0q

I jq 0 jq×q

)
, j � 1.

Observe that for each j ∈ N0 the matrix–valued function Rj can be represented via

Rj(z) =

⎛⎜⎜⎜⎜⎜⎝
Iq 0q 0q . . . 0q 0q

zIq Iq 0q . . . 0q 0q

z2Iq zIq Iq . . . 0q 0q
...

...
... . .

. ...
...

z jIq z j−1Iq z j−2Iq . . . zIq Iq

⎞⎟⎟⎟⎟⎟⎠ .

Furthermore, let

v0 := Iq, v j :=
(

Iq
0 jq×q

)
=
(

v j−1

0q

)
(2.4)

for positive integers j .

DEFINITION 2.1. A sequence of matrix moments (s j(t))∞
j=0 is called a Stieltjes

positive definite sequence if the Hankel block matrices H1, j(t) and H2, j(t) defined as
in (1.5) are positive definite for j � 0 and t ∈ [0,+∞) .
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In the sequel, we consider only Stieltjes positive definite sequences.

For t ∈ [0,+∞) , let Ĥ1, j (resp. Ĥ2, j ) denote the Schur complement of the block
H1, j−1 in H1, j (resp. of the block H2, j−1 in H2, j ):

Ĥ1,0(t) := s0(t), Ĥ1, j(t) :=s2 j(t)−Y∗
1, j(t)H

−1
1, j−1(t)Y1, j(t), j � 1, (2.5)

Ĥ2,0(t) := s1(t), Ĥ2, j(t) :=s2 j+1(t)−Y∗
2, j(t)H

−1
2, j−1(t)Y2, j(t), j � 1. (2.6)

These matrices are positive definite matrices, as well as the matrices H1, j (resp. H2, j ).
In the scalar case, the matrices Ĥ1, j and Ĥ1, j have the form

Ĥ1, j =
|H1, j|
|H1, j−1| , Ĥ2, j =

|H2, j|
|H2, j−1| , (2.7)

where |Ĥr, j| denotes the determinant of Ĥr, j . Equality (2.7) is readily proved by calcu-
lating the determinant of the Schur complement Ĥr, j . See [9, Proposition 8.2.3].

Usually we will omit the dependence of t in s j , Hr, j , Yr, j and ur, j for r = 1,2.
The matrix polynomials of the following definition were considered in [13, Definition
4.1] for t = 0.

DEFINITION 2.2. For t ∈ [0,+∞) , let (s j(t))∞
j=0 be an infinite Stieltjes positive

definite sequence as in (1.4), and denote

P1,0(z, t) := Iq, Q1,0(z,t) := 0q, P2,0(z,t) := Iq, Q2,0(z,t) := s0. (2.8)

For j � 1, let

P1, j(z,t) :=(−Y ∗
1, jH

−1
1, j−1, Iq)Rj(z)v j, (2.9)

P2, j(z,t) :=(−Y ∗
2, jH

−1
2, j−1, Iq)Rj(z)v j, (2.10)

Q1, j(z,t) :=− (−Y∗
1, jH

−1
1, j−1, Iq)Rj(z)u1, j (2.11)

and
Q2, j(z,t) := −(−Y ∗

2, jH
−1
2, j−1, Iq)Rj(z)u2, j. (2.12)

Note that the matrix polynomials Pr, j and Qr, j satisfy the following orthogonality and
integral properties.

REMARK 2.1. For t ∈ [0,+∞) , let (s j(t)) j�0 be a Stieltjes positive definite se-
quence related to a positive measure e−xtσ(dx) as in (1.4). Let Pr, j and Qr, j be as in
Definition 2.2. Thus, the following equalities hold:∫

[0,+∞)

e−txP1, j(t,x)σ(dx)P∗
1,k(t,x) =

{
Ĥ1, j(t), if j = k,

0q, if j �= k,

∫
[0,+∞)

xe−txP2, j(t,x)σ(dx)P∗
2,k(t,x) =

{
Ĥ2, j(t), if j = k,

0q, if j �= k,



1130 A. E. CHOQUE–RIVERO

for t ∈ [0,+∞) and j,k ∈ N0 . Moreover,

Q1, j(t,x) =
∫

[0,+∞)

1
x− τ

(P1, j(t,x)−P1, j(t,τ))e−tτ σ(dτ),

Q2, j(t,x) =
∫

[0,+∞)

1
x− τ

(xP2, j(t,x)− τP2, j(t,τ))e−tτ τσ(dτ),

for t ∈ [0,+∞) and j ∈ N0 .

The proof of these equalities can be verified by direct calculations as in [13, Remark
D.6] and [13, Remark E.4] where the case t = 0 was proven.

DEFINITION 2.3. Let Ĥ1, j and Ĥ2, j be as in (2.5) and (2.6), respectively. For
t ∈ [0,+∞) , define

A1,0(t) :=Ĥ2,0(t)Ĥ−1
1,0 (t), (2.13)

A1, j(t) :=Ĥ2, j(t)Ĥ−1
1, j (t)+ Ĥ1, j(t)Ĥ−1

2, j−1(t), j � 1, (2.14)

A2, j(t) :=Ĥ1, j+1(t)Ĥ−1
2, j (t)+ Ĥ2, j(t)Ĥ−1

1, j (t), j � 0. (2.15)

For r = 1,2, j � 0 and t ∈ [0,+∞) , denote

Br, j(t) := Ĥ−1
r, j (t)Ĥr, j+1(t). (2.16)

In [13, Theorem 9.3(b)], the matrices Ar, j and Br, j are obtained via the so-called
Dyukarev-Stieltjes parameters [13, Definition 2.3].

In the scalar case, the matrices Ar, j and Br, j have the form A1,0 = s1
s0

, A2,0 = s2
s1

:

A1,1 =
|H2,1|H1,0

H2,0|H1,1| +
|H1,1|

H1,0H2,0
,

A1, j =
|H2, j||H1, j−1|
|H2, j−1||H1, j| +

|H1, j||H2, j−2|
|H1, j−1||H2, j−1| ,

A2, j =
|H1, j+1||H2, j−1|
|H1, j||H2, j| +

|H2, j||H1, j−1|
|H2, j−1||H1, j| ,

for j � 1. Furthermore, B1,0 = |H1,1|
s20

, B2,0 = |H2,1|
s21

and Br, j = |Hr, j−1||Hr, j+1|
|Hr, j |2 , for j � 1.

In Subsection 5.1, we prove the following proposition using identities of Section
3 without employing the orthogonality condition.

PROPOSITION 2.1. Let Pr, j for r = 1,2 be as in Definition 2.2, and let Ar, j , Br, j

be as in Definition 2.3. The polynomials Pr, j , r = 1,2 satisfy the recurrence relation
(1.2) and (1.3).

Observe that relation (1.2) was proved in [19] with the help of the orthogonality condi-
tion. See also [29].
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3. Algebraic and differential identities

In this section, we introduce relevant algebraic and differential identities, which
will allow proving the main results of the present work. For each positive integer n , let

L1,n :=
(
δ j,k+1Iq

)
j = 0, . . .,n

k = 0, . . .,n−1
and L2,n :=

(
δ j,kIq

)
j = 0, . . .,n

k = 0, . . .,n−1
, (3.1)

where δ j,k is the Kronecker symbol: δ j,k := 1 if j = k and δ j,k := 0 if j �= k .
For j � 1, let

Σr, j :=
(−H−1

r, j−1Yr, j

Iq

)
, r = 1,2, (3.2)

Y0, j :=y[1, j], Y3, j := y[ j+2,2 j+1], (3.3)

and

H3, j :=

⎛⎜⎜⎜⎝
s2 s3 . . . s j+2

s3 s4 . . . s j+3
...

...
...

...
s j+2 s j+1 . . . s2 j+2

⎞⎟⎟⎟⎠ , j � 0. (3.4)

PROPOSITION 3.1. For r = 1,2, let Hr, j , Y0, j , Y3, j , v j , L1, j , Yr, j , Ĥr, j and Σr, j

be as in (1.5), (3.3), (2.4), (3.1), (2.2), (2.5), (2.6), (3.2) and (3.4), respectively. The
following identities then hold:

H−1
2, j Y0, j+1 = v j, (3.5)

H−1
1, j H2, j = (L1, j, H−1

1, j Y1, j+1), (3.6)

H−1
2, j H3, j = (L1, j, H−1

2, j Y2, j+1), (3.7)

Y ∗
1, j+1H

−1
1, j H2, j −Y∗

2, j+1 = −(0q, . . . ,0q,Ĥ1, j+1), (3.8)

−Y ∗
1, jH

−1
1, j−1Y2, j + s2 j+1 = (0q, . . . ,0q,Ĥ1, j)H−1

2, j−1Y2, j + Ĥ2, j,

(3.9)

(0q,−Y ∗
2, jH

−1
2, j−1)H1, j +Y∗

1, j+1 = (0q, . . . ,0q,Ĥ2, j), (3.10)

(0q, . . . ,0q,Ĥ1, j)H−1
1, j−1 = Ĥ1, jĤ

−1
1, j−1(−Y ∗

1, j−1H
−1
1, j−2, Iq), (3.11)

(0q, . . . ,0q,Ĥ2, j)H−1
2, j−1 = Ĥ2, jĤ

−1
2, j−1(−Y ∗

2, j−1H
−1
2, j−2, Iq), (3.12)

Σ∗
1, j −Σ∗

2, j−1L
∗
1, j + Ĥ2, j−1Ĥ

−1
1, j−1Σ∗

1, j−1L
∗
2, j = 0q× jq, (3.13)

Σ∗
2, j −Σ∗

1, j + Ĥ1, jĤ
−1
2, j−1Σ∗

2, j−1L
∗
2, j = 0q× jq, (3.14)

Σ∗
1, jH2, jΣ1, j = Ĥ1, jĤ

−1
2, j−1Ĥ1, j + Ĥ2, j, (3.15)⎛⎝ 0q

−H−1
2, j−1Y2, j

Iq

⎞⎠∗

H1, j+1

⎛⎝ 0q

−H−1
2, j−1Y2, j

Iq

⎞⎠= Σ∗
2, jH3, jΣ2, j, (3.16)

Σ∗
2, jH3, jΣ2, j = Ĥ1, j+1 + Ĥ2, jĤ

−1
1, j Ĥ2, j. (3.17)
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Proof. Equalities (3.5) through (3.7) are readily verified. To prove (3.8), we use
(3.6) and (2.5). We have

Y ∗
1, j+1H

−1
1, j H2, j −Y ∗

2, j+1 = Y ∗
1, j+1(L1, j,H

−1
1, j Y1, j+1)−Y ∗

2, j+1

= (Y ∗
1, j+1L1, j,Y

∗
1, j+1H

−1
1, j Y1, j+1)−Y ∗

2, j+1

= (0q, . . . ,0q,Y
∗
1, j+1H

−1
1, j Y1, j+1)−Y ∗

2, j+1 = −(0q, . . . ,0q,Ĥ1, j+1).

Equality (3.9) is verified by employing (2.6) and (3.8). To verify (3.10), we use
the equality

H1, j =
(

s0 Y ∗
0, j

Y0, j H3, j−1

)
, (3.18)

as well as (3.5), (3.7) and (2.6). We have

(0q,−Y ∗
2, jH

−1
2, j−1)H1, j +Y∗

1, j+1 =(−Y ∗
2, jH

−1
2, j−1Y0, j, −Y ∗

2, jH
−1
2, j H3, j−1 +Y ∗

1, j+1

=(−Y ∗
2, jv j−1,−Y ∗

2, jL1, j,−Y ∗
2, jH

−1
2, j−1Y2, j)+Y ∗

1, j+1

=(0q, . . . ,0q,Ĥ2, j).

To prove (3.11) and (3.12), one employs the equality

H−1
r, j =

(
H−1

r, j−1 0 jq×q

0q× jq 0q×q

)
+
(−H−1

r, j−1Yr, j

Iq

)
Ĥ−1

r, j (−Y ∗
r, jH

−1
r, j−1, Iq). (3.19)

This equality is valid for r = 1,2 because H1, j and H2, j are positive definite matrices.
To prove (3.13), we use (3.2), (3.1), (3.18), (3.10) and (3.11). We have

Σ∗
1, j −Σ∗

2, j−1L
∗
1, j + Ĥ2, j−1Ĥ

−1
1, j−1Σ∗

1, j−1L
∗
2, j

=(−Y ∗
1, jH

−1
1, j−1, Iq)− (0q,−Y ∗

2, j−1H
−1
2, j−2, Iq)+ Ĥ2, j−1Ĥ

−1
1, j−1(−Y ∗

1, j−1H
−1
1, j−2, Iq,0q)

=
((

−Y ∗
1, j +(0,−Y∗

2, j−1H
−1
2, j−1)

(
s0 Y ∗

0, j−1
Y0, j−1 H3, j−2

))
H−1

1, j−1,0q

)
+ Ĥ2, j−1Ĥ

−1
1, j−1(−Y ∗

1, j−1H
−1
1, j−2, Iq,0q)

=((−Y ∗
1, j − (−Y2, j−1v j−2,−Y ∗

2, j−1L1, j−2,−Y ∗
2, j−1H2, j−2Y2, j−1))H−1

1, j−1,0q)

+ Ĥ2, j−1Ĥ
−1
1, j−1(−Y ∗

1, j−1H
−1
1, j−2, Iq,0q)

=− ((0q, . . . ,0q,Ĥ2, j−1)H−1
1, j−1,0q)+ Ĥ2, j−1Ĥ

−1
1, j−1(−Y ∗

1, j−1H
−1
1, j−2, Iq,0q) = 0q× jq.

Now we prove (3.14). We use (3.2), (3.1), (3.8) and (3.19) for r = 2:

Σ∗
2, j −Σ∗

1, j + Ĥ1, jĤ
−1
2, j−1Σ∗

2, j−1L
∗
2, j

=(−Y ∗
2, jH

−1
2, j−1 +Y ∗

1, jH
−1
1, j−1,0q)+ Ĥ1, jĤ

−1
2, j−1(−Y ∗

2, j−1H
−1
2, j−2, Iq,0q)

=− ((0q, . . . ,0q,Ĥ1, j)H−1
2, j−1,0q)+ Ĥ1, jĤ

−1
2, j−1(−Y ∗

2, j−1H
−1
2, j−2, Iq,0q) = 0q× jq.
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We prove (3.15). By using (3.2) for r = 1 and equality H2, j =
(

H2, j−1 Y2, j

Y ∗
2, j s2 j+1

)
, we

have

Σ∗
1, jH2, jΣ1, j =(−Y ∗

1, jH
−1
1, j−1, Iq)

(
H2, j−1 Y2, j

Y ∗
2, j s2 j+1

)(−H−1
1, j−1Y1, j

Iq

)
=(Y ∗

1, jH
−1
1, j−1H2, j−1−Y∗

2, j)H
−1
1, j−1Y1, j −Y∗

1, jH
−1
1, j−1Y2, j + s2 j+1 (3.20)

=− (0q, . . . ,0q,Ĥ1, j)(H−1
1, j−1Y1, j −H−1

2, j−1Y2, j)+ Ĥ2, j

=Ĥ1, jĤ
−1
2, j−1Ĥ1, j + Ĥ2, j.

In this chain of equalities, in the third equality we have added and subtracted the matrix
Y ∗

2, jH
−1
2, j−1Y2, j . Furthermore, we used (3.8) and (2.6). Equality (3.16) follows by using

the equality

H1, j+1 =
(

H1, j Y1, j+1

Y ∗
1, j+1 s2 j+2

)
, (3.21)

and we have⎛⎝ 0q

−H−1
2, j−1Y2, j

Iq

⎞⎠∗

H1, j+1

⎛⎝ 0q

−H−1
2, j−1Y2, j

Iq

⎞⎠
=
(
(0q,−Y ∗

2, jH
−1
2, j−1)H1, j +Y∗

1, j+1

)( 0q

−H−1
2, j−1Y2, j

)
+(0q,−Y ∗

2, jH
−1
2, j−1)Y1, j+1 + s2 j+2

=Y ∗
2, jH

−1
2, j−1H3, j−1H

−1
2, j−1Y2, j −Y ∗

3, jH
−1
2, j−1Y2, j −Y ∗

2, jH
−1
2, j−1Y3, j + s2 j+2 (3.22)

=
(−H−1

2, j−1Y2, j

Iq

)∗
H3, j

(−H−1
2, j−1Y2, j

Iq

)
= Σ∗

2, jH3, jΣ2, j.

The second equality follows from (3.18).
Now we prove (3.17). By employing (3.15) and equality (3.21), we have

Σ∗
2, jH3, jΣ2, j

=
(
(0q,−Y ∗

2, jH
−1
2, j−1)H1, j +Y∗

1, j+1

)( 0q

−H−1
2, j−1Y2, j

)
+(0q,−Y ∗

2, jH
−1
2, j−1)Y1, j+1 + s2 j+2

=
(
(0q,−Y ∗

2, jH
−1
2, j−1)H1, j +Y∗

1, j+1

)
H−1

1, j

(
H1, j

(
0q

−H−1
2, j−1Y2, j

)
+Y1, j+1

)
+ Ĥ1, j+1

=(0q, . . . ,0q,Ĥ2, j)H−1
1, j

⎛⎜⎜⎝
0q

. . .
0q

Ĥ2, j

⎞⎟⎟⎠+ Ĥ1, j+1 = Ĥ1, j+1 + Ĥ2, jĤ
−1
1, j Ĥ2, j.

In this chain of equalities, in the second equality we have added and subtracted the ma-
trix Y ∗

1, j+1H
−1
1, j Y1, j+1 . Furthermore, we used (2.5). In the third equality, we employed

(3.10). Finally, the last equality follows from (3.19) for r = 1. �
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REMARK 3.1. In [13], for r = 1,2 the coefficient Ar, j is defined as

Ar, j = Mr, jĤ
−1
r, j , (3.23)

where Mr, j := Σ∗
r, jHr+1, jΣr, j . By using (3.15) and (3.17), the equivalence between

(3.23) and (2.14) (resp. (2.15)) is evident.

The following remark alludes to the equivalence between the representation of coeffi-
cient A1, j given in (3.23) and in [33, Proposition 3].

REMARK 3.2. The coefficient A1, j satisfies the following equality:

A1, j = Y ∗
1, j+1H

−1
1, j λ j −Y∗

1, jH
−1
1, j−1λ j−1

for j � 1, where λ j is a ( j +1)q×q matrix equal to column(0q, . . . ,0q, Iq) .

Proof. By using the following equalities Y ∗
1, j+1 −Y ∗

1, jH
−1
1, j−1L

∗
1, jH1, j = Σ∗

1, jH2, j ,

L∗
1, jλ j = λ j−1 and H−1

1, j λ j = Σ1, jĤ
−1
1, j , we have

Y ∗
1, j+1H

−1
1, j λ j −Y ∗

1, jH
−1
1, j−1λ j−1 = Σ∗

1, jH2, jΣ1, jĤ
−1
1, j . �

In the following lemma, we calculate the derivative of the Schur complement Ĥr, j . We
will employ (1.8), the obvious equalities

Ḣ1, j = −H2, j, Ḣ2, j = −H3, j (3.24)

and the equality
Ȧ−1 = −A−1ȦA−1 (3.25)

that is valid for every q×q invertible and differentiable matrix A = A(t) for t ∈ (0,∞) .

LEMMA 3.1. Let Ĥr, j for r = 1,2 be as in (2.5) and (2.6). For t ∈ (0,+∞) , the
following equalities are valid:

˙̂H1, j =− Ĥ2, j − Ĥ1, jĤ
−1
2, j−1Ĥ1, j, (3.26)

˙̂H2, j =− Ĥ1, j+1− Ĥ2, jĤ
−1
1, j Ĥ2, j. (3.27)

Proof. To prove (3.26), we use (1.8), the first equality of (3.24), the equality Ẏ1, j =
−Y2, j and (3.25). We have

˙̂H1, j =ṡ2 j − Ẏ ∗
1, jH

−1
1, j−1Y1, j −Y ∗

1, j(H
−1
1, j−1)

·····Y1, j −Y ∗
1, jH

−1
1, j−1Ẏ1, j

=− (Y ∗
1, jH

−1
1, j−1H2, j−1−Y∗

2, j)H
−1
1, j−1Y1, j +Y∗

1, jH
−1
1, j−1Y2, j − s2 j+1 = Σ∗

1, jH2, jΣ1, j

=− Ĥ1, jĤ
−1
2, j Ĥ1, j − Ĥ2, j.
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In this chain of equalities, in the third equality one uses (3.20) and (3.15).
Now we prove (3.27). By employing (1.8), the second equality of (3.24) and

(3.25), we get

˙̂H2, j =ṡ2 j+1− Ẏ ∗
2, jH

−1
2, j−1Y2, j −Y ∗

2, j(H
−1
2, j−1)

·····Y2, j −Y ∗
2, jH

−1
2, j−1Ẏ2, j

=− s2 j+2 +Y ∗
3, jH

−1
2, j−1Y1, j −Y∗

2, jH
−1
2, j−1H3, j−1H

−1
2, j−1Y2, j +Y∗

2, jH
−1
2, j−1Y3, j

=−Σ∗
2, jH3, jΣ2, j = −Ĥ1, j+1− Ĥ2, jĤ

−1
1, j Ĥ2, j.

In this chain of equalities, the third equality follows from (3.22). �
Finally, we calculate the derivative of Σr, j with respect to t .

REMARK 3.3. For r = 1,2 and t ∈ (0,+∞) , the following identity is valid:

Σ̇r, j = Ĥr, jĤ
−1
r, j−1(Σr, j−1,0q), j � 1. (3.28)

Proof. We use (3.2), the identity Ẏr, j = −Yr+1, j , (3.25) and (3.24). We then have

(−Y ∗
r, jH

−1
r, j−1, Iq)

····· =((Y ∗
r+1, j −Y∗

r, jH
−1
r, j−1Hr+1, j−1)H−1

r, j−1,0q)

=Ĥr, jĤ
−1
r, j−1(−Y ∗

r, jH
−1
r, j−1, Iq,0q). �

Now we are ready to state and prove the main theorem of the present work.

4. Matrix Toda equation

In this section, we consider the matrix generalization of the transformed Toda lat-
tice (1.1). In [10, Theorem 4 and Theorem 5], a similar generalization is performed
for the coefficients of the three-term recurrence relation of bivariate orthogonal poly-
nomials. These coefficients are matrices of different dimensions, and the measure that
guarantees the orthogonality is a scalar measure. In [6, Example 2.2], a specific 2×2
Toda equation is considered.

The following remark readily follows from (2.14), (2.15), (3.26) and (3.27).

REMARK 4.1. Let Ar, j and Ĥr, j be as in (2.13) through (2.15). The following
equality is then valid:

Ar, j = − ˙̂Hr, jĤ
−1
r, j , r = 1,2, j � 0. (4.1)

THEOREM 4.1. Let Ar, j and Br, j be as in Definition 2.3. For r = 1,2 , the follow-
ing identities are valid:

Ȧr,0 = −B∗
r,0, (4.2)

Ȧr, j = B∗
r, j−1−B∗

r, j, (4.3)

Ḃ∗
r, j = B∗

r, jAr, j −Ar, j+1B
∗
r, j, (4.4)

for j � 1 and t ∈ (0,+∞) .
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Proof. We prove (4.2) for r = 1. We have

Ȧ1,0 =(s1s
−1
0 )· = −(s2 − s1s

−1
0 s1)s−1

0 = −Ĥ1,1Ĥ
−1
1,0 = −B∗

1,0,

Ȧ2,0 =(s2s
−1
0 )· = −(s3 − s2s

−1
1 s2)s−1

1 = −Ĥ2,1Ĥ
−1
2,0 = −B∗

2,0.

Now we prove (4.3) for r = 1. By employing (2.14), (3.26) and (2.16) for r = 2, we
get

Ȧ1, j = ˙̂H2, jĤ
−1
1, j − Ĥ2, jĤ

−1
1, j

˙̂H1, jĤ
−1
1, j + ˙̂H1, jĤ

−1
2, j−1− Ĥ1, jĤ

−1
2, j−1

˙̂H2, j−1Ĥ
−1
2, j−1

=Ĥ1, jĤ
−1
1, j−1− Ĥ1, j+1Ĥ

−1
1, j = B∗

1, j−1−B∗
1, j.

In a similar manner for r = 2, one can prove (4.3).
Next we prove (4.4). By using (2.16) and (4.1), we get

Ḃ∗
r, j = ˙̂Hr, j+1Ĥ

−1
r, j − Ĥr, j+1Ĥ

−1
r, j

˙̂Hr, jĤ
−1
r, j = −Ar, j+1Ĥr, j+1Ĥ

−1
r, j + Ĥr, j+1Ĥ

−1
r, j Ar, j

= −Ar, j+1B
∗
r, j +B∗

r, jAr, j. �

Observe that (4.3) and (4.4) for r = 1 were proven in [33, Proposition 5] by using
different identities.

DEFINITION 4.1. A sequence of matrices (Ar, j,Br, j) j�0 that satisfies (4.2) through
(4.4) is called the matrix Toda sequence.

In the following theorem, we express the first (resp. second) derivative with respect
to t of the matrix polynomials Pr, j and Qr, j in terms of Pr, j , Ar, j , Br, j and Ṗr, j for
t ∈ (0,+∞) .

THEOREM 4.2. Let Pr, j , Qr, j , Ar, j , Br, j , be as in Definition 2.2 and Definition
2.3, respectively. Furthermore, let Σr, j , L1, j and u2, j be defined as in (3.2), the first
equality of (3.1) and the third equality of (2.2). The following equalities are then valid:

Ṗr, j(z) = B∗
r, j−1Pr, j−1(z), j � 1, (4.5)

P̈r, j+1(z) = B∗
r, jAr, jPr, j(z)−Ar, j+1Ṗr, j+1(z)+B∗

r, jṖr, j(z), j � 0. (4.6)

Moreover,

Q̇1,1(z) = −s1, Q̇2,1(z) = B∗
2,0Q1,1(z)+ Σ∗

2,1R1(z)L∗
1,2u2,2, (4.7)

Q̇1, j(z) = B∗
1, j−1Q1, j−1(z)+P1, j(z)s0 + Σ∗

1, jR j(z)u2, j, j � 2, (4.8)

Q̇2, j(z) = B∗
2, j−1Q2, j−1(z)+ Σ∗

2, jR j(z)L∗
1, j+1u2, j+1, j � 2. (4.9)

Proof. We prove (4.5) for r = 1 and j = 1, and we have

Ṗ1,1(z) = (−s1s
−1
0 , Iq)·····R1(z)v1 = (−(s1s

−1
0 )·····,0q)R1(z)v1

= ((s2 − s1s
−1
0 s1)s−1

0 ,0q)R1(z)v1 = Ĥ1,1Ĥ
−1
1,0 (Iq,0q)

(
Iq
zIq

)
= B∗

1,0P1,0(z).
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For j � 2, we have

Ṗ1, j(z) = Σ̇∗
1, jR j(z)v j = Ĥr, jĤ1, j−1(Σr, j−1,0q)

(
Rj−1(z)v j−1

z jIq

)
= Ĥ1, jĤ

−1
1, j−1P1, j−1(z).

Equality (4.6) is proved by using (4.5) and (4.4). Both equalities of relations (4.7)
can be readily calculated. To prove (4.8) and (4.9), we use (3.28), (2.1), equalities
u̇1, j = −u2, j − v js0 , u̇2, j = −L1, j+1u2, j+1 and (2.9). �
Note that (4.5) for r = 1 was proved in [33, Proposition 5] by using different identities
related to those we presented in Section 3.

In the next corollary, we express the second derivative of Pr, j+1 in terms of Pr, j ,
Ar, j and Br, j with different values for j , respectively.

COROLLARY 4.1. The following identities are valid:

P̈r, j+1(z) =(Br, j−1Ar, j −Ar, j+1B
∗
r, j)Pr, j(z)+B∗

r, jB
∗
r, j−1Pr, j−1(z),

...
Pr, j+1(z) =(Ar, j+1B

∗
r, j −B∗

r, jAr, j)Pr, j+1 +(B∗
r, j+1B

∗
r, j −Ar, j+1B

∗
r, jAr, j +A2

r, j+1B
∗
r, j

+ zB∗
r, jAr, j − zAr, j+1B

∗
r, j −2B∗2

r, j)Pr, j +(zIq +Ar, j+1)B∗
r, jB

∗
r, j−1Pr, j−1.

5. Matrix Volterra sequence

In this section, we treat the matrix generalization of the Volterra lattice also called
Langmuir lattice or discrete Korteweg-de Vries (1.6). See also [5], [23], [4] and refer-
ences therein.

The following definition appeared within the statement of [13, Proposition 9.4].

DEFINITION 5.1. For t ∈ [0,+∞) , the sequence (ζζζζζ j(t)) j�1 of q× q matrices
defined by

ζζζζζ 1(t) := 0q, (5.1)

ζζζζζ 2 j(t) := Ĥ2, j−1(t)Ĥ−1
1, j−1(t), j � 1, (5.2)

ζζζζζ 2 j+1(t) := Ĥ1, j(t)Ĥ−1
2, j−1(t), j � 1, (5.3)

is called the matrix Volterra sequence.

The next remark reproduces Proposition 9.4 of [13].

REMARK 5.1. Let Ar, j , Br, j be as in Definition 2.3, and let ζζζζζ j be as in Definition
(5.1)-(2.6). For j � 0, the following identities are valid:

A1, j = ζζζζζ 2 j+1 + ζζζζζ 2 j+2, B∗
1, j = ζζζζζ 2 j+3ζζζζζ 2 j+2, (5.4)

A2, j = ζζζζζ 2 j+3 + ζζζζζ 2 j+2, B∗
2, j = ζζζζζ 2 j+4ζζζζζ 2 j+3. (5.5)

The proof of the next lemma readily follows from Remark 5.1 and Theorem 4.1.
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LEMMA 5.1. Let ζζζζζ j be as in (5.1)-(2.6). If (ζζζζζ j) j�1 is a Volterra sequence,
then (ζζζζζ 2, j+1 + ζζζζζ 2 j+2, ζζζζζ 2 j+3ζζζζζ 2 j+2) j�1 and (ζζζζζ 2 j+3 + ζζζζζ 2 j+2, ζζζζζ 2 j+4ζζζζζ 2 j+3) j�1 are ma-
trix Toda sequences.

The next theorem is a generalization of [12, Equations (2.4) and(2.3)], where the or-
thogonality properties of the scalar version of P1, j and P2, j are used. Conversely, the
proof of the following theorem is based on the identities of Section 3.

THEOREM 5.1. Let Pr, j for r = 1,2 be as in (2.9) and (2.10). Furthermore, let
ζζζζζ j be as in (5.1)-(2.6). The following equalities are valid:

P1, j+1(z)− zP2, j(z)+ ζζζζζ 2 j+2P1, j(z) = 0q (5.6)

and

P2, j+1(z)−P1, j+1(z)+ ζζζζζ 2 j+3P2, j(z) = 0q. (5.7)

Proof. We use the next identities:

Rj(z)v j = L∗
2, j+1Rj+1(z)v j+1, (5.8)

zR j(z)v j = L∗
1, j+1Rj+1(z)v j+1. (5.9)

By replacing (5.8), (5.9) in (5.6), and (5.7), we have

P1, j+1(z)− zP2, j(z)+ζζζζζ 2 j+2P1, j(z)=(Σ∗
1, j+1−Σ∗

2, jL
∗
1, j+1+ζζζζζ 2 j+2Σ∗

1, jL
∗
2, j+1)Rj+1(z)v j+1,

P2, j+1(z)−P1, j+1(z)+ ζζζζζ 2 j+3P2, j(z) = (Σ∗
2, j+1−Σ∗

1, j+1 + ζζζζζ 2 j+3Σ∗
2, jL

∗
2, j+1)Rj+1(z)v j+1.

Equalities (5.6) and (5.7) readily follow by employing (3.13) and (3.14), respectively. �
Define

R̃2 j(z, t) :=P1, j(z2,t), R̃2 j+1(z,t) := zP2, j(z2,t), j � 0. (5.10)

Note that the scalar version of R̃ j for t = 0 was introduced in [12, Equation (2.2)].
Equalities (5.6) and (5.7) readily imply the following corollary.

COROLLARY 5.1. The polynomials (R̃ j) j�0 satisfy the following three-term re-
cursive relation:

R̃ j(z) = zR̃ j−1(z)− ζζζζζ jR̃ j−2(z), j � 2.

The following result is a matrix generalization of the scalar Volterra lattice (1.6).

PROPOSITION 5.1. Let ζζζζζ j be as in Definition 5.1. For t ∈ (0,+∞) , the following
differential equation holds:

ζ̇ζζζζ j = ζζζζζ jζζζζζ j−1− ζζζζζ j+1ζζζζζ j, j � 2. (5.11)
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Proof. Let j be an even number (resp. odd number) greater than 2. By taking the
derivative with respect to t and by using (3.26) (resp. (3.27)), we have

ζ̇ζζζζ 2 j = −Ĥ1, jĤ
−1
1, j−1 + Ĥ2, j−1Ĥ

−1
2, j−2. (5.12)

Moreover, we obtain
ζ̇ζζζζ 2 j+1 = Ĥ1, jĤ

−1
1, j−1− Ĥ2, jĤ

−1
2, j−1. (5.13)

The right-hand side of (5.12) is equivalent to

−Ĥ1, jĤ
−1
2, j−1Ĥ

−1
2, j−1Ĥ

−1
1, j−1 + Ĥ2, j−1Ĥ

−1
1, j−1Ĥ1, j−1Ĥ

−1
2, j−2.

Furthermore, by using (2.5) and (5.3), equality (5.11) is proved for even j . In a similar
manner, equality (5.11) is proved for odd j . �

5.1. Proof of Proposition 2.1

Now we come to the proof of Proposition 2.1, which was alluded to at the end of
Section 2. We prove (1.3) for r = 1. We omit the arguments z and t of P1, j , A1, j and
B1, j , then we have

P1, j+1− (zIq−A1, j)P1, j +B∗
1, j−1P1, j−1 = zP2, j − zP1, j + ζζζζζ 2 j+1P1, j +B∗

1, j−1P1, j−1

= ζζζζζ 2 j+1(P1, j − zP2, j + ζζζζζ 2 jP1, j−1) = 0q.

In this chain of equalities, the first equality follows from (5.6) and first equality of
(5.4). The second yields from equality (5.7), and the second equality of (5.4). The last
equality is attained by using (5.6).

Now we prove (1.3) for r = 2. By using (5.7) and the first equality of (5.5), we
have

P2, j+1− (zIq−A2, j)P2, j +B∗
2, j−1P2, j−1 = P1, j+1− zP2, j + ζζζζζ 2 j+2P2, j +B∗

2, j−1P2, j−1

= ζζζζζ 2 j+2(−P1, j +P2, j + ζζζζζ 2 j+1P2, j−1) = 0q.

The second equality follows from (5.6) and the second equality of (5.5). The last equal-
ity is attained by using (5.7).

Note that the proof of Proposition 2.1 is usually given by using the orthogonality
properties of P1, j and P2, j , as well as the integral representation of Ar, j and Br, j ; see for
example [19] and [29]. It should be mentioned that the orthogonal matrix polynomials
were studied by [32], [2], [26], [25], [24], [22], [18] and the references therein.

6. Associated orthogonal matrix polynomials of order k

In this section, we consider the matrix generalization of the so-called associated
orthogonal polynomials of order k studied in [35] and [36].
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For r = 1,2 and t ∈ [0,∞) , let P(k)
r, j denote the associated matrix polynomials of

order k , k ∈ N0 , defined by

P(k)
r,0 (z, t) := Iq, P(k)

r,1 (z,t) := zIq −Ar,k(t), (6.1)

P(k)
r, j+1(z, t) := (zIq−Ar, j+k(t))P

(k)
r, j (z,t)−B∗

r, j+k−1(t)P
(k)
r, j−1(z, t), (6.2)

where Ar, j and Br, j are as in (2.13)-(2.15). We will usually omit the argument t in the
notation for Pr, j , Ar, j and Br, j .

The next lemma is a matrix generalization of [35, equality (2.4)].

LEMMA 6.1. Let P(k)
r, j be as in (6.1) and (6.2). Furthermore, let Ar, j and Br, j be

as in (2.13)-(2.15). For j � 1 and k � 0 , the following identity holds:

P(k)
r, j (z) = P(k+1)

r, j−1 (z)(zIq −Ar,k)−P(k+2)
r, j−2 (z)B∗

r,k. (6.3)

Proof. We prove (6.3) for j = 2:

P(k)
r,2 (z) = (zIq −Ar,k+1)P

(k)
r,1 (z)−B∗

r,kP
(k)
r,0 (z) = (zIq−Ar,k+1)(zIq−Ar,k)−B∗

r,k

= P(k+1)
r,1 (z)(zIq −Ar,k)−P(k+2)

r,0 (z)B∗
r,k.

We use the mathematical induction; let (6.3) be true for j . We prove (6.3) for j +1:

P(k)
r, j+1(z) =(zIq −Ar, j+k)[P

(k+1)
r, j−1 (z)(zIq −Ar,k)−P(k+2)

r, j−2 (z)B∗
r,k]

−B∗
j+k−1[P

(k+1)
r, j−2 (z)(zIq −Ar,k)−P(k+2)

r, j−3 (z)B∗
r,k]

=[(zIq −Ar, j+k)P
(k+1)
r, j−1 (z)−B∗

j+k−1P
(k+1)
r, j−2 (z)](zIq −Ar,k)

− [(zIq−Ar, j+k)P
(k+2)
r, j−2 (z)−B∗

r, j+k−1P
(k+2)
r, j−3 (z)]B∗

r,k

=P(k+1)
r, j (z)(zIq −Ar,k)−P(k+2)

r, j−1 (z)B∗
r,k. �

In the following proposition, we generalize [35, Lemma 2] for the matrix case.

PROPOSITION 6.1. Let P(k)
r, j and Br, j be as in (6.1), (6.2) and (2.16), respectively.

Assume that Br,−1 = 0q . The sequence (Ar, j,Br, j) is a matrix Toda sequence if and only
if the following equality holds:

Ṗ(k)
r, j (z) =B∗

r, j+k−1P
(k)
r, j−1(z)−P(k+1)

r, j−1 (z)B∗
r,k−1, (6.4)

for r = 1,2 , j � 1 , k � 0 and t ∈ (0,∞) .

Proof. For the case k = 0 and arbitrary j , as well as for j = 1 and arbitrary k , the
statement is immediately verified by using (4.2) and (6.1). Furthermore, for k � 1 we
follow the proof of [35, Lemma 2]. For the sufficiency part, equalities (4.2) and (4.3)
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follow from (6.4) for j = 1. Equality (4.4) is a consequence of (6.4) for j = 2, equal-
ities (4.2), (4.3) and the identity Ȧr,k+1Ar,k + Ar,k+1Ȧr,k + B∗

r,k+1Ar,k − Ar,k+1B∗
r,k−1 =

B∗
r,kAr,k −Ar,k+1B∗

r,k .
Now we prove the necessity part. Let (Ar, j,Br, j) be a matrix Toda sequence. Here and

in the sequel, we omit the subscript r , the arguments z and t of P(k)
r, j , Ar, j and Br, j . By

taking the derivative of equality (6.2) for j = 1 and by employing (4.3), (4.4) with the
second equality of (6.1), we have

Ṗ(k)
2 = (B∗

k+1 −B∗
k)P

(k)
1 +(zIq−Ak+1)(B∗

k −B∗
k−1)−B∗

kAk +Ak+1B
∗
k

= B∗
k+1P

(k)
1 − (zIq−Ak+1)B∗

k−1 +B∗
k(−P(k)

1 + zIq−Ak) = B∗
k+1P

(k)
1 −P(k+1)

1 B∗
k−1.

By employing mathematical induction, let us assume that (6.4) is valid for j−1 and j .
We take the derivative of (6.2), and we have:

Ṗ(k)
j+1 =(B∗

j+k −B∗
j+k−1)P

(k)
j +(zIq−Aj+k)(B∗

j+k−1P
(k)
j−1−P(k)

j−1B
∗
k−1)

− (B∗
j+k−1Aj+k−1−Aj+kB

∗
j+k−1)P

(k)
j−1−B∗

j+k−1(B
∗
j+k−2P

(k)
j−2−P(k+1)

j−2 B∗
k−1)

=B∗
j+kP

(k)
j +B∗

j+k−1(−P(k)
j + zP(k)

j−1−Aj+k−1P
(k)
j−1−B∗

j+k−2P
(k)
j−2)

+ (−zP(k+1)
j−1 +Aj+kP

(k+1)
j−1 +B∗

j+k−1P
(k+1)
j−2 )B∗

k−1 = B∗
j+kP

(k)
j −P(k+1)

j B∗
k−1.

The proposition is proved. �

7. Example

Consider the 2× 2 matrix distribution on [0,+∞) , σ(x) =
(

4−2e−
1
2 x e−x

e−x 2− e−x

)
,

which corresponds to a positive matrix measure on [0,+∞) . For details on positive

matrix measures, see [8]. The matrices s j(t) = j!

( 1
( 1

2+t) j+1 − 1
(1+t) j+1

− 1
(1+t) j+1

1
(1+t) j+1

)
for j � 0

are the corresponding moments (1.4). One can immediately verify that the block ma-
trices H1, j and H2, j for j = 0, . . . ,2 are positive definite matrices. The first Schur
complements are the following:

Ĥ1,0 =
( 2

2t+1 − 1
t+1

− 1
t+1

1
t+1

)
, Ĥ2,0 =

⎛⎝ 1

(t+ 1
2 )

2 − 1
(t+1)2

− 1
(t+1)2

1
(t+1)2

⎞⎠ ,

Ĥ1,1 =

⎛⎝ 2(4t2+6t+3)
(t+1)2(2t+1)3 − 1

(t+1)3

− 1
(t+1)3

1
(t+1)3

⎞⎠ , Ĥ2,1 =

⎛⎝ 16(8t3+18t2+16t+5)
(t+1)2(2t+1)4(4t+3) − 2

(t+1)4

− 2
(t+1)4

2
(t+1)4

⎞⎠ .
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The first three-term recurrence relation coefficients are given by

A1,0 =

(
4t+3

2t2+3t+1
2

2t+1
0 1

t+1

)
, A2,0 =

(
24t2+36t+14

8t3+18t2+13t+3
8(t+1)

8t2+10t+3
0 2

t+1

)
,

A1,1 =

(
(4t+3)(16t2+24t+11)

16t4+48t3+54t2+27t+5

2(8t2+16t+9)
16t3+32t2+22t+5

0 3
t+1

)
,

A2,1 =

(
4(960t6+4320t5+8304t4+8712t3+5244t2+1710t+235)

(t+1)(2t+1)(4t+3)(96t4+288t3+336t2+180t+37)
16(48t5+216t4+396t3+366t2+169t+31)

(2t+1)(4t+3)(96t4+288t3+336t2+180t+37)
0 4

t+1

)
,

B1,0 =

⎛⎝ 8t2+12t+5

(2t2+3t+1)2 0

4
(2t+1)2

1
(t+1)2

⎞⎠ , B2,0 =

⎛⎜⎝
2(96t4+288t3+336t2+180t+37)

(8t3+18t2+13t+3)2 0

8(8t2+16t+7)
(8t2+10t+3)2

2
(t+1)2

⎞⎟⎠ ,

B1,1 =

⎛⎜⎝
4(384t6+1728t5+3360t4+3600t3+2232t2+756t+109)

(2t2+3t+1)2(8t2+12t+5)2 0

16(32t4+112t3+152t2+92t+21)
(16t3+32t2+22t+5)2

4
(t+1)2

⎞⎟⎠
and

B2,1 =

⎛⎝ 6(4t+3)2(3072t8+18432t7+49920t6+79488t5+81120t4+54144t3+23008t2+5676t+621)
(2t2+3t+1)2(96t4+288t3+336t2+180t+37)2 0

24(3072t8+21504t7+66048t6+115968t5+127104t4+88992t3+38872t2+9688t+1055)
(2t+1)2(96t4+288t3+336t2+180t+37)2

6
(t+1)2

⎞⎠ .

With these matrices, the identities of Remark 4.1 and Theorem 4.1 can be readily veri-
fied.
The orthogonal matrix polynomials are the following: P1,0 = I2 , P2,0 = I2 ,

P1,1 =

(
z− 4t+3

2t2+3t+1
− 2

2t+1

0 z− 1
t+1

)
, P2,1 =

(
z− 2(12t2+18t+7)

8t3+18t2+13t+3
− 8(t+1)

8t2+10t+3
0 z− 2

t+1

)
,

P1,2 =

(
z2 −

4
(
24t3+54t2+43t+12

)
z

16t4+48t3+54t2+27t+5
+

2
(
96t4+288t3+336t2+180t+37

)
(
2t2+3t+1

)2(
8t2+12t+5

) −
4
(
16zt4+4(13z−8)t3+8(8z−9)t2+(35z−58)t+7z−16

)
(2t+1)2

(
8t3+20t2+17t+5

)
0 z2 − 4z

t+1 + 2
(t+1)2

)
,

P2,2 =

(
P(1,1)

2,2 P(1,2)
2,2

0 z2− 6z
t+1 + 6

(t+1)2

)
,

where

P(1,1)
2,2 :=z2 − 6

(
4t2 +6t +3

)
(4t +3)3z

192t6 +864t5 +1632t4 +1656t3 +950t2 +291t +37

+
6
(
768t6 +3456t5 +6656t4 +7008t3 +4240t2 +1392t +193

)
(2t2 +3t +1)2 (96t4 +288t3 +336t2 +180t +37)

,

P(1,2)
2,2 :=− 24

(
32zt5 +32(4z−3)t4 +16(13z−18)t3 +2(85z−172)t2 +(69z−188)t +11z−39

)
(2t +1)2 (96t4 +288t3 +336t2 +180t +37)

.
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The second kind polynomials are given by Q1,0 = 02 , Q2,0 =
( 2

2t+1 − 1
t+1

− 1
t+1

1
t+1

)
,

Q1,1 =
( 2

2t+1 − 1
t+1

− 1
t+1

1
t+1

)
, Q2,1 =

⎛⎝ 2(8zt3+2(9z−4)t2+(13z−10)t+3z−4)
(2t+1)2(4t2+7t+3) − z(t+1)−1

(t+1)2

− z(t+1)−1
(t+1)2

z(t+1)−1
(t+1)2

⎞⎠ ,

Q1,2 =

⎛⎝ 2(16zt4+48(z−1)t3+2(27z−52)t2+(27z−82)t+5z−24)
(2t+1)2(8t3+20t2+17t+5) − z(t+1)−3

(t+1)2

− z(t+1)−3
(t+1)2

z(t+1)−3
(t+1)2

⎞⎠ ,

Q2,2 =

⎛⎝ num
(t+1)2(2t+1)3(96t4+288t3+336t2+180t+37)

(t+1)2z2−5(t+1)z+2
(t+1)3

(t+1)2z2−5(t+1)z+2
(t+1)3

−(t+1)2z2+5(t+1)z−2
(t+1)3

⎞⎠ ,

where

num :=2
(
384t8 +2304t7 +6048t6 +9072t5 +8500t4 +5088t3 +1897t2 +402t +37

)
z2

−4
(
960t7 +4896t6 +10848t5 +13560t4 +10330t3 +4789t2 +1247t +140

)
z

+4
(
384t6 +1536t5 +2688t4 +2640t3 +1540t2 +506t +73

)
.

With Pr, j and Qr, j for r = 1,2 and j = 1,2, the identities of Theorem 4.2 and Corollary
4.1 can be readily verified.
The first matrices of the Volterra sequence are the following:

ξ1 = 02, ξ2 =

(
4t+3

2t2+3t+1
2

2t+1

0 1
t+1

)
, ξ3 =

(
8t2+12t+5

8t3+18t2+13t+3
2

8t2+10t+3
0 1

t+1

)
,

ξ4 =

⎛⎝ 2(96t4+288t3+336t2+180t+37)
(t+1)(2t+1)(4t+3)(8t2+12t+5)

4(16t3+40t2+36t+11)
64t4+176t3+184t2+86t+15

0 2
t+1

⎞⎠ ,

ξ5 =

⎛⎝ ξ (1,1)
5

4(192t5+768t4+1248t3+1024t2+424t+71)
(2t+1)(8t2+12t+5)(96t4+288t3+336t2+180t+37)

0 2
t+1

⎞⎠ ,

where ξ (1,1)
5 :=

2(1536t7+8064t6+18624t5+24480t4+19728t3+9720t2+2704t+327)
(t+1)(2t+1)(8t2+12t+5)(96t4+288t3+336t2+180t+37) .

With the given matrices, the identities of Theorem 5.1 and Proposition 5.1 are immedi-
ately verified.
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[25] A. J. DURÁN, F.A. GRÜNBAUM, Matrix differential equations and scalar polynomials satisfying
higher order recursions, J. Math. Anal. Appl. 354: 1–11, 2009.

[26] H. DYM, On Hermitian block Hankel matrices, matrix polynomials, the Hamburger moment problem,
interpolation and maximum entropy, Integral Equations and Operator Theory, Vol. 12: 757–812, 1989.

[27] YU. M. DYUKAREV, Indeterminacy criteria for the Stieltjes matrix moment problem, Mathematical
Notes 75(1–2): 66–82, 2004.



THE MATRIX TODA EQUATIONS 1145

[28] YU. M. DYUKAREV, A. E. CHOQUE-RIVERO, Criterion for the complete indeterminacy of the
Nevanlinna-Pick, Mathematical Notes 96(5-6): 651–665, 2014.
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