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VECTOR VALUED FOURIER ANALYSIS ON HYPERGROUPS

VISHVESH KUMAR AND N. SHRAVAN KUMAR ∗

(Communicated by Z.-J. Ruan)

Abstract. The aim of this paper is to prove the vector-valued version of the classical Hausdorff-
Young inequality for commutative hypergroups and compact hypergroups.

1. Introduction

Let K be a commutative hypergroup with dual object K̂. S. Degenfeld-Schonburg
[2, 3] proved that the Fourier transform is a bounded linear transform from Lp(K) into
Lp′(K̂), where 1 � p � 2 and p′ is the conjugate exponent of p. This theorem is
known as the Hausdorff-Young inequality. In the case of compact hypergroups, the
above said inequality was verified by R.C. Vrem [12] in 1978 (see also [7]). This
paper extends the results of Degenfeld-Schonburg and Vrem to vector-valued functions.
In 1984, Milman [9] generalized the classical Hausdorff-Young inequality to Banach-
valued functions. This leads to the theory of Fourier type of a Banach space with
respect to a locally compact abelian group. Recently, J. Garcı́a-Cuerva and J. Parcet
[5], generalized Milmam’s result to compact groups.

In Section 2 of this paper, we define the notion of Fourier type with respect to a
commutative hypergroupand hence establish a vector-valued analogue of the Hausdorff-
Young inequality for commutative hypergroups. As the dual object of a commutative
hypergroup is, in general, not a hypergroup, the notion of Fourier cotype is also in-
troduced in Section 2. Note that, this notion doesn’t make sense if the hypergroup
is a locally compact abelian group. We also show that the two notions, Fourier type
and Fourier cotype are dual to each other. In Section 4 of this paper, we prove the
vector-valued analogue of the Hausdorff-Young inequality for compact hypergroups.
As a result, the notions of Fourier type and Fourier cotype with respect to a compact
hypergroup are introduced. We also show that the notion of Fourier type and Fourier
cotype introduced in Section 2 and Section 4 are one and the same if K is a compact
commutative hypergroup.

It is well-known that operator spaces and completely bounded maps play a major
role in non-commutative harmonic analysis. Even in this paper, in the case of compact
non-commutative hypergroups, one has to define norms for vector-valued matrices. So
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it is very natural to consider the vector spaces to be operator spaces rather than just
Banach spaces. If one notices, the authors of [5] have used only the operator spaces in
order to develop the theory of Fourier type for compact groups. In a similar spirit, we
have also used the theory of operator spaces in Section 4. In this regard, in Section 3 of
this paper we give some basic definitions and notions of operator spaces that are needed
in Section 4.

For any undefined notations or definitions on hypergroups, the reader is asked to
refer [1] or [6].

2. Vector-valued Fourier transform on commutative hypergroup

We start with the definition of a hypergroup. In [6], Jewett refers to hypergroups
as convos.

DEFINITION 2.1. [1, 6] A nonempty locally compact Hausdorff space K is said to
be a hypergroup if there exists a binary operation ∗ on M(K), the space of all complex
valued bounded regular measures on K, satisfying the following conditions:

(i) (M(K),∗) is a complex associative algebra.

(ii) For every x,y ∈ K, px ∗ py is a probability measure with the compact support and
the mapping (x,y) �→ px ∗ py is continuous from K×K to M(K), where px is the
point mass measure at x .

(iii) There exists a unique element e∈K such that for all x∈K, px∗ pe = pe∗ px = px.

(iv) There exists a unique homeomorphism x �→ x̌ of K such that

(a) ˇ̌x = x for all x ∈ K,

(b) if μ̌ is defined by
∫
K f (x) dμ̌(x) =

∫
K f (x̌) dμ(x) for all f ∈ Cc(K), then

(px ∗ py)̌ = py̌ ∗ px̌ for all x,y ∈ K,

(c) e ∈ spt(px ∗ py) if and only if y = x̌.

(v) The mapping (x,y) �→ spt(px ∗ py) is continuous from K ×K to C (K), where
C (K) denotes the space of all nonempty compact subsets of K equipped with the
Michael topology (See [8]).

NOTE. It follows from the definition that the bilinear map (μ ,ν) �→ μ ∗ ν, re-
stricted to the space of non-negative measures, is weakly continuous.

DEFINITION 2.2. A left Haar measure on a hypergroup K is a non zero regular
Borel measure m such that px ∗m = m for all x ∈ K. In this note, by a Haar measure
we mean a left Haar measure.

It is well known that commutative and compact hypergroups admit a Haar measure. In
fact, a Haar measure on a hypergroup (if exists) is unique upto a scalar multiple [6].

Throughout this section, K will stand for a commutative hypergroup and X will
denote a Banach space. We now proceed by recalling the notions related to the Fourier
analysis of a commutative hypergroup.
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2.1. Fourier analysis on commutative hypergroups

Since K is commutative, it possesses a Haar measure, unique upto a scalar. We
shall once for all fix dm as the Haar measure for K. Then, it is well known that L1(K)
becomes a commutative Banach ∗ -algebra. Denote the space of all bounded continuous
complex valued functions on K by Cb(K). Let

ϒb(K) = {χ ∈Cb(K) : χ(e) = 1 and χ(x∗ y) = χ(x)χ(y) ∀ x,y ∈ K}.
Equip ϒb(K) with the compact-open topology. By [1, Theorem 2.2.2], the structure
space of L1(K) can be identified with ϒb(K). Let

K̂ = {χ ∈ ϒb(K) : χ(x̌) = χ(x) ∀ x ∈ K}.
Equip K̂ also with the compact-open topology. As mentioned in [1, Example 2.2.49]
the set ϒb(K) need not be equal to K̂. Further, note that K̂ need not possess a hyper-
group structure. For example, see [6, Example 9.3C].

The Fourier transform of f ∈ L1(K) is defined by

FK( f )(χ) = f̂ (χ) =
∫

K
f (x)χ(x) dm(x) ∀ χ ∈ K̂. (1)

By [1, Theorem 2.2.4], the mapping f �→ FK( f ) is a norm-decreasing ∗ -algebra ho-
momorphism from L1(K) into L∞(K̂). Furthermore, FK( f ) vanishes at infinity. Also,
as in the case of locally compact abelian groups, there exists a unique positive Borel
measure πK on K̂ such that∫

K
| f (x)|2 dx =

∫
K̂
|FK( f )(χ)|2 dπK(χ) ∀ f ∈ L2(K)∩L1(K).

In fact, the Fourier transform extends to a unitary operator from L2(K) onto L2(K̂).
We would like to remark here that the support of πK , denoted S , need not be equal to
K̂. See [1, Example 2.2.49].

2.2. Fourier type w.r.t. a commutative hypergroup

DEFINITION 2.3. Let 1 � p � 2 and let p′ be the conjugate exponent of p. We
say that X has Fourier type p with respect to K if the operator FK⊗ idX : Lp(K)⊗X →
Lp′(S )⊗X defined by FK ⊗ idX( f ⊗a) = FK( f )⊗a, for all f ∈ Lp(K), a ∈ X , can
be extended to a bounded linear operator FK,X from Lp(K,X) to Lp′(S ,X).

PROPOSITION 2.4. Let K be a commutative hypergroup and let X be a Banach
space. Then X has Fourier type 1 with respect to K.

Proof. Let f ∈ L1(K,X). Then

‖FK,X( f )(χ)‖X =
∥∥∥∥∫

K
f (x)χ(x)dm(x)

∥∥∥∥
X

�
∫

K
‖ f (x)‖X |χ(x)|dm(x)

� sup
x∈K

|χ(x)|‖ f‖L1(K,X) = ‖ f‖L1(K,X).
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By taking supremum over all χ ∈ S , we get ‖FK,X f‖ � ‖ f‖L1(K,X). Therefore, X
has Fourier type 1. �

PROPOSITION 2.5. Let K be a commutative hypergroup and let H be a Hilbert
space. Then H has Fourier type 2 with respect K.

Proof. The proof of this proposition follows using the density of L2(K)⊗H in
L2(K,H ) and the Plancherel’s theorem for scalar case. �

The following corollary says that when p get closer to 2, we have stronger condi-
tions on Fourier type.

COROLLARY 2.6. Let 1 � p1 � p2 � 2 and let the Banach space X have Fourier
type p2 with respect to a commutative hypergroup K. Then X has Fourier type p1 with
respect to K.

Proof. The proof follows from Proposition 2.4 and complex interpolation. �

2.3. Fourier cotype w.r.t. a commutative hypergroup

For a locally compact abelian group G, the dual object Ĝ is also a locally compact
abelian group. Therefore, using the Pontrjagin duality, we can see that the inverse
Fourier transform F−1

G and the Fourier transform FĜ are one and the same. In the
vector valued setting, it is enough to study FĜ,X instead of F−1

G,X . For this reason, we
do not have any other Fourier type of a Banach space X with respect to G. But, as
observed earlier, the dual K̂ of a commutative hypegroup K is not a hypergroup. That
is why, the study of FK ⊗ idX is not enough for the study of the operator F−1

K ⊗ idX .
For this reason, the need for a notion like Fourier cotype with respect to K appears,
which does not exist for a locally compact abelian group.

We shall now begin to define the notion of a Fourier cotype of a Banach space with
respect to K.

DEFINITION 2.7. Let 1 � p � 2 and let p′ be the conjugate exponent of p. The
Banach space X has Fourier cotype p′ with respect to the commutative hypergroup K
if the operator F−1

K ⊗ idX : Lp(S )⊗X → Lp′(K)⊗X defined by F−1
K ⊗ idX( f ⊗a) =

F−1
K ( f )⊗a, for all f ∈ Lp(S ), a ∈ X , can be extended to a bounded operator F−1

K,X

from Lp(S ,X) into Lp′(K,X).

PROPOSITION 2.8. Every Banach space X has Fourier cotype ∞ with respect to
K.

Proof. The proof of this is same as the proof of Proposition 2.4. �
We also have the following proposition, whose proof is a routine check.

PROPOSITION 2.9. Let X be a Hilbert space. Then X has Fourier cotype 2 with
respect to K.
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Using the complex interpolation we have the following result as a consequence of
Proposition 2.8.

COROLLARY 2.10. Let 1 � p1 � p2 � 2 and let the Banach space X have Fourier
type p′2 with respect to K. Then X has Fourier type p′1 with respect to K.

Now, we show that Fourier type and Fourier cotype are dual notions. This is the Vector-
valued analogue of the Hausdorff-Young inequality for commutative hypergroups.

THEOREM 2.11. Let 1 < p < 2 and p′ be its conjugate exponent.

(i) The Banach space X has Fourier type p with respect to K iff X∗ has Fourier
cotype p′ with respect to K.

(ii) The Banach space X has Fourier cotype p′ with respect to K iff X∗ has Fourier
type p with respect to K.

Proof. We shall prove only (i) as the proof of (ii) will follow similarly. Again,
in order to prove (i), it is enough to show only one side as the proof of the other side
follows similar lines. So, let f ∈ Lp(S ,X). As Lp′(K,X∗) and Lp(K,X)∗ are isomet-
rically isomorphic to each other, for a given ε > 0, ∃ g ∈ Lp(K,X) of norm one such
that

‖F−1
K,X∗( f )‖Lp′ (K,X∗) � (1+ ε)

∣∣∣∣∫
K

F−1
K,X∗( f )(x)g(x) dm(x)

∣∣∣∣
= (1+ ε)

∣∣∣∣∫
S

f (χ)ĝ(χ) dπK(χ)
∣∣∣∣

� (1+ ε)
∫
S
| f (χ)ĝ(χ)| dπK(χ) � ‖ f‖Lp′ (K,X∗)‖ĝ‖Lp(K̂,X).

As, X has Fourier type p, the proof follows. �

3. Operator spaces

For dealing with noncommutative hypergroups in the next section, we need to
make an extensive use of the theory of operator spaces. The books of Effros and Ruan
[4] and Pisier [10] are basic references on this topic. The aim of this section is to recall
some basic notations and definitions pertaining to operator spaces and the norms on the
their corresponding matrix levels.

3.1. Operator spaces and completely bounded maps

An operator space is a closed subspace of B(H ) where B(H ) denotes the
space of all bounded linear operators on the Hilbert space H . It follows from GNS
construction and the above definition that every C∗ -algebra is an operator space. In
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particular, if (Ω,A ,μ) is a σ -finite measure space, then L∞(Ω,A ,μ) is an opera-
tor space. Further, closed subspaces, duals and preduals of operator spaces are also
operator spaces. Therefore, L1(Ω,A ,μ) is also an operator space.

Given an operator space X ⊂ B(H ), we shall denote by Mn(X) the space of all
n×n matrices with entries from X and equipped with the norm arising from the natural

embedding of Mn(X) inside B

(
n⊕

i=1
H

)
.

Let X and Y be any two operator spaces and let ϕ : X → Y be a linear trans-
formation. For any n ∈ N, the nth -amplification of ϕ , denoted ϕn, is defined as a
linear transformation ϕn : Mn(X) → Mn(Y ) given by ϕn([xi j]) := [ϕ(xi j)]. The linear
transformation ϕ is said to be completely bounded if sup{‖ϕn‖|n ∈ N} < ∞. We shall
denote by CB(X ,Y ) the space of all completely bounded linear mappings from X to
Y equipped with the cb -norm, denoted ‖ · ‖cb,

‖ϕ‖cb := sup{‖ϕn‖|n ∈ N}, ϕ ∈ C B(X ,Y ).

We shall say that ϕ is a complete isometry if ϕn is an isometry ∀ n∈N. Similarly,
we shall say that ϕ is a complete isomorphism if ϕ is an isomorphism such that both
ϕ and ϕ−1 are completely bounded.

Let {X0,X1} be a compatible couple of Banach spaces in the sense of complex
interpolation. Suppose that X0 and X1 are also operator spaces. If Xθ , 0 < θ < 1,
denotes the interpolation space [X0,X1]θ , then, by [10, Pg. 53], Xθ is also an operator
space. Further, if {Y0,Y1} is another compatible couple of Banach spaces which are
also operator spaces and if ϕ : X0 +X1 → Y0 +Y1 is such that ‖ϕ‖cb(Xo,Y0) � c0 and

‖ϕ‖cb(X1,Y1) � c1, then for 0 < θ < 1, we have ‖ϕ‖cb(Xθ ,Yθ ) � c1−θ
0 cθ

1 .
Given two operator spaces X ⊆ B(H ) and Y ⊆B(K ), we define their minimal

tensor product, denoted X ⊗min Y, as the completion of their algebraic tensor product
X ⊗Y inside B(H ⊗2 K ), where ⊗2 denotes the Hilbert space tensor product. It is
worth noting that, if X is an operator space, then Mn⊗min X and Mn(X) are completely
isometric. This tensor product is the operator space analogue of the Banach space
injective tensor product.

Similarly, just as we have projective tensor product for Banach spaces, there exists
projective tensor product for operator spaces. If X and Y are operator spaces, then we
shall denote by X⊗̂Y the operator space projective tensor product. For more details, see
[4, 10]. It is worth noting that the dual of X⊗̂Y is completely isometrically isomorphic
to C B(X ,Y ∗).

3.2. Schatten class operators

The space of p -Schatten class operators are the non-commutative analogues of the
classical �p(n) spaces. The space of Schatten p -class operators, denoted Sp

n , is defined
as the space Mn of n×n complex matrices equipped with the norm given by

‖A‖Sp
n

:=
{

(tr(|A|P))1/p, if 1 � p < ∞,
sup{‖Ax‖�2(n) : ‖x‖�2(n) � 1}, if p = ∞.
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More generally, if X is an operator space, then, for 1 � p � ∞, we define the oper-
ator spaces Sp

n(X) as follows. If p = ∞, then Sp
n(X) is defined as the operator space

Mn(X)(∼= Mn ⊗min X). If p = 1, then Sp
n(X) is defined as the operator space S1

n⊗̂X .
Here S1

n is given the operator space structure coming from the isometric identification
(S1

n)∗ ∼= S∞
n . If 1 < p < ∞, then the operator space structure on Sp

n(X) is defined by
means of the complex interpolation, i.e.,

Sp
n(X) = [S1

n(X),S∞
n (X)]1/p.

The next theorem summarizes some of the properties of these spaces. This theorem
will be used in this paper repeatedly.

THEOREM 3.1. [11, Chapter 1]

(i) Let 1 � p � ∞. If X and Y are any two operator spaces, then the cb-norm of a
completely bounded map ϕ : X → Y is equal to sup

n�1
‖IMn ⊗ϕ‖B(Sp

n (X),Sp
n (Y )).

(ii) Let 1 � p � ∞ and let X be an operator space. Then the dual of Sp
n(X) is com-

pletely isometrically isomorphic to Sp′
n (X∗), where p′ is the conjugate exponent

of p.

(iii) Let 1 � p � q � ∞ and let X be an operator space. Then the identity mapping
from Sp

n(X) onto Sq
n(X) is a complete contraction.

(iv) Let 1 � p � ∞ and let X be an operator space. Let n � 1. Then,

Sp
n (Lp(K,X)) ∼= Lp (K,Sp

n(X))

completely isometrically, where K denotes a hypergroup.

4. Fourier type and cotype with respect to a compact hypergroup

In this section, we assume that the hypergroup K is compact. Also, throughout
this section, X will denote an operator space. We begin this section with the definition
of the Fourier transform on K.

4.1. Fourier analysis on compact hypergroups

It is well known that K possesses a unique Haar measure dm such that
∫
K
dm(x) =

1. Further, a continuous irreducible representation of K is always finite-dimensional.
Let K̂ denote the set of all continuous irreducible representations upto unitary equiva-
lence, called as the dual object. The dual object K̂ is given the discrete topology. For
f ∈ L1(K) and π ∈ K̂, the Fourier coefficient of f at π is defined as

f̂ (π) =
∫

K
f (x)π(x)dm(x),

where π denotes the conjugate representation of K.
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DEFINITION 4.1. For 1 � p � ∞, define the space L p(K̂,X) as follows: for
1 � p < ∞

L p(K̂,X) :=

⎧⎨⎩A ∈ ∏
π∈K̂

Mdπ (X) : ‖A‖L p(K̂,X) =

(
∑

π∈K̂

kπ‖Aπ‖Sp
dπ (X)

) 1
p

< ∞

⎫⎬⎭ ,

and for p = ∞

L ∞(K̂,X) :=

{
A ∈ ∏

π∈K̂

Mdπ (X) : ‖A‖L ∞(K̂,X) = sup
π∈K̂

‖Aπ‖S∞
dπ (X) < ∞

}
.

If X = C, then we write L p(K̂) for L p(K̂,X). Further, note that, it is necessary to
have X to be an operator space.

We now present some of the properties of L p(K̂,X) spaces.

THEOREM 4.2.

(i) The map Λ : L ∞(K̂,X)→ cb(L 1(K̂),X) given by Λ(A) = ∑π∈K̂ kπ ∑dπ
i, j=1(A

π
i j(·))

is a completely isometric isomorphism.

(ii) The identity map from L 1(K̂)⊗̂X to L 1(K̂,X) is a complete isometric.

(iii) The mapping A �→ ∑π∈K̂ kπ ∑dπ
i, j=1(A

π
i j(·)) from L 1(K̂,X∗) onto C0(K̂,X)∗ is a

completely isometric isomorphism.

(iv) The above mapping is also a complete isometry from L p(K̂,X∗) onto L p′(K̂,X)∗,
where 1

p + 1
p′ = 1.

(v) (Plancherel) The Fourier transform is a unitary map from L2(K) onto L 2(K̂,C).

For more on compact hypergroups, we refer to [13].

4.2. Fourier type w.r.t. a compact hypergroup

DEFINITION 4.3. The vector-valued Fourier coefficient of f ∈ L1(K,X) is de-
fined by

f̂ (π) :=
∫

K
f (x)π(x)dm(x), π ∈ K̂.

It is clear that f̂ (π) ∈Mdπ (X). Further, we note that the above operator-valued integral
f̂ (π) is interpreted in the weak sense. Also, as ‖π(x)‖� 1, ∀x∈K, the above operator-
valued Fourier transform is well-defined and hence, we can write the Fourier transform
operator, denoted FK,X , as

FK,X : L1(K,X) → ∏
π∈K̂

Mdπ (X)
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given by
FK,X ( f )(π) = f̂ (π).

DEFINITION 4.4. Let 1 � p � 2 and p′ = p
p−1 . An operator space X is said to be

of Fourier type p with respect to the compact hypergroup K if the Fourier transform
FK,X : Lp(K)⊗X → L p′(K̂)⊗X can be extended to a completely bounded operator
Λ1

K,X ,p : Lp(K̂,X) → L p′(K̂,X).

In this case, the completely bounded norm of Λ1
K,X ,p is denoted by C 1

p (X ,K).
The following two results are simple consequence of Property 1 of Theorem 3.1.

LEMMA 4.5. Let X be an operator space and let F be a closed subspace of X
then we have C 1

p (F,K) � C 1
p (X ,K) for any 1 � p � 2.

COROLLARY 4.6. For 1 � p � 2, we have C 1
p (X ,K) � 1.

LEMMA 4.7. For f ∈ L1(K,X), we have ‖ f̂‖L ∞(K̂,X) � ‖ f‖L1(K,X).

Proof. Since X is an operator space, there exists a Hilbert space H such that
X ⊂ B(H ). For h = (h1,h2, . . . ,hdπ ) ∈ �2

H (dπ) we have

‖ f̂ (π)‖S∞
dπ (X) = ‖ f̂ (π)‖B(�2

H (dπ )) =
∥∥∥∥(∫

K
f (x)⊗π(x)dm(x)

)
h

∥∥∥∥
B(�2

H (dπ ))

=

∥∥∥∥∥
∫

K
f (x)

(
dπ

∑
j=1

πi j(x)h j

)
dm(x)

∥∥∥∥∥
B(�2

H (dπ ))

� sup
‖h‖

�2
H

(dπ )�1

⎛⎝ dπ

∑
i=1

[∫
K

∥∥∥∥∥ f (x)

(
dπ

∑
j=1

πi j(x)h j

)∥∥∥∥∥
H

dm(x)

]2
⎞⎠ 1

2

.

By Minkowski inequality we get

‖ f̂ (π)‖S∞
dπ (X) � sup

‖h‖
�2H (dπ )�1

∫
K
‖ f (x)‖X

⎛⎝ dπ

∑
i=1

∥∥∥∥∥ dπ

∑
j=1

πi j(x)h j

∥∥∥∥∥
2

H

⎞⎠ 1
2

dm(x)

= sup
‖h‖

�2
H

(dπ )�1

⎛⎝ dπ

∑
i=1

∥∥∥∥∥ dπ

∑
j=1

πi j(x)h j

∥∥∥∥∥
2

H

⎞⎠ 1
2 ∫

K
‖ f (x)‖X dm(x).

Since ‖π(x)‖ � 1 for all π ∈ K̂, x ∈ K, it follows that

sup
‖h‖

�2
H

(dπ )�1

⎛⎝ dπ

∑
i=1

∥∥∥∥∥ dπ

∑
j=1

πi j(x)h j

∥∥∥∥∥
2

H

⎞⎠ 1
2

� 1.
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Hence, we have

‖ f̂ ‖L ∞(K̂,X) = sup
π∈K̂

‖ f̂ (π)‖S∞
dπ (X) �

∫
K
‖ f (x)‖X dm(x) = ‖ f‖L1(K,X). �

THEOREM 4.8. Let 1 � p � 2 and let X be an operator space of Fourier type p
with respect to K. Then Λ1

K,X ,p( f ) = FK,X ( f ) for all f ∈ Lp(K,X).

Proof. Suppose { fn}n is sequence Lp(K)⊗X such that fn → f ∈ L1(K,X) in
norm. Then

‖Λ1
K,X ,p( f )−FK,X ( f )‖L ∞(K̂,X) � ‖Λ1

K,X ,p( f − fn)‖L ∞(K̂,X) +‖FK,X( fn − f )‖L ∞(K̂,X)

� ‖Λ1
K,X ,p( f − fn)‖L p′ (K̂,X) +‖FK,X( fn − f )‖L ∞(K̂,X).

Since X is of Fourier type p, Λ1
K,X ,p is completely bounded. Therefore, by using

Lemma 4.7, we have

‖Λ1
K,X ,p( f )−FK,X ( f )‖L ∞(K̂,X) � C 1

p (X ,K)‖ f − fn‖Lp(K,X) +‖ fn− f‖L1(K,X).

As K is compact, we have

‖Λ1
K,X ,p( f )−FK,X( f )‖L ∞(K̂,X) � (C 1

p (X ,K)+1)‖ f − fn‖Lp(K,X).

Now, as n → ∞ we get ‖Λ1
K,X ,p( f )−FK,X ( f )‖L ∞(K̂,X) → 0.

Hence Λ1
K,X ,p( f ) = FK,X ( f ) for all f ∈ Lp(K,X). �

THEOREM 4.9. Every operator space has Fourier type 1 with respect to compact
hypergroup, i.e., C 1

1 (X ,K) = 1 for every pair (X ,K).

Proof. Since L1(K,X) can be written as L1(K)⊗̂X with max structure on L1(K) ,
by using the Hausdorff-Young inequality for compact hypergroups, we get

C 1
1 (X ,K) = sup

‖ f‖L1(K)�1

‖ f̂ ⊗ (·)‖cb(X ,L ∞
X (K̂)) � sup

‖ f‖L1(K)�1

‖ f̂‖L ∞(K̂) � 1.

Now, the proof follows from Corollary 4.6. �

COROLLARY 4.10. Let 1 � p1 � p2 � 2 and let K be a compact hypergroup. If
the operator space X has the Fourier type p2 with respect to K then X has Fourier

type p1 with respect to K. Moreover, we have C 1
p1

(X ,K) � C 1
p2

(X ,K)
p′2
p′1 , where p′1

and p′2 are the conjugate exponent of p1 and p2 respectively.

Proof. The proof of this corollary follows from Theorem 4.9 and complex inter-
polation. �
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LEMMA 4.11. Let X be an operator space. Then we have

FK,X (L1(K,X)) ⊂C0(K̂,X).

Proof. By Theorem 4.9, every operator space has Fourier type 1. Also, Trig(K)⊗
X is uniformly dense in C(K)⊗X and hence L1(K,X)-norm dense in L1(K,X). By
Lemma 4.7, the map f �→ f̂ from L1(K,X) to L ∞(K̂,X) is continuous and hence each
f̂ will belong to closure of Cc(K̂,X), namely, C0(K̂,X). �

4.3. Fourier cotype with respect to a compact hypergroup

The inverse Fourier transform F−1
K from L 2(K̂) to L2(K) is defined as the in-

verse of Fourier operator FK from L2(K) onto L 2(K̂). For 1 � p � 2, we have
that L p(K̂) ⊂ L 2(K̂). Therefore, the inverse Fourier transform F−1

K f , for any f ∈
L p(K̂), is well defined. Obviously, F−1

K takes L p(K̂) into L2(K). Now, the
Hausdorff- Young inequality for compact hypergroups assures that F−1

K maps L p(K̂)
into Lp′(K), where p′ is exponent conjugate of p.

Let 1 � p � 2. For any A⊗ e ∈ L p(K̂)⊗ X , define the vector-valued inverse
Fourier transform F−1

K,X (A⊗ e) of A⊗ e as F−1
K (A)⊗ e. It can be easily seen that

F−1
K,X (L p(K̂)⊗X)⊂ Lp′(K)⊗X . This serves as a motivation for following definition.

DEFINITION 4.12. Let 1 � p � 2 and p′ = p
p−1 . An operator space is said to

have the Fourier cotype p′ with respect to the compact hypergroup K if the inverse
Fourier transform F−1

K,X : L p(K̂)⊗X → Lp′(K)⊗X can be extended to a completely

bounded operator Λ2
K,X ,p′ : L p(K̂,X) → Lp′(K̂,X).

In this case, the completely bounded norm of Λ2
K,X ,p′ is denoted by C 2

p′(X ,K).

The following two results are simple consequence of Property 1 of Theorem 3.1.

LEMMA 4.13. Let F be a closed subspace of X . Then, we have C 2
p′(F,K) �

C 2
p′(X ,K), where p′ is conjugate exponent of p for 1 � p � 2.

COROLLARY 4.14. Let 1 � p � 2 and p′ = p
p−1 . Then, we have C 2

p (X ,K) � 1.

We have the explicit formula for the inverse Fourier transform of F−1
K on L 2(K̂)

and hence on L p(K̂) for 1 � p � 2. It is clear that this formula is also true if we take
tensor product with a operator space. Having all this in mind, we define the inverse
Fourier operator F−1

K,X on L p(K̂)⊗X by

F−1
K,X (A) = ∑

π∈K̂

kπ

dπ

∑
i, j=1

Aπ
i jπi j(·).

The following lemma says that Λ2
K,X ,p′ preserves the given formula for F−1

K,X and

Λ2
K,X ,p′ agrees with inverse of the vector valued Fourier transform on L p(K̂,X).
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LEMMA 4.15. Let X be an operator space having Fourier cotype p′ with respect
to K. Then:

(i) for A ∈ L p(K̂,X), we have

Λ2
K,X ,p′(A) = F−1

K,X (A) = ∑
π∈K̂

kπ

dπ

∑
i, j=1

Aπ
i jπi j(·);

(ii) for A ∈ L p(K̂,X), we have F−1
K,X ◦Λ2

K,X ,p′(A) = A.

Proof.

(i) Since A ∈ L p(K̂,X), it has a countable support, say, {πi}∞
=1 ⊂ K̂. Now, define

An = {Aπ
n}π∈K̂ ∈ L p(K̂)⊗X by

Aπ
n =

{
Aπ , if π = πi for 1 � i � n,

0, otherwise.

For our convenience, we write F−1
K,X (An) = fn and F−1

K,X (A) = f . Then

‖Λ2
K,X ,p′(A)−F−1

K,X(A)‖Lp′ (K,X) = ‖Λ2
K,X ,p′(A)− f‖Lp′ (K,X)

� ‖Λ2
K,X ,p′(A−An)‖Lp′ (K,X) +‖ f − fn‖Lp′ (K,X).

As X has p′ Fourier cotype, we get

‖Λ2
K,X ,p′(A)−F−1

K,X(A)‖ � C2
p′(X ,K)‖A−An‖L p(K̂,X) +‖ f − fn‖Lp′ (K,X).

Note that the first term on right hand side is arbitraryly small for large values of n.
Since { fn}∞

n=1 is a Cauchy sequence, without loss of generality, we can assume
that ‖ fn1 − fn2‖ � 2−m for all n1,n2 � m.

Therefore, ‖ f − fn‖Lp′ (K,X) � ∑∞
k=n+1 ‖ fk − fk−1‖Lp′ (K,X) < ∑∞

k=n+1
1
2k . So, as

n → ∞ we get that ‖Λ2
K,X ,p′(A)−F−1

K,X(A)‖→ 0.

Hence Λ2
K,X ,p′(A) = F−1

K,X (A) for all A ∈ L p(K̂,X).

(ii) We shall continue to follow the notations used in the proof of part (i). For a fixed
π ∈ K̂, take nπ to be the smallest positive integer nπ such that π �= πk for k � nπ .
Then f̂ (π)−Aπ = ( f̂ − f̂n)(π) for all n � nπ . Therefore, it is enough to estimate
the entries of the matrix ( f̂ − f̂n)(π). In fact, we have

‖(( f̂ − f̂n)(π))i j‖X �
∫

K
‖( f − fn)(x)‖X |π ji(x)|dm(x)

� ‖ f − fn‖Lp′ (K,X)‖π ji‖Lp(K) � C 2
p′(X ,K)‖A−An‖L p(K̂,X),

which is arbitrary small as for large values of n . �
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THEOREM 4.16. For any pair (X ,K), we have C 2
∞(X ,K) = 1.

Proof. Since L 1(K̂)⊗X is dense in L 1(K̂,X), by using a density argument and
Property (i) of Theorem 3.1, we need to show that for all n ∈ N and for any family of
matrices (Ai j) ∈ Mn(L 1(K̂)⊗X) we have

‖ ∑
π∈K̂

kπ

dπ

∑
i, j=1

Aπ
i jπi j(x)‖S∞

n (X) � ‖(Ai j)‖S∞
n (L 1(K̂,X)) a.e.x ∈ K.

But this can be seen easily by considering a vector A ∈ L 1(K̂,X) as an element of
cb(L ∞(K̂),X) via the mapping B �→ ∑π∈K̂ kπ ∑dπ

i, j=1 Aπ
i jB

π
i j from L ∞(K̂) to X .

Now, define Bx ∈ L ∞(K̂) by Bπ
x = π(x). Then, we have

∥∥∥∥∥ ∑
π∈K̂

kπ

dπ

∑
i, j=1

(Aπ
i jπ(x))

∥∥∥∥∥
S∞
n (X)

=

∥∥∥∥∥
(

∑
π∈K̂

kπ

dπ

∑
i, j=1

(Aπ
i j·)(Bx)

)∥∥∥∥∥
S∞
n (X)

�
∥∥∥∥∥
(

∑
π∈K̂

kπ

dπ

∑
i, j=1

(Aπ
i j·)

)∥∥∥∥∥
cb(L ∞(K̂),S∞

n (X))

�
∥∥(Ai j)

∥∥
S∞
n (L 1(K̂)⊗̂X) .

Here the last inequality follows from the complete contraction given by L 1(K̂)⊗̂X →
L 1(K̂)⊗min X → cb(L ∞(K̂),X). Finally, the desired inequality follows from Theorem
4.2. Therefore, C 2

∞(X ,K) � 1. The other side of inequality follows from Corollary 4.14
above. �

The proof of the following corollary follows from Theorem 4.16 and interpolation.

COROLLARY 4.17. Let 1 � p1 � p2 � 2 and let K be a compact hypergroup. If
the operator space X has the Fourier cotype p′2 with respect to K then X has Fourier

cotype p′1 with respect to K. Moreover, we have C 1
p′1

(X ,K) � C 1
p′2

(X ,K)

p′2
p′1 , where p′1

and p′2 are the conjugate exponent of p1 and p2 respectively.

Here is the main result of this paper. Also, this is the compact hypergroup analogue of
Theorem 2.11.

THEOREM 4.18. Let X be an operator space, 1 � p � 2 and let p′ be the conje-
gate exponent of p . Then X∗ has

(i) Fourier cotype p′ with resptect to K iff X has Fourier type p with respect to K ;

(ii) Fourier type p′ with respect to K iff X has Fourier cotype p with respect to K.
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Proof. We shall prove only (i) as the proof of (ii) will follow similarly. The case
p = 1 follows from Theorem 4.9 and Theorem 4.16. Thus, we shall assume that 1 <
p � 2.

We shall first prove that C 1
p (X ,K) � C 1

p′(X
∗,K). By Theorem 3.1 and the dense-

ness of the algebraic tensor product, it is enough to show that∥∥∥∥∥ ∑
π∈K̂

kπ

dπ

∑
i, j=1

(Aπ
i jπ(·))

∥∥∥∥∥
Sp′
n (Lp′

X∗ (K))

� C1
p(X ,K)‖(Ai j)‖Sp′

n (L p
X∗ (K̂))

,

for any Ai j ∈ L p(K̂)⊗X∗, 1 � i, j � n and for all n � 1. Since, Sp′
n (Lp′

X∗(K)) and

Lp′
Sp
n (X)∗(K) are completely isometric, for a given ε > 0, ∃ f ε ∈ Lp

Sp
n (X)

(K) of norm 1

such that ∥∥∥∥∥ ∑
π∈K̂

kπ

dπ

∑
i, j=1

(Aπ
i jπ(·))

∥∥∥∥∥
Sp′
n (Lp′

X∗ (K))

�(1+ ε)

∣∣∣∣∣
∫

K
tr

[(
∑

π∈K̂

kπ

dπ

∑
i, j=1

(Aπ
i jπ(x))

)
( f ε

i j(x))

]
dm(x)

∣∣∣∣∣ .
Here, f ε

i j ∈ Lp(K)⊗X , the entries of f ε . Note that Ai j ∈L p(K̂). Therefore, it follows
that∥∥∥∥∥ ∑

π∈K̂

kπ

dπ

∑
i, j=1

(Aπ
i jπ(·))

∥∥∥∥∥
Sp′
n (Lp′

X∗ (K))

� (1+ ε)

∣∣∣∣∣ n

∑
i, j=1

∑
π∈K̂

kπ

∫
K

〈
dπ

∑
i, j=1

(Aπ
i jπ(x)), f ε

i j(x)

〉
dm(x)

∣∣∣∣∣
= (1+ ε)

∣∣∣∣∣ n

∑
i, j=1

∑
π∈K̂

kπ

dπ

∑
i, j=1

〈(Aπ
i j),

̂̌f ε
i j(π)〉

∣∣∣∣∣ = (1+ ε)
∣∣∣∣tr[(Ai j)(̂ f̌ ε

i j)
]∣∣∣∣

� (1+ ε)‖(Ai j)‖Sp′
n (Lp

X∗ (K))
‖(̂ ˇf ε

i j)‖Sp
n (Lp′

X∗ (K))

� (1+ ε)C1
p(X ,K)‖(Ai j)‖Sp′

n (Lp
X∗ (K))

‖ f ε‖Sp
n(Lp

X (K)) = (1+ ε)C1
p(X ,K)‖(Ai j)‖Sp′

n (Lp
X∗ (K))

.

Thus, it follows that C2
p′(X

∗,K) � C1
p(X ,K).

We shall now prove the other way inequality. As mentioned in the beginning of
the proof of the previous inequality, it is enough to show that

‖( f̂i j)‖sp
n (L p′

X (K̂))
� C2

p′(X
∗,K)‖( fi j)‖Sp′

n (Lp
X (K))

for any fi j ∈ Lp(K)⊗X , 1 � i, j � n and n � 1. Again, as Sp′
n (L p′

X (K̂)) is completely

isometrically isomorphic to L p′
Sp
n(X)

(K̂), for a given ε > 0, ∃ Aε ∈ L p
Sp
n(X∗)(K̂)

of norm
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one such that

‖( f̂i j)‖Sp′
n (L p′

X (K̂))
� (1+ ε)

∣∣∣∣∣ ∑
π∈K̂

kπ

dπ

∑
i, j=1

[
(Aε,π

i j )( f̂i j(π))
]∣∣∣∣∣ .

Now the remaining proof follows similar lines as in the previous inequality. Hence the
proof. �
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