ON THE MAXIMAL NUMERICAL RANGE OF A HYPONORMAL OPERATOR

Abderrahim Baghdad* and Mohamed Chraibi Kaadoud

Dedicated to Professor M. S. Moslehian

(Communicated by S. McCullough)

Abstract. Let A be a bounded linear operator acting on a complex Hilbert space. Let $\sigma(A)$ and $W_{0}(A)$ denote the spectrum and the maximal numerical range of A, respectively. In [10], it was shown that if A is a subnormal operator, then

$$
W_{0}(A)=\operatorname{co}(\{\lambda \in \sigma(A):|\lambda|=\|A\|\}),
$$

where $\operatorname{co}($.$) stands for the convex hull of the corresponding set. We extend this result to hyponor-$ mal operators. We give a geometric interpretation of the obtained result and deduce a necessary and sufficient condition to have $0 \in W_{0}(A)$ for a hyponormal operator A. Some properties of normaloid operators are also given.

1. Introduction

First, let us set some notations and recall some results from the literature.
Let L be a subset of the complex plane \mathbb{C}. As usual, the symbols $\bar{L}, \partial L$ and $\operatorname{co}(L)$ stand for the closure, the boundary and the convex hull of L, respectively. Let $\mathscr{B}(\mathscr{H})$ denote the algebra of all bounded linear operators acting on a complex Hilbert space \mathscr{H}. For $A \in \mathscr{B}(\mathscr{H})$, the numerical range of A is the image of the unit sphere of \mathscr{H} under the quadratic form $x \rightarrow\langle A x, x\rangle$ associated with the operator. More precisely,

$$
W(A)=\{\langle A x, x\rangle: x \in \mathscr{H},\|x\|=1\} .
$$

Thus the numerical range of an operator, like the spectrum, is a subset of the complex plane. It is a celebrated result due to Toeplitz[13] and Hausdorff [8] that $W(A)$ is a bounded convex set in the complex plane, for more detail, see [6]. It is closed if $\operatorname{dim}(\mathscr{H})<\infty$, but it is not always closed if $\operatorname{dim}(\mathscr{H})=\infty$.
For $A \in \mathscr{B}(\mathscr{H})$, let $\sigma(A), r(A)$ and $w(A)$ denote the spectrum, the spectral radius and the numerical radius of A, respectively. Recall that they are given by

$$
\sigma(A)=\{\lambda \in \mathbb{C}: A-\lambda I \text { is not invertible }\}
$$

[^0]$$
r(A)=\sup \{|\lambda|: \lambda \in \sigma(A)\} \text { and } w(A)=\sup \{|z|: z \in W(A)\} .
$$

It is well known that $\sigma(A)$ is a compact set and $\operatorname{co}(\sigma(A)) \subseteq \overline{W(A)}$. For more material about the specral radius, the numerical radius and other information on the basic theory of algebraic numerical range, we mention here the books $[1,2,5,6]$ as standard sources of references.
It is a basic fact that $w($.$) is a norm on \mathscr{B}(\mathscr{H})$, which is equivalent to the C^{*}-norm $\|$.$\| . In fact, for any operator A \in \mathscr{B}(\mathscr{H})$, the following inequalities are well known

$$
\frac{1}{2}\|A\| \leqslant w(A) \leqslant\|A\|
$$

An operator $A \in \mathscr{B}(\mathscr{H})$ is called normaloid if $w(A)=\|A\|$ or equivalently $r(A)=$ $\|A\|$, see [5, Theorem 1.3-2]. Familiar examples of normaloid operators are hyponormal (normal and subnormal) operators, see [11, Theorem 1].
There is another set that is close to $W(A)$; that is the maximal numerical range $W_{0}(A)$ of A. It it was introduced by Stampfli [12] and defined by

$$
W_{0}(A)=\left\{\lim _{n}\left\langle A x_{n}, x_{n}\right\rangle: x_{n} \in \mathscr{H},\left\|x_{n}\right\|=1, \lim _{n}\left\|A x_{n}\right\|=\|A\|\right\}
$$

It was shown in [12, Lemma 2] that $W_{0}(A)$ is nonempty, closed, convex, and contained in the closure of the numerical range; $W_{0}(A) \subseteq \overline{W(A)}$. When \mathscr{H} is finite dimensional, $W_{0}(A)$ corresponds to the numerical range produced by the maximal vectors (vectors x such that $\|x\|=1$ and $\|A x\|=\|A\|$). We also will denote by $\delta_{A, B}$ the generalized derivation induced by $A, B \in \mathscr{B}(\mathscr{H})$ and which is defined as follows

$$
\delta_{A, B}: \mathscr{B}(\mathscr{H}) \longrightarrow \mathscr{B}(\mathscr{H}), X \longmapsto \delta_{A, B}(X)=\left(L_{A}-R_{B}\right) X,
$$

where L_{A}, R_{B} are the left and the right multiplications defined on $\mathscr{B}(\mathscr{H})$ by $L_{A}(X)=$ $A X$ and $R_{B}(X)=X B$, respectively. The generalized derivation was studied by many authors; see for instance [3,12] and the references therein.
It is interesting to know that Stampfli [12] introduced the maximal numerical range (specially) for the purpose of calculating the norm of the generalized derivation. Indeed, he has given the following elegant formula, see [12, Theorem 8]. For any $A, B \in \mathscr{B}(\mathscr{H})$

$$
\left\|\delta_{A, B}\right\|=\inf _{\lambda \in \mathbb{C}}(\|A-\lambda\|+\|B-\lambda\|)
$$

However, the maximal numerical range recently became the interest of several researchers, see for instance $[7,9,10]$. We expect the present work to contribute to shed more light on the maximal numerical range.
Throughout this paper, for any operator $A \in \mathscr{B}(\mathscr{H})$ we denote by $\sigma_{n}(A)$ the subset of $\sigma(A)$ defined by

$$
\sigma_{n}(A)=\{\lambda \in \sigma(A):|\lambda|=\|A\|\}
$$

In Section 2, for any normaloid operator $A \in \mathscr{B}(\mathscr{H})$ and any $\lambda \in \sigma_{n}(A)$, we show the following:
(1) $\left\|A^{k}+\lambda^{k}\right\|=\|A\|^{k}+\left|\lambda^{k}\right|=2\|A\|^{k} \quad$ for $k=1,2,3, \ldots ;$
(2) for any nonzero natural number k, the operator $A^{k}+\lambda^{k}$ is normaloid;
(3) for any operator $B \in \mathscr{B}(\mathscr{H})$,

$$
w^{\prime}(B)\|A\|^{k} \leqslant w\left(B A^{k}\right) \quad \text { for } k=1,2,3, \ldots,
$$

where $w^{\prime}(B)=\inf \{|z|: z \in W(B)\}$. And A is normaloid if the inequality

$$
w^{\prime}(B)\|A\|^{l} \leqslant w\left(B A^{l}\right)
$$

is satisfied for any operator $B \in \mathscr{B}(\mathscr{H})$ and some nonzero natural number l.
Motivated by results of Spitkovsky [10] and basing on the fact that any hyponormal operator T has a normal dilation N with $\sigma(N) \subseteq \sigma(T)$, see [4, Theorem 3.2], we aim in Section 3 to show that if A is a hyponormal operator, then

$$
W_{0}(A)=c o\left(\sigma_{n}(A)\right)
$$

We give a geometric interpretation of the obtained result and deduce a necessary and sufficient condition to have $0 \in W_{0}(A)$ for a hyponormal operator A.

From now on, $\mathscr{B}(\mathscr{H})$ denotes the algebra of all bounded linear operators acting on a complex Hilbert space \mathscr{H}.

2. Some properties of normaloid operators

Let $A \in \mathscr{B}(\mathscr{H})$ be an arbitrary operator, then $\sigma(A) \subseteq \overline{W(A)}$ and $W_{0}(A) \subseteq \overline{W(A)}$. But we don't know whether the intersection $\sigma(A) \cap W_{0}(A)$ is empty or not. However, if A is a normaloid operator this intersection is always a nonempty set. Indeed, since A is normaloid, then $r(A)=\|A\|$ and, $\sigma(A)$ being a compact set, we can find a scalar $\lambda \in \sigma(A)$ such that $|\lambda|=\|A\|$. Then, $\sigma_{n}(A)$ is a nonempty subset of $\sigma(A)$ if A is normaloid. On the other hand, it is shown in [10, Lemma 1] that for any operator $A \in \mathscr{B}(\mathscr{H})$

$$
W_{0}(A) \cap C_{A}=\sigma_{n}(A)
$$

where $C_{A}=\{z:|z|=\|A\|\}$. Hence, since $W_{0}(A)$ is convex, $\operatorname{co}\left(\sigma_{n}(A)\right)$ is always a subset of $W_{0}(A)$ for any operator $A \in \mathscr{B}(\mathscr{H})$. However, if the operator A is not normaloid, the set $\sigma_{n}(A)$ is empty. Therefore, we will be interested in this section in the normaloidness case (i.e., $\sigma_{n}(A) \neq \emptyset$). Recall that if A is normaloid, then for any nonzero natural number k, the operator A^{k} is normaloid (see [5, Theorem 6.2-1]) and we also have

$$
\begin{equation*}
\operatorname{co}\left(\sigma_{n}\left(A^{k}\right)\right) \subseteq W_{0}\left(A^{k}\right) \tag{2.1}
\end{equation*}
$$

Recall also that, by the spectral mapping theorem, if $\lambda \in \sigma_{n}(A)$, then $\lambda^{k} \in \sigma_{n}\left(A^{k}\right)$ for any nonzero natural number k.

THEOREM 2.1. Let $A \in \mathscr{B}(\mathscr{H})$ be a normaloid operator. Then, for any $\lambda \in$ $\sigma_{n}(A)$ we have

$$
\begin{equation*}
\left\|A^{k}+\lambda^{k}\right\|=\|A\|^{k}+\left|\lambda^{k}\right|=2\|A\|^{k} \quad(k=1,2, \ldots) \tag{2.2}
\end{equation*}
$$

Proof. The result is evident if $A=0$. Therefore, assume A is a nonzero operator. Let $\lambda \in \sigma_{n}(A)$ and let k be any nonzero natural number. Since A is normaloid, by Equation (2.1), $\lambda^{k} \in W_{0}\left(A^{k}\right)$, so, $\frac{1}{\left|\lambda^{k}\right|} \lambda^{k}=\frac{1}{\left\|A^{k}\right\|} \lambda^{k} \in W_{0}\left(\frac{1}{\left\|A^{k}\right\|} A^{k}\right)$. We have $W_{0}\left(\frac{1}{\left|\lambda^{k}\right|} \lambda^{k}\right)=\left\{\frac{1}{\left|\lambda^{k}\right|} \lambda^{k}\right\}$, then $W_{0}\left(\frac{1}{\| A^{k} \mid} A^{k}\right) \cap W_{0}\left(\frac{1}{\left|\lambda^{k}\right|} \lambda^{k}\right) \neq \emptyset$. From [12, Theorem 7], $\left\|\delta_{A^{k},-\lambda^{k}}\right\|=\left\|A^{k}\right\|+\left|\lambda^{k}\right|$. Since A is normaloid, then $\left\|A^{k}\right\|=\|A\|^{k}$, see [5, Theorem 6.2-1]. On the other hand $\left\|\delta_{A^{k},-\lambda^{k}}\right\|=\left\|L_{A^{k}+\lambda^{k}}\right\|=\left\|A^{k}+\lambda^{k}\right\|$, we conclude that $\left\|A^{k}+\lambda^{k}\right\|=2\|A\|^{k}$.

Remark 2.2. Let $A \in \mathscr{B}(\mathscr{H})$. We always have

$$
\max _{\lambda \in \sigma(A)}\|A+\lambda\| \leqslant \max _{\lambda \in \sigma(A)}(\|A\|+|\lambda|) \leqslant 2\|A\|
$$

If A is normaloid, for any $\lambda \in \sigma_{n}(A)$ we have from equation (2.2) $\|A+\lambda\|=2\|A\|$, then we obtain

$$
\begin{equation*}
\max _{\lambda \in \sigma(A)}\|A+\lambda\|=2\|A\| \tag{2.3}
\end{equation*}
$$

This leads us to ask if identity (2.3) holds, is A normaloid? The following corollary answers this question and then gives another characterization of normaloid operators in $\mathscr{B}(\mathscr{H})$.

Corollary 2.3. Let $A \in \mathscr{B}(\mathscr{H})$. Then, A is normaloid if and only if

$$
\max _{\lambda \in \sigma(A)}\|A+\lambda\|=2\|A\|
$$

Proof. The necessity follows from Remark 2.2 so that we only need to prove the sufficiency. Note first that, by an argument of compactness, there exists $\mu \in \sigma(A)$ such that

$$
\max _{\lambda \in \sigma(A)}(\|A\|+|\lambda|)=\|A\|+|\mu|
$$

If A is not normaloid, we have $|\mu|<\|A\|$ and we obtain

$$
\max _{\lambda \in \sigma(A)}\|A+\lambda\| \leqslant \max _{\lambda \in \sigma(A)}(\|A\|+|\lambda|)=\|A\|+|\mu|<2\|A\| .
$$

This proves the sufficiency.
THEOREM 2.4. Let $A \in \mathscr{B}(\mathscr{H})$ be a normaloid operator. Then, for any $\lambda \in$ $\sigma_{n}(A)$ and any nonzero natural number k the operator $A^{k}+\lambda^{k}$ is normaloid.

Proof. Let $A \in \mathscr{B}(\mathscr{H})$ be a normaloid operator. Let $\lambda \in \sigma_{n}(A)$ and let k be any nonzero natural number. We always have

$$
w\left(A^{k}+\lambda^{k}\right) \leqslant\left\|A^{k}+\lambda^{k}\right\| \leqslant 2\|A\|^{k} .
$$

By equation (2.1), $\lambda^{k} \in W_{0}\left(A^{k}\right)$ and therefore, $\lim _{n}\left\langle A^{k} x_{n}, x_{n}\right\rangle=\lambda^{k}$ for some sequence of unit vectors $x_{n} \in \mathscr{H}$. Then,

$$
\lim _{n}\left\langle\left(A^{k}+\lambda^{k}\right) x_{n}, x_{n}\right\rangle=2 \lambda^{k}
$$

It follows that $2 \lambda^{k} \in \overline{W\left(A^{k}+\lambda^{k}\right)}$ and hence, $2\|A\|^{k}=2|\lambda|^{k} \leqslant w\left(A^{k}+\lambda^{k}\right)$. Consequently $w\left(A^{k}+\lambda^{k}\right)=\left\|A^{k}+\lambda^{k}\right\|$. That is just to say that the operator $A^{k}+\lambda^{k}$ is normaloid.

The following theorem gives another characterization of normaloid operators in terms of inequality.

THEOREM 2.5. Let $A \in \mathscr{B}(\mathscr{H})$. Then, the following are equivalent statements:
i) A is normaloid;
ii) for any operator $B \in \mathscr{B}(\mathscr{H})$ and nonzero natural number k, we have

$$
\begin{equation*}
w^{\prime}(B)\|A\|^{k} \leqslant w\left(B A^{k}\right) ; \tag{2.4}
\end{equation*}
$$

iii) there is a nonzero natural number l such that for any $B \in \mathscr{B}(\mathscr{H})$, we have

$$
w^{\prime}(B)\|A\|^{l} \leqslant w\left(B A^{l}\right) .
$$

Proof. $i) \Rightarrow i i)$. Assume that A is normaloid and let k be a nonzero natural number. Since the operator A^{k} is normaloid, then there is λ with $\left|\lambda^{k}\right|=\left\|A^{k}\right\|=\|A\|^{k}$ and $\lambda^{k} \in \sigma_{a p p}\left(A^{k}\right)$. Let $\left(x_{n}\right)$ be a sequence of unit vectors such that $\lim _{n}\left\|A^{k} x_{n}-\lambda^{k} x_{n}\right\|=0$. For any $B \in \mathscr{H}$

$$
\begin{aligned}
\left|\left\langle B A^{k} x_{n}, x_{n}\right\rangle\right| & =\left|\left\langle B\left(\lambda^{k} I+\left(A^{k}-\lambda^{k} I\right)\right) x_{n}, x_{n}\right\rangle\right| \geqslant|\lambda|^{k}\left|\left\langle B x_{n}, x_{n}\right\rangle\right|-\left|\left\langle B\left(A^{k} x_{n}-\lambda^{k} x_{n}\right), x_{n}\right\rangle\right| \\
& \geqslant w^{\prime}(B)\|A\|^{k}-\|B\|\left\|A^{k} x_{n}-\lambda^{k} x_{n}\right\|
\end{aligned}
$$

Inequality (2.4) follows.
$i i) \Rightarrow i i i)$. It is obvious.
iii) $\Rightarrow i$. Let l be a nonzero natural number l such that for any $B \in \mathscr{B}(\mathscr{H})$,

$$
w^{\prime}(B)\|A\|^{l} \leqslant w\left(B A^{l}\right) .
$$

Take $B=I$, we get $\|A\|^{l} \leqslant w\left(A^{l}\right) \leqslant(w(A))^{l} \leqslant\|A\|^{l}$. It results that $(w(A))^{l}=\|A\|^{l}$, that is $w(A)=\|A\|$, and hence A is normaloid.

3. Maximal numerical range of a hyponormal operator

Let $A \in \mathscr{B}(\mathscr{H})$ be an operator. It is shown in [10, Corollary 2] that the following equality

$$
\begin{equation*}
W_{0}(A)=\operatorname{co}\left(\sigma_{n}(A)\right) \tag{3.1}
\end{equation*}
$$

holds for subnormal (and then for normal) operators A. In this section, we extend this property to hyponormal operators by using the fact that every hyponormal operator A has a normal dilation N with $\sigma(N) \subseteq \sigma(A)$, see [4, Theorem 3.2]. First, let us recall the definition of the dilation of an operator. Let A and B be bounded linear operators on the complex Hilbert spaces \mathscr{H} and \mathscr{K}, respectively. B is said to be a dilation of A (or A is dilated to B) if B is unitarily equivalent to a 2×2 operator matrix of the form $\left[\begin{array}{ll}A & * \\ * & *\end{array}\right]$. This is equivalent to requiring the existence of an isometry V from \mathscr{H} to \mathscr{K} such that $A=V^{*} B V$. For this end, we need the following auxiliary lemma.

Lemma 3.1. Let $A \in \mathscr{B}(\mathscr{H})$. If A has a normal dilation N on some complex Hilbert space \mathscr{K} such that $\sigma(N) \subseteq \sigma(A)$, then

$$
W_{0}(A) \subseteq W_{0}(N)
$$

Proof. Since N is normal and $\sigma(N) \subseteq \sigma(A)$, then $\|N\|=r(N) \leqslant r(A) \leqslant\|A\|$. Let $\lambda \in W_{0}(A)$, then there is a sequence of unit vectors $x_{n} \in \mathscr{H}$ such that

$$
\lim _{n}\left\langle A x_{n}, x_{n}\right\rangle=\lambda \quad \text { and } \quad \lim _{n}\left\|A x_{n}\right\|=\|A\| .
$$

Let V be an isometry from \mathscr{H} to \mathscr{K} such that $A=V^{*} N V$ and set $y_{n}=V x_{n}$, so y_{n} is a unit vector in \mathscr{K}. Therefore, we have

$$
\lim _{n}\left\langle N y_{n}, y_{n}\right\rangle=\lim _{n}\left\langle N V x_{n}, V x_{n}\right\rangle=\lim _{n}\left\langle V^{*} N V x_{n}, x_{n}\right\rangle=\lim _{n}\left\langle A x_{n}, x_{n}\right\rangle=\lambda
$$

Moreover, since

$$
\left\|A x_{n}\right\|=\left\|V^{*} N V x_{n}\right\| \leqslant\left\|V^{*}\right\|\left\|N V x_{n}\right\| \leqslant\left\|V^{*}\right\|\|N\|\left\|V x_{n}\right\| \leqslant\|N\| \leqslant\|A\|,
$$

we conclude that $\lim _{n}\left\|N V x_{n}\right\|=\|N\|$; that is, $\lim _{n}\left\|N y_{n}\right\|=\|N\|$. It results that $\lambda \in$ $W_{0}(N)$ and consequently, $W_{0}(A) \subseteq W_{0}(N)$ as desired.

REMARK 3.2. In fact, in the previous lemma, we have $\|A\|=\|N\|$. Indeed, since $A=V^{*} N V$, then $\|A\| \leqslant\left\|V^{*}\right\|\|N\|\|V\|=\|N\|$.

THEOREM 3.3. Let $A \in \mathscr{B}(\mathscr{H})$ be a hyponormal operator, then

$$
W_{0}(A)=c o\left(\sigma_{n}(A)\right) .
$$

Proof. Let $A \in \mathscr{B}(\mathscr{H})$ be a hyponormal operator. According to [4, Theorem 3.2], A has a normal dilation N on some complex Hilbert space \mathscr{K} with $\sigma(N) \subseteq \sigma(A)$. From Lemma 3.1 and using [10, Corollary 2]

$$
W_{0}(A) \subseteq W_{0}(N)=\operatorname{co}\left(\sigma_{n}(N)\right) \subseteq \operatorname{co}\left(\sigma_{n}(A)\right) \quad(\text { because }\|N\|=\|A\|)
$$

Since $\operatorname{co}\left(\sigma_{n}(A)\right)$ is always a subset of $W_{0}(A)$, we derive that $W_{0}(A)=c o\left(\sigma_{n}(A)\right)$. This completes the proof.

REMARK 3.4. The converse of the previous theorem does not hold in general. Indeed, let B the backward shift defined on the Hilbert space ℓ_{2} by

$$
B\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2}, x_{3}, \ldots\right)
$$

It is known that $\sigma(B)$ is the closed unit disk $\overline{\mathbb{D}}=\{\lambda \in \mathbb{C}:|\lambda| \leqslant 1\}$ and $\|B\|=1$. Then $\sigma_{n}(B)=C(0,1)$; the unit circle, and $W_{0}(B) \subseteq \overline{\mathbb{D}}$. Since $\operatorname{co}\left(\sigma_{n}(B)\right)=\overline{\mathbb{D}}$, we get

$$
W_{0}(B)=\operatorname{co}\left(\sigma_{n}(B)\right)
$$

However, by taking $x=(1,0,0, \ldots)$, we have

$$
\left\langle\left(B^{*} B-B B^{*}\right) x, x\right\rangle=-1<0
$$

and so B is not a hyponormal operator.

We end this section by giving a geometric interpretation of Theorem 3.3 and we locate the position of the maximal numerical range $W_{0}(A)$ in the closed disk $\bar{D}(O,\|A\|)$ relatively to the center of mass of a hyponormal operator A. First, let us recall the definition and some properties of the center of mass of an operator A. In [12, Corollary of Theorem 2], it was shown that there exists a unique scalar c_{A} (called center of mass of A) satisfying the following (called Pythagorean relation)

$$
\begin{equation*}
\left\|A-c_{A}\right\|^{2}+|\lambda|^{2} \leqslant\left\|\left(A-c_{A}\right)+\lambda\right\|^{2}, \text { for all } \lambda \in \mathbb{C} \tag{3.2}
\end{equation*}
$$

and $0 \in W_{0}(A)$ if and only if $c_{A}=0$. Taking $\lambda=c_{A}$ in inequality (3.2), we get

$$
\begin{equation*}
\left\|A-c_{A}\right\|^{2}+\left|c_{A}\right|^{2} \leqslant\|A\|^{2} . \tag{3.3}
\end{equation*}
$$

We will denote by $w_{0}^{\prime}(A)$ the infinimum modulus of $W_{0}(A)$, that is,

$$
w_{0}^{\prime}(A)=\inf \left\{|z|: z \in W_{0}(A)\right\} .
$$

Theorem 3.5. Let $A \in \mathscr{B}(\mathscr{H})$ be any operator. Then, $w_{0}^{\prime}(A) \geqslant\left|c_{A}\right|$.
Proof. By an argument of compactness, there exists $\alpha \in W_{0}(A)$ such that $|\alpha|=$ $w_{0}^{\prime}(A)$. Hence, there is a sequence of unit vectors $x_{n} \in \mathscr{H}$ satisfying

$$
\alpha=\lim _{n}\left\langle A x_{n}, x_{n}\right\rangle \text { and } \lim _{n}\left\|A x_{n}\right\|=\|A\| .
$$

Therefore, we have

$$
\begin{aligned}
\left\|A-c_{A}\right\|^{2} & \geqslant\left\|\left(A-c_{A}\right) x_{n}\right\|^{2}=\left\|A x_{n}\right\|^{2}+\left|c_{A}\right|^{2}-2 \operatorname{Re}\left(\overline{c_{A}}\left\langle A x_{n}, x_{n}\right\rangle\right) \\
& \left.\geqslant\left\|A x_{n}\right\|^{2}+\left|c_{A}\right|^{2}-2\left|c_{A}\right| \mid\left\langle A x_{n}, x_{n}\right\rangle\right) \mid
\end{aligned}
$$

It results that

$$
\left\|A-c_{A}\right\|^{2} \geqslant\|A\|^{2}+\left|c_{A}\right|^{2}-2\left|c_{A}\right| w_{0}^{\prime}(A)=\|A\|^{2}-\left(w_{0}^{\prime}(A)\right)^{2}+\left(w_{0}^{\prime}(A)-\left|c_{A}\right|\right)^{2} .
$$

Thus,

$$
\left\|A-c_{A}\right\|^{2}+\left(w_{0}^{\prime}(A)\right)^{2} \geqslant\|A\|^{2}+\left(w_{0}^{\prime}(A)-\left|c_{A}\right|\right)^{2} .
$$

We see that

$$
\left\|A-c_{A}\right\|^{2}+\left(w_{0}^{\prime}(A)\right)^{2} \geqslant\|A\|^{2}
$$

and from inequality (3.3), we get $w_{0}^{\prime}(A) \geqslant\left|c_{A}\right|$.

GEOMETRIC INTERPRETATION 3.6. Let $A \in \mathscr{B}(\mathscr{H})$ be a hyponormal operator. Assume that $c_{A} \neq 0$. From Theorem 3.5, $W_{0}(A)$ is outside of the open disk $D\left(O,\left|c_{A}\right|\right)$. Let $\alpha \in W_{0}(A)$ such that $|\alpha|=w_{0}^{\prime}(A)$ (we may have $\alpha=c_{A}$), then we have two cases. First case: $\alpha \in \sigma_{n}(A)$. It is clear that $W_{0}(A)=\sigma_{n}(A)=\{\alpha\}$. For example, A is a normal operator acting on the complex Hilbert space $\mathscr{H}=\mathbb{C}^{2}$ with $\sigma(A)=\{\alpha, \beta\}$ and $|\beta|<|\alpha| \quad(|\alpha|=\|A\|)$.
Second case: $|\alpha|<\|A\|$. By Theorem 3.3 and the fact that $|\alpha|=d\left(0, W_{0}(A)\right)$, there is $\lambda_{1}, \lambda_{2} \in \sigma_{n}(A)$ with $\lambda_{1} \neq \lambda_{2}$ such that α is the midpoint of $\left[\lambda_{1}, \lambda_{2}\right]$; the closed line segment connecting λ_{1} with $\lambda_{2}\left(\alpha=\frac{\lambda_{1}+\lambda_{2}}{2}\right)$. Being convex, $W_{0}(A)$ must be contained in the gray area of $\bar{D}(O,\|A\|)$ (see Figure 1 below, for more details).

Figure 1: Geometric place of the maximal numerical range

Now, we examine the case where $c_{A}=0$ (i.e., $0 \in W_{0}(A)$). According to Theorem 3.3, the set $\sigma_{n}(A)$, unlike the first case (see Figure 1 above), cannot be contained in a portion of the circle $C(0,\|A\|)$ smaller than a semicircle (equivalently, $W_{0}(A)$ cannot be contained in a portion of the disk $\bar{D}(O,\|A\|)$ smaller than a half-disk or $W_{0}(A)=[-\lambda, \lambda]$, where $\left.\lambda \in \mathbb{C}\right)$. However, if the operator A is not hyponormal, this result may fail. Indeed, let us give an example. Note that we obtain the desired result from the example in [10] by a simple and short method.

Example 3.7. Let B be the operator on the complex Hilbert space $\mathscr{H}=\mathbb{C}^{3}$ represented by $B=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$. Then $\|B\|=1$ and $\sigma(B)=\{0,1\}$ (so, B is normaloid). Let $\left(e_{1}, e_{2}, e_{3}\right)$ be the standard orthonormal basis of \mathscr{H}, then $B e_{2}=e_{1}$, so $\left\|B e_{2}\right\|=1$, hence e_{2} is a maximal vector and therefore $0=\left\langle B e_{2}, e_{2}\right\rangle \in W_{0}(B)$. We see that $0 \notin \operatorname{co}\left(\sigma_{n}(B)\right)=\{1\}$ (consequently, equality (3.1) does not hold for normaloid operators, in general). It is clear that B is not hyponormal and $c_{B}=0$, however $\sigma_{n}(B)$ is just a singleton.

REFERENCES

[1] F. F. Bonsall, J. Duncan , Numerical ranges of operators on normed spaces and of elements of normed algebras, London Mathematical Society Lecture Note Series 2 Cambridge University Press, London-New York, (1971).
[2] F. F. Bonsall, J. Duncan, Numerical ranges II, London Mathematical Society Lecture Notes Series 10 Cambridge University Press, New York-London, (1973).
[3] L. Fialkow, A note on the operator $X \longrightarrow A X-X B$, Israel. J. Math., 32 (1979), 331-348.
[4] H. L. Gau, K. Z. Wang and P. Y. Wu, Numerical radii for tensor products of operators, Integral Equations Operator Theory, 78 , no. 3, (2014), 375-382.
[5] K. E. Gustafson, D. K. M. Rao, Numerical range: The Field of Values of Linear Operators and Matrices, New York, NY, USA, (1997).
[6] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, New York, 1967.
[7] A. N. HAMED, I. M. Spitkovsky, On the maximal numerical range of some matrices, Electronic Journal of Linear Algebra, Volume 34 (2018), 288-303.
[8] F. Hausdorff, Der Wertvorrat einer Bilinearform, Math. Z. 3. (1919), 314-316.
[9] B. O. Okello, N. B. Okelo, O. Ongati, On Numerical Range of Maximal Jordan Elementary Operator, International Journal of Modern Science and Technology, Vol. 2, No. 10, (2017) 341-344.
[10] I. M. Spitkovsky, A note on the maximal numerical range, Operators and Matrices, to appear.
[11] J. G. Stampfli, Hyponormal operators, Pacific J. Math., 12 (1962), 1453-1458.
[12] J. G. StampfLI, The norm of derivation, Pacific J. Math., 33 (1970), 737-747.
[13] O. Toeplitz, Das algebraische Analogon zu einem Satze von Fejér, Math. Z. 2, no. 1-2, (1918), 187-197.
(Received December 31, 2018)

Marrakech-Morocco
e-mail: bagabd66@gmail.com
Mohamed Chraibi Kaadoud Department of Mathematics, FSSM Cadi Ayyad University
Marrakech-Morocco
e-mail: chraibik@uca.ac.ma

[^0]: Mathematics subject classification (2010): 47A12, 47A30, 47A63, 47B15, 47B47.
 Keywords and phrases: Spectrum, numerical range, maximal numerical range, normal operator, hyponormal operator, normaloid operator.

 * Corresponding author.

