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Abstract. Let A be a bounded linear operator acting on a complex Hilbert space. Let o(A) and
Wo(A) denote the spectrum and the maximal numerical range of A, respectively. In [10], it was
shown that if A is a subnormal operator, then

Wo(A) =co({A € o(A) - 2| = [IA]l}),

where co(.) stands for the convex hull of the corresponding set. We extend this result to hyponor-
mal operators. We give a geometric interpretation of the obtained result and deduce a necessary
and sufficient condition to have 0 € Wy(A) for a hyponormal operator A. Some properties of
normaloid operators are also given.

1. Introduction

First, let us set some notations and recall some results from the literature.
Let L be a subset of the complex plane C. As usual, the symbols L, dL and co(L)
stand for the closure, the boundary and the convex hull of L, respectively. Let Z ()
denote the algebra of all bounded linear operators acting on a complex Hilbert space
A . For A € B(s), the numerical range of A is the image of the unit sphere of 7
under the quadratic form x — (Ax,x) associated with the operator. More precisely,

W(A) = {{Ax,x) :x € 2, ||x|| = 1}.

Thus the numerical range of an operator, like the spectrum, is a subset of the complex
plane. It is a celebrated result due to Toeplitz[13] and Hausdorff [8] that W(A) is
a bounded convex set in the complex plane, for more detail, see [6]. It is closed if
dim( ) < e, but it is not always closed if dim(.7#") = .

For A€ B(),let 6(A), r(A) and w(A) denote the spectrum, the spectral radius and
the numerical radius of A, respectively. Recall that they are given by

0(A)={A €C: A—AI isnotinvertible},
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r(A) =sup{|A|: A € 6(A)} and w(A) =sup{|z|: z€ W(A)}.

It is well known that o(A) is a compact set and co(c(A)) € W(A). For more material
about the specral radius, the numerical radius and other information on the basic theory
of algebraic numerical range, we mention here the books [1, 2, 5, 6] as standard sources
of references.

It is a basic fact that w(.) is a norm on (), which is equivalent to the C*-norm
||.|| - In fact, for any operator A € B(H), the following inequalities are well known

1
4]l < w(a) < JA]

An operator A € B() is called normaloid if w(A) = ||A| or equivalently r(A) =
lA|l, see [5, Theorem 1.3-2]. Familiar examples of normaloid operators are hyponormal
(normal and subnormal) operators, see [1 |, Theorem 1].

There is another set that is close to W(A); that is the maximal numerical range Wy(A)
of A. It it was introduced by Stampfli [12] and defined by

Wo(A) = {lim(Ax,,x,) 1 X, € F, ||xa]] = 1, lim ||Ax, || = ||A]|}-

It was shown in [12, Lemma 2] that W (A) is nonempty, closed, convex, and contained
in the closure of the numerical range; Wy(A) C W(A). When ¢ is finite dimensional,
Wo(A) corresponds to the numerical range produced by the maximal vectors (vectors
x such that ||x|| =1 and [|Ax|| = ||A]|). We also will denote by &4  the generalized
derivation induced by A, B € #(.7) and which is defined as follows

6A7B CPB(H) — B(H), X —> 6A7B(X) = (La — Rp)X,

where Ly, Rp are the left and the right multiplications defined on Z(.7#) by Ls(X) =
AX and Rp(X) = XB, respectively. The generalized derivation was studied by many
authors; see for instance [3, 12] and the references therein.

It is interesting to know that Stampfli [12] introduced the maximal numerical range
(specially) for the purpose of calculating the norm of the generalized derivation. Indeed,
he has given the following elegant formula, see [12, Theorem 8]. For any A, B € #(5)

|81l = in (1A~ 2]+ (18~ &1).

However, the maximal numerical range recently became the interest of several re-
searchers, see for instance [7, 9, 10]. We expect the present work to contribute to
shed more light on the maximal numerical range.
Throughout this paper, for any operator A € %(.%’) we denote by 0, (A) the subset of
0(A) defined by

ou(A) = {A € o) A|=lAll}.

In Section 2, for any normaloid operator A € #(.7) and any A € 0,,(A), we show
the following:

(1) [|A* + K[| = [|A]|* + |A¥] = 2| A*  for k=1,2,3,...;
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(2) for any nonzero natural number &, the operator A¥ 4+ A% is normaloid;
(3) for any operator B € #(5),
w (B) ||A|[F < w(BAF) fork=1,2,3,...,
(

where w'(B) = inf{|z| : z€ W(B)}. And A is normaloid if the inequality
w (B)[|A[l" < w(BA')
is satisfied for any operator B € %(.%’) and some nonzero natural number /.

Motivated by results of Spitkovsky [10] and basing on the fact that any hyponormal
operator T has a normal dilation N with o(N) C o(T), see [4, Theorem 3.2], we aim
in Section 3 to show that if A is a hyponormal operator, then

Wo(A) = co(0,(A)).

We give a geometric interpretation of the obtained result and deduce a necessary and
sufficient condition to have 0 € Wy(A) for a hyponormal operator A.

From now on, #(7) denotes the algebra of all bounded linear operators acting
on a complex Hilbert space .77 .

2. Some properties of normaloid operators

Let A € #() be an arbitrary operator, then o(A) C W(A) and Wy(A) C W(A).
But we don’t know whether the intersection o(A) NWy(A) is empty or not. However,
if A is a normaloid operator this intersection is always a nonempty set. Indeed, since
A is normaloid, then r(A) = ||A|| and, o(A) being a compact set, we can find a scalar
A € 0(A) such that |A| = ||A||. Then, 0,(A) is a nonempty subset of G(A) if A is
normaloid. On the other hand, it is shown in [10, Lemma 1] that for any operator
Ac B(H)

Wo(A) N Cy = 0,(A),

where C4 = {z: |z = ||A||}. Hence, since Wy(A) is convex, co(0,(A)) is always
a subset of Wy(A) for any operator A € #(¢). However, if the operator A is not
normaloid, the set 0,,(A) is empty. Therefore, we will be interested in this section in
the normaloidness case (i.e., 6,(A) # 0). Recall that if A is normaloid, then for any
nonzero natural number &, the operator A¥ is normaloid (see [5, Theorem 6.2-1]) and
we also have

co(0,(A")) € Wo(AY). 2.1)

Recall also that, by the spectral mapping theorem, if A € 6,(A), then A* € 6, (A¥) for
any nonzero natural number k.

THEOREM 2.1. Let A € B(H) be a normaloid operator. Then, for any A €
0,(A) we have

HA"HU‘H = lAl* + ‘A") —20AIF (k=1,2,...). 2.2)
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Proof. The result is evident if A = 0. Therefore, assume A is a nonzero opera-
tor. Let A € 0,(A) and let k be any nonzero natural number. Since A is normaloid,

1 1
by Equation (2.1), A € Wy(A¥), so, W?Lk = W k Ak). We have
1

) = (g AN Wl o

Wo
& Mol

Wo( then Wy(—— /lk) # 0. From [12, Theorem

1A%]] 4]
= ||A¥|| +|A¥|. Since A is normaloid, then [|A*|| = [|A[", see [5, Theo-

= [|Lasae]| = 4"

6Ak7,lk
rem 6.2-1]. On the other hand H5Ak771k
A%+ 2K =2, O

REMARK 2.2. Let A € #(s¢). We always have
Jmax fJA+A[l < Jmax (IIAH +[A]) < 2[All-
€o(A)
If A is normaloid, for any A € 0,(A) we have from equation (2.2) [[A+A| =2]A]],

then we obtain
max [[A+A|=2]A]. (2.3)
rEG(A)

This leads us to ask if identity (2.3) holds, is A normaloid? The following corollary
answers this question and then gives another characterization of normaloid operators in
B(H).

COROLLARY 2.3. Let A € B(I). Then, A is normaloid if and only if

max [|A+A| =2||A].
Aeo(A)

Proof. The necessity follows from Remark 2.2 so that we only need to prove the
sufficiency. Note first that, by an argument of compactness, there exists i € o(A) such
that

Jmax (Al A]) = AL+ |-

If A is not normaloid, we have || < ||A|| and we obtain
max [|[A+A[ < max ([|Al+[A]) = [|A]l+[u] < 2[|A].
Aec(A) Aeo(A)
This proves the sufficiency. [

THEOREM 2.4. Let A € B(H) be a normaloid operator. Then, for any A €
0.(A) and any nonzero natural number k the operator AF+ A* is normaloid.

Proof. Let A € (.#) be a normaloid operator. Let A € 0,(A) and let k be any
nonzero natural number. We always have

w(Ak + %) < HA"—HL"H <2|lAF.
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By equation (2.1), AK € Wy(A¥) and therefore, lim(A¥x,,x,) = A* for some sequence
n
of unit vectors x,, € 77 . Then,

lim((A* + A%)x,, x,) = 245,

It follows that 2A% € W (AF 4 AF) and hence, 2||A|F = 2|A[* < w(A¥ + A¥). Con-
sequently w(AX + A%) = HA" +/lkH. That is just to say that the operator AK + A* is
normaloid. [J

The following theorem gives another characterization of normaloid operators in terms
of inequality.

THEOREM 2.5. Let A € B(H). Then, the following are equivalent statements:
i) A is normaloid;
ii) for any operator B € B() and nonzero natural number k, we have

W (B)IA[I* < w(BAY): 2:4)
iii) there is a nonzero natural number | such that for any B € $(), we have
w (B)[|A]|" < w(BA).

Proof. i) = ii). Assume that A is normaloid and let k be a nonzero natural num-
ber. Since the operator A is normaloid, then there is A with |1¥| = ||A*|| = ||A||* and

ke Oupp (A¥). Let (x,) be a sequence of unit vectors such that lim Arx, — AKx, || =0.
n
Forany B € 77

’ (BAFx,, x,)

= [(BAM (A= 241, 5,)

> 1A (B ) | | (BAR 0~ 250 1)

>w (B) A~ 1B |4k, — 24|

Inequality (2.4) follows.
ii) = iii). It is obvious.
iii) = i). Let [ be a nonzero natural number [ such that for any B € B(¢),

w (B) | A|l' < w(BA).

Take B =1, we get ||A]' < w(A!) < (w(A))! < ||A||'. It results that (w(A))! = ||A]',
thatis w(A) = ||A||, and hence A is normaloid. [J
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3. Maximal numerical range of a hyponormal operator

Let A € () be an operator. It is shown in [10, Corollary 2] that the following
equality
Wo(A) = co(0a(A)) (3.1

holds for subnormal (and then for normal) operators A. In this section, we extend this
property to hyponormal operators by using the fact that every hyponormal operator A
has a normal dilation N with o(N) C 6(A), see [4, Theorem 3.2]. First, let us recall
the definition of the dilation of an operator. Let A and B be bounded linear operators
on the complex Hilbert spaces ¢ and %, respectively. B is said to be a dilation of A
(or A is dilated to B) if B is unitarily equivalent to a 2 x 2 operator matrix of the form

A

*
J such that A = V*BV . For this end, we need the following auxiliary lemma.

. This is equivalent to requiring the existence of an isometry V from .7 to

LEMMA 3.1. Let A € B(J). If A has a normal dilation N on some complex
Hilbert space & such that 6(N) C o(A), then

Wo(A) € Wo(N).

Proof. Since N is normal and o(N) C o(A), then |N| =r(N) < r(A) < ||A]l.
Let A € Wy(A), then there is a sequence of unit vectors x, € 5 such that

lim(Ax,,x5,) = A and  lim||Ax,|| = ||A]|.

Let V be an isometry from 7 to .# such that A=V*NV and set y, = Vx,, so y, is
a unit vector in % . Therefore, we have

Hm(Ny,,y,) = im(NVx,,Vx,) = lim(V*NVx,,x,) = lim{Ax,,x,) = .
Moreover, since
[Axa|| = [[VNVxa || < [[VFNVxA]] < [[VFHINI IV < [IN]| < A

we conclude that lim||NVx,|| = ||N||; that is, lim||Ny,| = [|N]|. It results that A €
n n
Wo(N) and consequently, Wy(A) C Wy(N) as desired. O

REMARK 3.2. In fact, in the previous lemma, we have [|A|| = ||N||. Indeed, since
A=V*NV, then [|A[| < [[V[IN[ V]| = [IN].

THEOREM 3.3. Let A € B(I) be a hyponormal operator, then

Wo(A) = co(0,(A)).
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Proof. Let A € B(H) be a hyponormal operator. According to [4, Theorem 3.2],
A has a normal dilation N on some complex Hilbert space %~ with o(N) C 6(A).
From Lemma 3.1 and using [10, Corollary 2]

Wo(A) S Wo(N) = co(0,(N)) S co(0,(A))  (because [N = [[A])-

Since co(0,(A)) is always a subset of Wy(A), we derive that Wy(A) = co(0,(A)). This
completes the proof. [

REMARK 3.4. The converse of the previous theorem does not hold in general.
Indeed, let B the backward shift defined on the Hilbert space ¢, by

B(x1,x2,x3,...) = (x2,%3,...).

It is known that &(B) is the closed unit disk D = {Ae€C: |A| <1} and |B|| =1.
Then o,(B) = C(0,1); the unit circle, and Wy(B) C D. Since co(0,(B)) =D, we get

Wo(B) = co(0,(B)).
However, by taking x = (1,0,0,...), we have
((B*B—BB")x,x) = —1<0,

and so B is not a hyponormal operator.

We end this section by giving a geometric interpretation of Theorem 3.3 and we lo-
cate the position of the maximal numerical range Wy(A) in the closed disk D(O, ||A]|)
relatively to the center of mass of a hyponormal operator A. First, let us recall the defi-
nition and some properties of the center of mass of an operator A. In [12, Corollary of
Theorem 2], it was shown that there exists a unique scalar c4 (called center of mass of
A) satisfying the following (called Pythagorean relation)

IA=cal®> + AP < (A=ca) + 2|, forall A € C (3.2)
and 0 € Wy(A) if and only if ¢4 = 0. Taking A = ¢4 in inequality (3.2), we get
A = call? + leal® < [1A]I*. (3.3)
We will denote by wé) (A) the infinimum modulus of Wy(A), that is,
wo(A) =inf{|z] : z€ Wo(A)}.
THEOREM 3.5. Let A € B(H) be any operator. Then, WE)(A) > |cal.

Proof. By an argument of compactness, there exists o € Wy(A) such that |o| =
wz) (A). Hence, there is a sequence of unit vectors x, € S satisfying

o = lim{Ax,,x,) and lim|Ax,| = ||A].
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Therefore, we have

1A =call® > (A = ca)xal|* = [|Axa]* + [ca |* — 2Re (€ (A%, x2))
|

A% 12 + leal® = 2eal [(Axn, xa))]

VoWV

It results that
2 2 2 / 2 ! !
1A = call> = [|A]* + leal® = 2[eal wo (A) = [|A[J* = (wo(A))* + (wo(A) — [cal).

Thus,
1A = call® + (w(A))* = |A]]* + (wo(A) — [eal)*.

We see that
2 4 2
1A= call® + (wo(4))* = [|A]

and from inequality (3.3), we get wz) (A) > |eal. O

GEOMETRIC INTERPRETATION 3.6. Let A € (%) be a hyponormal operator.
Assume that ¢4 # 0. From Theorem 3.5, Wy(A) is outside of the open disk D(O,|cal).
Let oo € Wy(A) such that |of| = wz) (A) (we may have o = c4), then we have two cases.
First case: o € 0,(A). It is clear that Wy(A) = 0,(A) = {a}. For example, A is a
normal operator acting on the complex Hilbert space # = C? with ¢(A) = {a,B}
and |B| <o (Jof = [|A]).

Second case: |o| < ||A||. By Theorem 3.3 and the fact that || = d(0,Wy(A)), there
is 1,4y € 0,(A) with A; # A, such that « is the midpoint of [A;,4;]; the closed

M+
2

line segment connecting A; with A (o = ). Being convex, Wy(A) must be

contained in the gray area of D(0,||A||) (see Figure 1 below, for more details).

D(0,|All)

Figure 1: Geometric place of the maximal numerical range
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Now, we examine the case where ¢4 =0 (i.e., 0 € Wy(A)). According to Theo-
rem 3.3, the set 0,,(A), unlike the first case (see Figure 1 above), cannot be contained
in a portion of the circle C(0,||A|]) smaller than a semicircle (equivalently, Wy(A)
cannot be contained in a portion of the disk D(O,||A|) smaller than a half-disk or
Wo(A) = [-A,A], where A € C). However, if the operator A is not hyponormal, this
result may fail. Indeed, let us give an example. Note that we obtain the desired result
from the example in [10] by a simple and short method.

EXAMPLE 3.7. Let B be the operator on the complex Hilbert space % = C>

0 1 O
represented by B= |0 0 0. Then ||B]| =1 and o(B) = {0,1} (so, B is nor-
0 0 1

maloid). Let (e1,ez,e3) be the standard orthonormal basis of 7, then Be, = e, so
|Bez|| = 1, hence e is a maximal vector and therefore 0 = (Bep,ep) € Wo(B). We
see that 0 ¢ co(0,(B)) = {1} (consequently, equality (3.1) does not hold for normaloid
operators, in general). It is clear that B is not hyponormal and ¢ = 0, however c,(B)
is just a singleton.
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