ON THE MAXIMAL NUMERICAL RANGE OF A HYPONORMAL OPERATOR

ABDERRAHIM BAGHDAD* AND MOHAMED CHRAIBI KAADOUD

Dedicated to Professor M. S. Moslehian

(Communicated by S. McCullough)

Abstract. Let A be a bounded linear operator acting on a complex Hilbert space. Let $\sigma(A)$ and $W_0(A)$ denote the spectrum and the maximal numerical range of A, respectively. In [10], it was shown that if A is a subnormal operator, then

$$W_0(A) = co(\{\lambda \in \sigma(A) : |\lambda| = ||A||\}),$$

where co(.) stands for the convex hull of the corresponding set. We extend this result to hyponormal operators. We give a geometric interpretation of the obtained result and deduce a necessary and sufficient condition to have $0 \in W_0(A)$ for a hyponormal operator A. Some properties of normaloid operators are also given.

1. Introduction

First, let us set some notations and recall some results from the literature. Let *L* be a subset of the complex plane \mathbb{C} . As usual, the symbols \overline{L} , ∂L and co(L) stand for the closure, the boundary and the convex hull of *L*, respectively. Let $\mathscr{B}(\mathscr{H})$ denote the algebra of all bounded linear operators acting on a complex Hilbert space \mathscr{H} . For $A \in \mathscr{B}(\mathscr{H})$, the numerical range of *A* is the image of the unit sphere of \mathscr{H} under the quadratic form $x \to \langle Ax, x \rangle$ associated with the operator. More precisely,

$$W(A) = \{ \langle Ax, x \rangle : x \in \mathcal{H}, \|x\| = 1 \}.$$

Thus the numerical range of an operator, like the spectrum, is a subset of the complex plane. It is a celebrated result due to Toeplitz[13] and Hausdorff [8] that W(A) is a bounded convex set in the complex plane, for more detail, see [6]. It is closed if $dim(\mathcal{H}) < \infty$, but it is not always closed if $dim(\mathcal{H}) = \infty$.

For $A \in \mathscr{B}(\mathscr{H})$, let $\sigma(A)$, r(A) and w(A) denote the spectrum, the spectral radius and the numerical radius of A, respectively. Recall that they are given by

 $\sigma(A) = \{ \lambda \in \mathbb{C} : A - \lambda I \text{ is not invertible} \},\$

^{*} Corresponding author.

Mathematics subject classification (2010): 47A12, 47A30, 47A63, 47B15, 47B47.

Keywords and phrases: Spectrum, numerical range, maximal numerical range, normal operator, hyponormal operator, normaloid operator.

 $r(A) = \sup\{|\lambda|: \lambda \in \sigma(A)\}$ and $w(A) = \sup\{|z|: z \in W(A)\}.$

It is well known that $\sigma(A)$ is a compact set and $co(\sigma(A)) \subseteq \overline{W(A)}$. For more material about the specral radius, the numerical radius and other information on the basic theory of algebraic numerical range, we mention here the books [1, 2, 5, 6] as standard sources of references.

It is a basic fact that w(.) is a norm on $\mathscr{B}(\mathscr{H})$, which is equivalent to the C^* -norm ||.||. In fact, for any operator $A \in \mathscr{B}(\mathscr{H})$, the following inequalities are well known

$$\frac{1}{2} \|A\| \leqslant w(A) \leqslant \|A\|.$$

An operator $A \in \mathscr{B}(\mathscr{H})$ is called normaloid if w(A) = ||A|| or equivalently r(A) = ||A||, see [5, Theorem 1.3-2]. Familiar examples of normaloid operators are hyponormal (normal and subnormal) operators, see [11, Theorem 1].

There is another set that is close to W(A); that is the maximal numerical range $W_0(A)$ of A. It it was introduced by Stampfli [12] and defined by

$$W_0(A) = \{\lim_n \langle Ax_n, x_n \rangle : x_n \in \mathscr{H}, \ \|x_n\| = 1, \ \lim_n \|Ax_n\| = \|A\|\}.$$

It was shown in [12, Lemma 2] that $W_0(A)$ is nonempty, closed, convex, and contained in the closure of the numerical range; $W_0(A) \subseteq W(A)$. When \mathcal{H} is finite dimensional, $W_0(A)$ corresponds to the numerical range produced by the maximal vectors (vectors x such that ||x|| = 1 and ||Ax|| = ||A||). We also will denote by $\delta_{A,B}$ the generalized derivation induced by $A, B \in \mathcal{B}(\mathcal{H})$ and which is defined as follows

$$\delta_{A,B}: \mathscr{B}(\mathscr{H}) \longrightarrow \mathscr{B}(\mathscr{H}), \ X \longmapsto \delta_{A,B}(X) = (L_A - R_B)X,$$

where L_A , R_B are the left and the right multiplications defined on $\mathscr{B}(\mathscr{H})$ by $L_A(X) = AX$ and $R_B(X) = XB$, respectively. The generalized derivation was studied by many authors; see for instance [3, 12] and the references therein.

It is interesting to know that Stampfli [12] introduced the maximal numerical range (specially) for the purpose of calculating the norm of the generalized derivation. Indeed, he has given the following elegant formula, see [12, Theorem 8]. For any $A, B \in \mathcal{B}(\mathcal{H})$

$$\|\delta_{A,B}\| = \inf_{\lambda \in \mathbb{C}} (\|A - \lambda\| + \|B - \lambda\|).$$

However, the maximal numerical range recently became the interest of several researchers, see for instance [7, 9, 10]. We expect the present work to contribute to shed more light on the maximal numerical range.

Throughout this paper, for any operator $A \in \mathscr{B}(\mathscr{H})$ we denote by $\sigma_n(A)$ the subset of $\sigma(A)$ defined by

$$\sigma_n(A) = \{\lambda \in \sigma(A) : |\lambda| = ||A||\}$$

In Section 2, for any normaloid operator $A \in \mathscr{B}(\mathscr{H})$ and any $\lambda \in \sigma_n(A)$, we show the following:

(1)
$$||A^{k} + \lambda^{k}|| = ||A||^{k} + |\lambda^{k}| = 2 ||A||^{k}$$
 for $k = 1, 2, 3, ...;$

(2) for any nonzero natural number k, the operator $A^k + \lambda^k$ is normaloid;

(3) for any operator $B \in \mathscr{B}(\mathscr{H})$,

$$w'(B) ||A||^k \leq w(BA^k) \text{ for } k = 1, 2, 3, \dots$$

where $w'(B) = \inf\{|z|: z \in W(B)\}$. And A is normaloid if the inequality

 $w'(B) ||A||^l \leq w(BA^l)$

is satisfied for any operator $B \in \mathscr{B}(\mathscr{H})$ and some nonzero natural number l.

Motivated by results of Spitkovsky [10] and basing on the fact that any hyponormal operator *T* has a normal dilation *N* with $\sigma(N) \subseteq \sigma(T)$, see [4, Theorem 3.2], we aim in Section 3 to show that if *A* is a hyponormal operator, then

$$W_0(A) = co(\sigma_n(A)).$$

We give a geometric interpretation of the obtained result and deduce a necessary and sufficient condition to have $0 \in W_0(A)$ for a hyponormal operator *A*.

From now on, $\mathscr{B}(\mathscr{H})$ denotes the algebra of all bounded linear operators acting on a complex Hilbert space \mathscr{H} .

2. Some properties of normaloid operators

Let $A \in \mathscr{B}(\mathscr{H})$ be an arbitrary operator, then $\sigma(A) \subseteq \overline{W(A)}$ and $W_0(A) \subseteq \overline{W(A)}$. But we don't know whether the intersection $\sigma(A) \cap W_0(A)$ is empty or not. However, if *A* is a normaloid operator this intersection is always a nonempty set. Indeed, since *A* is normaloid, then r(A) = ||A|| and, $\sigma(A)$ being a compact set, we can find a scalar $\lambda \in \sigma(A)$ such that $|\lambda| = ||A||$. Then, $\sigma_n(A)$ is a nonempty subset of $\sigma(A)$ if *A* is normaloid. On the other hand, it is shown in [10, Lemma 1] that for any operator $A \in \mathscr{B}(\mathscr{H})$

$$W_0(A) \cap C_A = \sigma_n(A),$$

where $C_A = \{z : |z| = ||A||\}$. Hence, since $W_0(A)$ is convex, $co(\sigma_n(A))$ is always a subset of $W_0(A)$ for any operator $A \in \mathscr{B}(\mathscr{H})$. However, if the operator A is not normaloid, the set $\sigma_n(A)$ is empty. Therefore, we will be interested in this section in the normaloidness case (i.e., $\sigma_n(A) \neq \emptyset$). Recall that if A is normaloid, then for any nonzero natural number k, the operator A^k is normaloid (see [5, Theorem 6.2-1]) and we also have

$$co(\sigma_n(A^k)) \subseteq W_0(A^k).$$
 (2.1)

Recall also that, by the spectral mapping theorem, if $\lambda \in \sigma_n(A)$, then $\lambda^k \in \sigma_n(A^k)$ for any nonzero natural number *k*.

THEOREM 2.1. Let $A \in \mathscr{B}(\mathscr{H})$ be a normaloid operator. Then, for any $\lambda \in \sigma_n(A)$ we have

$$\left\|A^{k} + \lambda^{k}\right\| = \|A\|^{k} + |\lambda^{k}| = 2 \|A\|^{k} \quad (k = 1, 2, ...).$$
(2.2)

Proof. The result is evident if A = 0. Therefore, assume A is a nonzero operator. Let $\lambda \in \sigma_n(A)$ and let k be any nonzero natural number. Since A is normaloid, by Equation (2.1), $\lambda^k \in W_0(A^k)$, so, $\frac{1}{|\lambda^k|}\lambda^k = \frac{1}{||A^k||}\lambda^k \in W_0(\frac{1}{||A^k||}A^k)$. We have $W_0(\frac{1}{|\lambda^k|}\lambda^k) = \{\frac{1}{|\lambda^k|}\lambda^k\}$, then $W_0(\frac{1}{||A^k||}A^k) \cap W_0(\frac{1}{|\lambda^k|}\lambda^k) \neq \emptyset$. From [12, Theorem 7], $\|\delta_{A^k,-\lambda^k}\| = \|A^k\| + |\lambda^k|$. Since A is normaloid, then $\|A^k\| = \|A\|^k$, see [5, Theorem 6.2-1]. On the other hand $\|\delta_{A^k,-\lambda^k}\| = \|L_{A^k+\lambda^k}\| = \|A^k + \lambda^k\|$, we conclude that $\|A^k + \lambda^k\| = 2\|A\|^k$. \Box

REMARK 2.2. Let $A \in \mathscr{B}(\mathscr{H})$. We always have

$$\max_{\lambda\in\sigma(A)}\|A+\lambda\|\leqslant \max_{\lambda\in\sigma(A)}(\|A\|+|\lambda|)\leqslant 2\,\|A\|\,.$$

If *A* is normaloid, for any $\lambda \in \sigma_n(A)$ we have from equation (2.2) $||A + \lambda|| = 2 ||A||$, then we obtain

$$\max_{\lambda \in \sigma(A)} \|A + \lambda\| = 2 \|A\|.$$
(2.3)

This leads us to ask if identity (2.3) holds, is A normaloid? The following corollary answers this question and then gives another characterization of normaloid operators in $\mathscr{B}(\mathscr{H})$.

COROLLARY 2.3. Let $A \in \mathscr{B}(\mathscr{H})$. Then, A is normaloid if and only if

$$\max_{\lambda \in \sigma(A)} \|A + \lambda\| = 2 \|A\|.$$

Proof. The necessity follows from Remark 2.2 so that we only need to prove the sufficiency. Note first that, by an argument of compactness, there exists $\mu \in \sigma(A)$ such that

$$\max_{\lambda \in \sigma(A)} (\|A\| + |\lambda|) = \|A\| + |\mu|.$$

If A is not normaloid, we have $|\mu| < ||A||$ and we obtain

$$\max_{\lambda \in \sigma(A)} \|A + \lambda\| \leq \max_{\lambda \in \sigma(A)} (\|A\| + |\lambda|) = \|A\| + |\mu| < 2 \|A\|.$$

This proves the sufficiency. \Box

THEOREM 2.4. Let $A \in \mathscr{B}(\mathscr{H})$ be a normaloid operator. Then, for any $\lambda \in \sigma_n(A)$ and any nonzero natural number k the operator $A^k + \lambda^k$ is normaloid.

Proof. Let $A \in \mathscr{B}(\mathscr{H})$ be a normaloid operator. Let $\lambda \in \sigma_n(A)$ and let k be any nonzero natural number. We always have

$$w(A^k + \lambda^k) \leq \left\| A^k + \lambda^k \right\| \leq 2 \left\| A \right\|^k.$$

By equation (2.1), $\lambda^k \in W_0(A^k)$ and therefore, $\lim_n \langle A^k x_n, x_n \rangle = \lambda^k$ for some sequence of unit vectors $x_n \in \mathscr{H}$. Then,

$$\lim_{n} \langle (A^{k} + \lambda^{k}) x_{n}, x_{n} \rangle = 2\lambda^{k}.$$

It follows that $2\lambda^k \in \overline{W(A^k + \lambda^k)}$ and hence, $2\|A\|^k = 2|\lambda|^k \leq w(A^k + \lambda^k)$. Consequently $w(A^k + \lambda^k) = \|A^k + \lambda^k\|$. That is just to say that the operator $A^k + \lambda^k$ is normaloid. \Box

The following theorem gives another characterization of normaloid operators in terms of inequality.

THEOREM 2.5. Let $A \in \mathscr{B}(\mathscr{H})$. Then, the following are equivalent statements:

i) A is normaloid;

ii) for any operator $B \in \mathscr{B}(\mathscr{H})$ and nonzero natural number k, we have

$$w'(B) ||A||^k \le w(BA^k);$$
 (2.4)

iii) there is a nonzero natural number 1 such that for any $B \in \mathscr{B}(\mathscr{H})$, we have

$$w'(B) \|A\|^l \leq w(BA^l).$$

$$\begin{aligned} \left| \langle BA^{k}x_{n}, x_{n} \rangle \right| &= \left| \langle B(\lambda^{k}I + (A^{k} - \lambda^{k}I))x_{n}, x_{n} \rangle \right| \geq |\lambda|^{k} \left| \langle Bx_{n}, x_{n} \rangle \right| - \left| \langle B(A^{k}x_{n} - \lambda^{k}x_{n}), x_{n} \rangle \right| \\ &\geq w'(B) \left\| A \right\|^{k} - \left\| B \right\| \left\| A^{k}x_{n} - \lambda^{k}x_{n} \right\|. \end{aligned}$$

Inequality (2.4) follows.

 $ii) \Rightarrow iii$). It is obvious.

 $iii) \Rightarrow i$. Let *l* be a nonzero natural number *l* such that for any $B \in \mathscr{B}(\mathscr{H})$,

$$w'(B) ||A||^l \leq w(BA^l).$$

Take B = I, we get $||A||^l \leq w(A^l) \leq (w(A))^l \leq ||A||^l$. It results that $(w(A))^l = ||A||^l$, that is w(A) = ||A||, and hence A is normaloid. \Box

3. Maximal numerical range of a hyponormal operator

Let $A \in \mathscr{B}(\mathscr{H})$ be an operator. It is shown in [10, Corollary 2] that the following equality

$$W_0(A) = co(\sigma_n(A)) \tag{3.1}$$

holds for subnormal (and then for normal) operators *A*. In this section, we extend this property to hyponormal operators by using the fact that every hyponormal operator *A* has a normal dilation *N* with $\sigma(N) \subseteq \sigma(A)$, see [4, Theorem 3.2]. First, let us recall the definition of the dilation of an operator. Let *A* and *B* be bounded linear operators on the complex Hilbert spaces \mathcal{H} and \mathcal{H} , respectively. *B* is said to be a dilation of *A* (or *A* is dilated to *B*) if *B* is unitarily equivalent to a 2×2 operator matrix of the form $\begin{bmatrix} A & * \\ * & * \end{bmatrix}$. This is equivalent to requiring the existence of an isometry *V* from \mathcal{H} to \mathcal{H} such that $A = V^*BV$. For this end, we need the following auxiliary lemma.

LEMMA 3.1. Let $A \in \mathscr{B}(\mathscr{H})$. If A has a normal dilation N on some complex Hilbert space \mathscr{K} such that $\sigma(N) \subseteq \sigma(A)$, then

$$W_0(A) \subseteq W_0(N).$$

Proof. Since *N* is normal and $\sigma(N) \subseteq \sigma(A)$, then $||N|| = r(N) \leq r(A) \leq ||A||$. Let $\lambda \in W_0(A)$, then there is a sequence of unit vectors $x_n \in \mathcal{H}$ such that

$$\lim_{n} \langle Ax_n, x_n \rangle = \lambda \quad \text{and} \quad \lim_{n} \|Ax_n\| = \|A\|.$$

Let V be an isometry from \mathscr{H} to \mathscr{K} such that $A = V^*NV$ and set $y_n = Vx_n$, so y_n is a unit vector in \mathscr{K} . Therefore, we have

$$\lim_{n} \langle Ny_n, y_n \rangle = \lim_{n} \langle NVx_n, Vx_n \rangle = \lim_{n} \langle V^*NVx_n, x_n \rangle = \lim_{n} \langle Ax_n, x_n \rangle = \lambda$$

Moreover, since

$$||Ax_n|| = ||V^*NVx_n|| \le ||V^*|| \, ||NVx_n|| \le ||V^*|| \, ||N|| \, ||Vx_n|| \le ||N|| \le ||A||$$

we conclude that $\lim_{n} ||NVx_{n}|| = ||N||$; that is, $\lim_{n} ||Ny_{n}|| = ||N||$. It results that $\lambda \in W_{0}(N)$ and consequently, $W_{0}(A) \subseteq W_{0}(N)$ as desired. \Box

REMARK 3.2. In fact, in the previous lemma, we have ||A|| = ||N||. Indeed, since $A = V^*NV$, then $||A|| \le ||V^*|| ||N|| ||V|| = ||N||$.

THEOREM 3.3. Let $A \in \mathscr{B}(\mathscr{H})$ be a hyponormal operator, then

$$W_0(A) = co(\sigma_n(A)).$$

Proof. Let $A \in \mathscr{B}(\mathscr{H})$ be a hyponormal operator. According to [4, Theorem 3.2], *A* has a normal dilation *N* on some complex Hilbert space \mathscr{H} with $\sigma(N) \subseteq \sigma(A)$. From Lemma 3.1 and using [10, Corollary 2]

$$W_0(A) \subseteq W_0(N) = co(\sigma_n(N)) \subseteq co(\sigma_n(A))$$
 (because $||N|| = ||A||$).

Since $co(\sigma_n(A))$ is always a subset of $W_0(A)$, we derive that $W_0(A) = co(\sigma_n(A))$. This completes the proof. \Box

REMARK 3.4. The converse of the previous theorem does not hold in general. Indeed, let *B* the backward shift defined on the Hilbert space ℓ_2 by

$$B(x_1, x_2, x_3, \ldots) = (x_2, x_3, \ldots).$$

It is known that $\sigma(B)$ is the closed unit disk $\overline{\mathbb{D}} = \{\lambda \in \mathbb{C} : |\lambda| \leq 1\}$ and ||B|| = 1. Then $\sigma_n(B) = C(0,1)$; the unit circle, and $W_0(B) \subseteq \overline{\mathbb{D}}$. Since $co(\sigma_n(B)) = \overline{\mathbb{D}}$, we get

$$W_0(B) = co(\sigma_n(B)).$$

However, by taking x = (1, 0, 0, ...), we have

$$\langle (B^*B - BB^*)x, x \rangle = -1 < 0,$$

and so B is not a hyponormal operator.

We end this section by giving a geometric interpretation of Theorem 3.3 and we locate the position of the maximal numerical range $W_0(A)$ in the closed disk $\overline{D}(O, ||A||)$ relatively to the center of mass of a hyponormal operator A. First, let us recall the definition and some properties of the center of mass of an operator A. In [12, Corollary of Theorem 2], it was shown that there exists a unique scalar c_A (called *center of mass* of A) satisfying the following (called *Pythagorean relation*)

$$\|A - c_A\|^2 + |\lambda|^2 \leq \|(A - c_A) + \lambda\|^2, \text{ for all } \lambda \in \mathbb{C}$$
(3.2)

and $0 \in W_0(A)$ if and only if $c_A = 0$. Taking $\lambda = c_A$ in inequality (3.2), we get

$$||A - c_A||^2 + |c_A|^2 \le ||A||^2.$$
(3.3)

We will denote by $w'_0(A)$ the infinimum modulus of $W_0(A)$, that is,

$$w_0'(A) = \inf\{|z|: z \in W_0(A)\}.$$

THEOREM 3.5. Let $A \in \mathscr{B}(\mathscr{H})$ be any operator. Then, $w'_0(A) \ge |c_A|$.

Proof. By an argument of compactness, there exists $\alpha \in W_0(A)$ such that $|\alpha| = w'_0(A)$. Hence, there is a sequence of unit vectors $x_n \in \mathcal{H}$ satisfying

$$\alpha = \lim_{n} \langle Ax_n, x_n \rangle$$
 and $\lim_{n} ||Ax_n|| = ||A||$.

Therefore, we have

$$||A - c_A||^2 \ge ||(A - c_A)x_n||^2 = ||Ax_n||^2 + |c_A|^2 - 2Re(\overline{c_A}\langle Ax_n, x_n\rangle)$$

$$\ge ||Ax_n||^2 + |c_A|^2 - 2|c_A||\langle Ax_n, x_n\rangle||.$$

It results that

$$||A - c_A||^2 \ge ||A||^2 + |c_A|^2 - 2|c_A|w'_0(A) = ||A||^2 - (w'_0(A))^2 + (w'_0(A) - |c_A|)^2.$$

Thus,

$$||A - c_A||^2 + (w'_0(A))^2 \ge ||A||^2 + (w'_0(A) - |c_A|)^2.$$

We see that

$$||A - c_A||^2 + (w'_0(A))^2 \ge ||A||^2$$

and from inequality (3.3), we get $w'_0(A) \ge |c_A|$. \Box

GEOMETRIC INTERPRETATION 3.6. Let $A \in \mathscr{B}(\mathscr{H})$ be a hyponormal operator. Assume that $c_A \neq 0$. From Theorem 3.5, $W_0(A)$ is outside of the open disk $D(O, |c_A|)$. Let $\alpha \in W_0(A)$ such that $|\alpha| = w'_0(A)$ (we may have $\alpha = c_A$), then we have two cases. **First case**: $\alpha \in \sigma_n(A)$. It is clear that $W_0(A) = \sigma_n(A) = \{\alpha\}$. For example, A is a normal operator acting on the complex Hilbert space $\mathscr{H} = \mathbb{C}^2$ with $\sigma(A) = \{\alpha, \beta\}$ and $|\beta| < |\alpha| (|\alpha| = ||A||)$.

Second case: $|\alpha| < ||A||$. By Theorem 3.3 and the fact that $|\alpha| = d(0, W_0(A))$, there is $\lambda_1, \lambda_2 \in \sigma_n(A)$ with $\lambda_1 \neq \lambda_2$ such that α is the midpoint of $[\lambda_1, \lambda_2]$; the closed line segment connecting λ_1 with λ_2 ($\alpha = \frac{\lambda_1 + \lambda_2}{2}$). Being convex, $W_0(A)$ must be contained in the gray area of $\overline{D}(O, ||A||)$ (see Figure 1 below, for more details).

Figure 1: Geometric place of the maximal numerical range

Now, we examine the case where $c_A = 0$ (i.e., $0 \in W_0(A)$). According to Theorem 3.3, the set $\sigma_n(A)$, unlike the first case (see Figure 1 above), cannot be contained in a portion of the circle C(0, ||A||) smaller than a semicircle (equivalently, $W_0(A)$ cannot be contained in a portion of the disk $\overline{D}(O, ||A||)$ smaller than a half-disk or $W_0(A) = [-\lambda, \lambda]$, where $\lambda \in \mathbb{C}$). However, if the operator A is not hyponormal, this result may fail. Indeed, let us give an example. Note that we obtain the desired result from the example in [10] by a simple and short method.

EXAMPLE 3.7. Let *B* be the operator on the complex Hilbert space $\mathscr{H} = \mathbb{C}^3$ represented by $B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Then ||B|| = 1 and $\sigma(B) = \{0, 1\}$ (so, *B* is nor-

maloid). Let (e_1, e_2, e_3) be the standard orthonormal basis of \mathscr{H} , then $Be_2 = e_1$, so $||Be_2|| = 1$, hence e_2 is a maximal vector and therefore $0 = \langle Be_2, e_2 \rangle \in W_0(B)$. We see that $0 \notin co(\sigma_n(B)) = \{1\}$ (consequently, equality (3.1) does not hold for normaloid operators, in general). It is clear that *B* is not hyponormal and $c_B = 0$, however $\sigma_n(B)$ is just a singleton.

REFERENCES

- F. F. BONSALL, J. DUNCAN, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Mathematical Society Lecture Note Series 2 Cambridge University Press, London-New York, (1971).
- [2] F. F. BONSALL, J. DUNCAN, *Numerical ranges II*, London Mathematical Society Lecture Notes Series 10 Cambridge University Press, New York-London, (1973).
- [3] L. FIALKOW, A note on the operator $X \longrightarrow AX XB$, Israel. J. Math., 32 (1979), 331–348.
- [4] H. L. GAU, K. Z. WANG AND P. Y. WU, Numerical radii for tensor products of operators, Integral Equations Operator Theory, 78, no. 3, (2014), 375–382.
- [5] K. E. GUSTAFSON, D. K. M. RAO, Numerical range: The Field of Values of Linear Operators and Matrices, New York, NY, USA, (1997).
- [6] P. R. HALMOS, A Hilbert Space Problem Book, Van Nostrand, New York, 1967.
- [7] A. N. HAMED, I. M. SPITKOVSKY, On the maximal numerical range of some matrices, Electronic Journal of Linear Algebra, Volume 34 (2018), 288–303.
- [8] F. HAUSDORFF, Der Wertvorrat einer Bilinearform, Math. Z. 3, (1919), 314–316.
- [9] B. O. OKELLO, N. B. OKELO, O. ONGATI, On Numerical Range of Maximal Jordan Elementary Operator, International Journal of Modern Science and Technology, Vol. 2, No. 10, (2017) 341–344.
- [10] I. M. SPITKOVSKY, A note on the maximal numerical range, Operators and Matrices, to appear.
- [11] J. G. STAMPFLI, Hyponormal operators, Pacific J. Math., 12 (1962), 1453-1458.
- [12] J. G. STAMPFLI, The norm of derivation, Pacific J. Math., 33 (1970), 737–747.
- [13] O. TOEPLITZ, Das algebraische Analogon zu einem Satze von Fejér, Math. Z. 2, no. 1-2, (1918), 187–197.

(Received December 31, 2018)

Abderrahim Baghdad Department of Mathematics, FSSM Cadi Ayyad University Marrakech-Morocco e-mail: bagabd66@gmail.com

Mohamed Chraibi Kaadoud Department of Mathematics, FSSM Cadi Ayyad University Marrakech-Morocco e-mail: chraibik@uca.ac.ma