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Abstract. Let A be a bounded linear operator acting on a complex Hilbert space. Let σ(A) and
W0(A) denote the spectrum and the maximal numerical range of A , respectively. In [10], it was
shown that if A is a subnormal operator, then

W0(A) = co({λ ∈ σ(A) : |λ | = ‖A‖}),
where co(.) stands for the convex hull of the corresponding set. We extend this result to hyponor-
mal operators. We give a geometric interpretation of the obtained result and deduce a necessary
and sufficient condition to have 0 ∈W0(A) for a hyponormal operator A . Some properties of
normaloid operators are also given.

1. Introduction

First, let us set some notations and recall some results from the literature.
Let L be a subset of the complex plane C . As usual, the symbols L , ∂L and co(L)
stand for the closure, the boundary and the convex hull of L , respectively. Let B(H )
denote the algebra of all bounded linear operators acting on a complex Hilbert space
H . For A ∈ B(H ) , the numerical range of A is the image of the unit sphere of H
under the quadratic form x → 〈Ax,x〉 associated with the operator. More precisely,

W(A) = {〈Ax,x〉 : x ∈ H , ‖x‖ = 1}.
Thus the numerical range of an operator, like the spectrum, is a subset of the complex
plane. It is a celebrated result due to Toeplitz[13] and Hausdorff [8] that W(A) is
a bounded convex set in the complex plane, for more detail, see [6]. It is closed if
dim(H ) < ∞ , but it is not always closed if dim(H ) = ∞ .
For A∈B(H ) , let σ(A) , r(A) and w(A) denote the spectrum, the spectral radius and
the numerical radius of A , respectively. Recall that they are given by

σ(A) = {λ ∈ C : A−λ I is not invertible},
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r(A) = sup{|λ | : λ ∈ σ(A)} and w(A) = sup{|z| : z ∈ W(A)}.
It is well known that σ(A) is a compact set and co(σ(A)) ⊆ W(A) . For more material
about the specral radius, the numerical radius and other information on the basic theory
of algebraic numerical range, we mention here the books [1, 2, 5, 6] as standard sources
of references.
It is a basic fact that w(.) is a norm on B(H ) , which is equivalent to the C∗ -norm
‖.‖ . In fact, for any operator A ∈ B(H ) , the following inequalities are well known

1
2
‖A‖ � w(A) � ‖A‖ .

An operator A ∈ B(H ) is called normaloid if w(A) = ‖A‖ or equivalently r(A) =
‖A‖ , see [5, Theorem 1.3-2]. Familiar examples of normaloid operators are hyponormal
(normal and subnormal) operators, see [11, Theorem 1].
There is another set that is close to W (A) ; that is the maximal numerical range W0(A)
of A . It it was introduced by Stampfli [12] and defined by

W0(A) = {lim
n
〈Axn,xn〉 : xn ∈ H , ‖xn‖ = 1, lim

n
‖Axn‖ = ‖A‖}.

It was shown in [12, Lemma 2] that W0(A) is nonempty, closed, convex, and contained
in the closure of the numerical range; W0(A) ⊆ W(A) . When H is finite dimensional,
W0(A) corresponds to the numerical range produced by the maximal vectors (vectors
x such that ‖x‖ = 1 and ‖Ax‖ = ‖A‖). We also will denote by δA,B the generalized
derivation induced by A,B ∈ B(H ) and which is defined as follows

δA,B : B(H ) −→ B(H ), X 	−→ δA,B(X) = (LA −RB)X ,

where LA, RB are the left and the right multiplications defined on B(H ) by LA(X) =
AX and RB(X) = XB , respectively. The generalized derivation was studied by many
authors; see for instance [3, 12] and the references therein.
It is interesting to know that Stampfli [12] introduced the maximal numerical range
(specially) for the purpose of calculating the norm of the generalized derivation. Indeed,
he has given the following elegant formula, see [12, Theorem 8]. For any A,B∈B(H )

‖δA,B‖ = inf
λ∈C

(‖A−λ‖+‖B−λ‖).

However, the maximal numerical range recently became the interest of several re-
searchers, see for instance [7, 9, 10]. We expect the present work to contribute to
shed more light on the maximal numerical range.
Throughout this paper, for any operator A ∈ B(H ) we denote by σn(A) the subset of
σ(A) defined by

σn(A) = {λ ∈ σ(A) : |λ | = ‖A‖}.
In Section 2, for any normaloid operator A∈B(H ) and any λ ∈ σn(A) , we show

the following:

(1)
∥∥Ak + λ k

∥∥ = ‖A‖k +
∣∣λ k

∣∣ = 2‖A‖k for k = 1,2,3, . . . ;
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(2) for any nonzero natural number k , the operator Ak + λ k is normaloid;

(3) for any operator B ∈ B(H ) ,

w
′
(B)‖A‖k � w(BAk) for k = 1,2,3, . . . ,

where w
′
(B) = inf{|z| : z ∈W (B)} . And A is normaloid if the inequality

w
′
(B)‖A‖l � w(BAl)

is satisfied for any operator B ∈ B(H ) and some nonzero natural number l .

Motivated by results of Spitkovsky [10] and basing on the fact that any hyponormal
operator T has a normal dilation N with σ(N) ⊆ σ(T ) , see [4, Theorem 3.2], we aim
in Section 3 to show that if A is a hyponormal operator, then

W0(A) = co(σn(A)).

We give a geometric interpretation of the obtained result and deduce a necessary and
sufficient condition to have 0 ∈W0(A) for a hyponormal operator A .

From now on, B(H ) denotes the algebra of all bounded linear operators acting
on a complex Hilbert space H .

2. Some properties of normaloid operators

Let A ∈ B(H ) be an arbitrary operator, then σ(A) ⊆ W(A) and W0(A) ⊆ W(A) .
But we don’t know whether the intersection σ(A)∩W0(A) is empty or not. However,
if A is a normaloid operator this intersection is always a nonempty set. Indeed, since
A is normaloid, then r(A) = ‖A‖ and, σ(A) being a compact set, we can find a scalar
λ ∈ σ(A) such that |λ | = ‖A‖ . Then, σn(A) is a nonempty subset of σ(A) if A is
normaloid. On the other hand, it is shown in [10, Lemma 1] that for any operator
A ∈ B(H )

W0(A)∩CA = σn(A),

where CA = {z : |z| = ‖A‖} . Hence, since W0(A) is convex, co(σn(A)) is always
a subset of W0(A) for any operator A ∈ B(H ) . However, if the operator A is not
normaloid, the set σn(A) is empty. Therefore, we will be interested in this section in
the normaloidness case (i.e., σn(A) �= /0). Recall that if A is normaloid, then for any
nonzero natural number k , the operator Ak is normaloid (see [5, Theorem 6.2-1]) and
we also have

co(σn(Ak)) ⊆W0(Ak). (2.1)

Recall also that, by the spectral mapping theorem, if λ ∈ σn(A) , then λ k ∈ σn(Ak) for
any nonzero natural number k .

THEOREM 2.1. Let A ∈ B(H ) be a normaloid operator. Then, for any λ ∈
σn(A) we have ∥∥∥Ak + λ k

∥∥∥ = ‖A‖k +
∣∣∣λ k

∣∣∣ = 2‖A‖k (k = 1,2, . . .). (2.2)
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Proof. The result is evident if A = 0. Therefore, assume A is a nonzero opera-
tor. Let λ ∈ σn(A) and let k be any nonzero natural number. Since A is normaloid,

by Equation (2.1), λ k ∈ W0(Ak) , so,
1

|λ k|λ
k =

1
‖Ak‖λ k ∈ W0(

1
‖Ak‖Ak) . We have

W0(
1

|λ k|λ
k) = { 1

|λ k|λ
k} , then W0(

1
‖Ak‖Ak)∩W0(

1
|λ k|λ

k) �= /0 . From [12, Theorem

7],
∥∥∥δAk,−λ k

∥∥∥ =
∥∥Ak

∥∥+
∣∣λ k

∣∣ . Since A is normaloid, then
∥∥Ak

∥∥ = ‖A‖k , see [5, Theo-

rem 6.2-1]. On the other hand
∥∥∥δAk,−λ k

∥∥∥ =
∥∥LAk+λ k

∥∥ =
∥∥Ak + λ k

∥∥ , we conclude that∥∥Ak + λ k
∥∥ = 2‖A‖k . �

REMARK 2.2. Let A ∈ B(H ) . We always have

max
λ∈σ(A)

‖A+ λ‖� max
λ∈σ(A)

(‖A‖+ |λ |) � 2‖A‖ .

If A is normaloid, for any λ ∈ σn(A) we have from equation (2.2) ‖A+ λ‖ = 2‖A‖ ,
then we obtain

max
λ∈σ(A)

‖A+ λ‖= 2‖A‖ . (2.3)

This leads us to ask if identity (2.3) holds, is A normaloid? The following corollary
answers this question and then gives another characterization of normaloid operators in
B(H ) .

COROLLARY 2.3. Let A ∈ B(H ) . Then, A is normaloid if and only if

max
λ∈σ(A)

‖A+ λ‖= 2‖A‖ .

Proof. The necessity follows from Remark 2.2 so that we only need to prove the
sufficiency. Note first that, by an argument of compactness, there exists μ ∈ σ(A) such
that

max
λ∈σ(A)

(‖A‖+ |λ |) = ‖A‖+ |μ | .

If A is not normaloid, we have |μ | < ‖A‖ and we obtain

max
λ∈σ(A)

‖A+ λ‖� max
λ∈σ(A)

(‖A‖+ |λ |) = ‖A‖+ |μ | < 2‖A‖ .

This proves the sufficiency. �

THEOREM 2.4. Let A ∈ B(H ) be a normaloid operator. Then, for any λ ∈
σn(A) and any nonzero natural number k the operator Ak + λ k is normaloid.

Proof. Let A ∈ B(H ) be a normaloid operator. Let λ ∈ σn(A) and let k be any
nonzero natural number. We always have

w(Ak + λ k) �
∥∥∥Ak + λ k

∥∥∥ � 2‖A‖k .
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By equation (2.1), λ k ∈W0(Ak) and therefore, lim
n
〈Akxn,xn〉 = λ k for some sequence

of unit vectors xn ∈ H . Then,

lim
n
〈(Ak + λ k)xn,xn〉 = 2λ k.

It follows that 2λ k ∈ W (Ak + λ k) and hence, 2‖A‖k = 2 |λ |k � w(Ak + λ k) . Con-
sequently w(Ak + λ k) =

∥∥Ak + λ k
∥∥ . That is just to say that the operator Ak + λ k is

normaloid. �

The following theorem gives another characterization of normaloid operators in terms
of inequality.

THEOREM 2.5. Let A ∈ B(H ) . Then, the following are equivalent statements:

i) A is normaloid;

ii) for any operator B ∈ B(H ) and nonzero natural number k , we have

w
′
(B)‖A‖k � w(BAk); (2.4)

iii) there is a nonzero natural number l such that for any B ∈ B(H ) , we have

w
′
(B)‖A‖l � w(BAl).

Proof. i) ⇒ ii) . Assume that A is normaloid and let k be a nonzero natural num-
ber. Since the operator Ak is normaloid, then there is λ with

∣∣λ k
∣∣ =

∥∥Ak
∥∥ = ‖A‖k and

λ k ∈σapp(Ak) . Let (xn) be a sequence of unit vectors such that lim
n

∥∥∥Akxn −λ kxn

∥∥∥ = 0.

For any B ∈ H

∣∣∣〈BAkxn,xn〉
∣∣∣ =

∣∣∣〈B(λ kI+(Ak−λ kI))xn,xn〉
∣∣∣ � |λ |k |〈Bxn,xn〉|−

∣∣∣〈B(Akxn−λ kxn),xn〉
∣∣∣

� w
′
(B)‖A‖k −‖B‖

∥∥∥Akxn−λ kxn

∥∥∥ .

Inequality (2.4) follows.
ii) ⇒ iii) . It is obvious.
iii) ⇒ i) . Let l be a nonzero natural number l such that for any B ∈ B(H ) ,

w
′
(B)‖A‖l � w(BAl).

Take B = I , we get ‖A‖l � w(Al) � (w(A))l � ‖A‖l . It results that (w(A))l = ‖A‖l ,
that is w(A) = ‖A‖ , and hence A is normaloid. �
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3. Maximal numerical range of a hyponormal operator

Let A ∈ B(H ) be an operator. It is shown in [10, Corollary 2] that the following
equality

W0(A) = co(σn(A)) (3.1)

holds for subnormal (and then for normal) operators A . In this section, we extend this
property to hyponormal operators by using the fact that every hyponormal operator A
has a normal dilation N with σ(N) ⊆ σ(A) , see [4, Theorem 3.2]. First, let us recall
the definition of the dilation of an operator. Let A and B be bounded linear operators
on the complex Hilbert spaces H and K , respectively. B is said to be a dilation of A
(or A is dilated to B) if B is unitarily equivalent to a 2×2 operator matrix of the form[
A ∗
∗ ∗

]
. This is equivalent to requiring the existence of an isometry V from H to

K such that A = V ∗BV . For this end, we need the following auxiliary lemma.

LEMMA 3.1. Let A ∈ B(H ) . If A has a normal dilation N on some complex
Hilbert space K such that σ(N) ⊆ σ(A) , then

W0(A) ⊆W0(N).

Proof. Since N is normal and σ(N) ⊆ σ(A) , then ‖N‖ = r(N) � r(A) � ‖A‖ .
Let λ ∈W0(A) , then there is a sequence of unit vectors xn ∈ H such that

lim
n
〈Axn,xn〉 = λ and lim

n
‖Axn‖ = ‖A‖ .

Let V be an isometry from H to K such that A = V ∗NV and set yn = Vxn , so yn is
a unit vector in K . Therefore, we have

lim
n
〈Nyn,yn〉 = lim

n
〈NVxn,Vxn〉 = lim

n
〈V ∗NVxn,xn〉 = lim

n
〈Axn,xn〉 = λ .

Moreover, since

‖Axn‖ = ‖V ∗NVxn‖ � ‖V ∗‖‖NVxn‖ � ‖V ∗‖‖N‖‖Vxn‖ � ‖N‖ � ‖A‖ ,

we conclude that lim
n
‖NVxn‖ = ‖N‖ ; that is, lim

n
‖Nyn‖ = ‖N‖ . It results that λ ∈

W0(N) and consequently, W0(A) ⊆W0(N) as desired. �

REMARK 3.2. In fact, in the previous lemma, we have ‖A‖= ‖N‖ . Indeed, since
A = V ∗NV , then ‖A‖ � ‖V ∗‖‖N‖‖V‖ = ‖N‖ .

THEOREM 3.3. Let A ∈ B(H ) be a hyponormal operator, then

W0(A) = co(σn(A)).
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Proof. Let A∈B(H ) be a hyponormal operator. According to [4, Theorem 3.2],
A has a normal dilation N on some complex Hilbert space K with σ(N) ⊆ σ(A) .
From Lemma 3.1 and using [10, Corollary 2]

W0(A) ⊆W0(N) = co(σn(N)) ⊆ co(σn(A)) (because ‖N‖ = ‖A‖).
Since co(σn(A)) is always a subset of W0(A) , we derive that W0(A) = co(σn(A)) . This
completes the proof. �

REMARK 3.4. The converse of the previous theorem does not hold in general.
Indeed, let B the backward shift defined on the Hilbert space �2 by

B(x1,x2,x3, . . .) = (x2,x3, . . .).

It is known that σ(B) is the closed unit disk D = {λ ∈ C : |λ | � 1} and ‖B‖ = 1.
Then σn(B) = C(0,1) ; the unit circle, and W0(B) ⊆ D . Since co(σn(B)) = D , we get

W0(B) = co(σn(B)).

However, by taking x = (1,0,0, . . .) , we have

〈(B∗B−BB∗)x,x〉 = −1 < 0,

and so B is not a hyponormal operator.

We end this section by giving a geometric interpretation of Theorem 3.3 and we lo-
cate the position of the maximal numerical range W0(A) in the closed disk D(O,‖A‖)
relatively to the center of mass of a hyponormal operator A . First, let us recall the defi-
nition and some properties of the center of mass of an operator A . In [12, Corollary of
Theorem 2], it was shown that there exists a unique scalar cA (called center of mass of
A) satisfying the following (called Pythagorean relation)

‖A− cA‖2 + |λ |2 � ‖(A− cA)+ λ‖2 , for all λ ∈ C (3.2)

and 0 ∈W0(A) if and only if cA = 0. Taking λ = cA in inequality (3.2), we get

‖A− cA‖2 + |cA|2 � ‖A‖2 . (3.3)

We will denote by w
′
0(A) the infinimum modulus of W0(A) , that is,

w
′
0(A) = inf{|z| : z ∈W0(A)}.

THEOREM 3.5. Let A ∈ B(H ) be any operator. Then, w
′
0(A) � |cA| .

Proof. By an argument of compactness, there exists α ∈W0(A) such that |α| =
w

′
0(A) . Hence, there is a sequence of unit vectors xn ∈ H satisfying

α = lim
n
〈Axn,xn〉 and lim

n
‖Axn‖ = ‖A‖ .
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Therefore, we have

‖A− cA‖2 � ‖(A− cA)xn‖2 = ‖Axn‖2 + |cA|2−2Re(cA〈Axn,xn〉)
� ‖Axn‖2 + |cA|2 −2 |cA| |〈Axn,xn〉)| .

It results that

‖A− cA‖2 � ‖A‖2 + |cA|2 −2 |cA|w′
0(A) = ‖A‖2− (w

′
0(A))2 +(w

′
0(A)−|cA|)2.

Thus,
‖A− cA‖2 +(w

′
0(A))2 � ‖A‖2 +(w

′
0(A)−|cA|)2.

We see that
‖A− cA‖2 +(w

′
0(A))2 � ‖A‖2

and from inequality (3.3), we get w
′
0(A) � |cA| . �

GEOMETRIC INTERPRETATION 3.6. Let A ∈ B(H ) be a hyponormal operator.
Assume that cA �= 0. From Theorem 3.5, W0(A) is outside of the open disk D(O, |cA|) .
Let α ∈W0(A) such that |α|= w

′
0(A) (we may have α = cA) , then we have two cases.

First case: α ∈ σn(A) . It is clear that W0(A) = σn(A) = {α} . For example, A is a
normal operator acting on the complex Hilbert space H = C2 with σ(A) = {α,β}
and |β | < |α| ( |α| = ‖A‖ ).
Second case: |α| < ‖A‖ . By Theorem 3.3 and the fact that |α| = d(0,W0(A)) , there
is λ1,λ2 ∈ σn(A) with λ1 �= λ2 such that α is the midpoint of [λ1,λ2] ; the closed

line segment connecting λ1 with λ2 (α =
λ1 + λ2

2
). Being convex, W0(A) must be

contained in the gray area of D(O,‖A‖) (see Figure 1 below, for more details).

Figure 1: Geometric place of the maximal numerical range
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Now, we examine the case where cA = 0 (i.e., 0 ∈W0(A)). According to Theo-
rem 3.3, the set σn(A) , unlike the first case (see Figure 1 above), cannot be contained
in a portion of the circle C(0,‖A‖) smaller than a semicircle (equivalently, W0(A)
cannot be contained in a portion of the disk D(O,‖A‖) smaller than a half-disk or
W0(A) = [−λ ,λ ] , where λ ∈ C). However, if the operator A is not hyponormal, this
result may fail. Indeed, let us give an example. Note that we obtain the desired result
from the example in [10] by a simple and short method.

EXAMPLE 3.7. Let B be the operator on the complex Hilbert space H = C3

represented by B =

⎡
⎣0 1 0

0 0 0
0 0 1

⎤
⎦ . Then ‖B‖ = 1 and σ(B) = {0,1} (so, B is nor-

maloid). Let (e1,e2,e3) be the standard orthonormal basis of H , then Be2 = e1 , so
‖Be2‖ = 1, hence e2 is a maximal vector and therefore 0 = 〈Be2,e2〉 ∈ W0(B) . We
see that 0 /∈ co(σn(B)) = {1} (consequently, equality (3.1) does not hold for normaloid
operators, in general). It is clear that B is not hyponormal and cB = 0, however σn(B)
is just a singleton.
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