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Abstract. Let M2 be the algebra of 2×2 complex matrices. For ε > 0 , complete descriptions
are given of the maps of M2 leaving invariant the ε -pseudo spectrum of A ∗B , where A ∗B
stands either for the Jordan semi-triple product ABA or the skew product AB∗ on matrices.

1. Introduction

Throughout this paper, H will denote a Hilbert space over the complex field C

and L (H ) will denote the algebra of all bounded linear operators on H with identity
operator I . For T ∈ L (H ) we write T ∗ for its adjoint, σ(T ) for its spectrum, and
‖T‖ the (spectral) norm of T . For ε > 0, the ε−pseudo spectrum of T , σε (T ) , is
defined by

σε(T ) :=
⋃

E∈L (H ),‖E‖<ε
σ(T +E),

and coincides with the set

{z ∈ C : ‖(z−A)−1‖ > ε−1}

with the convention that ‖(z−A)−1‖ = ∞ if z ∈ σ(T ) . Unlike the spectrum, which
is a purely algebraic concept, the ε−pseudo spectrum depends on the norm. The
ε−pseudo spectral radius of T , rε(T ) , is given by

rε (T ) := sup{|z| : z ∈ σε(T )}.

Pseudo spectra is a useful tool for analyzing operators, furnishing a lot of informa-
tion about the algebraic and geometric properties of operators and matrices. They play
a very natural role in numerical computations, especially in those involving spectral
perturbations. The monograph [20] gives an extensive account of the pseudo spectra,
as well as investigations and applications in numerous fields.
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General preserver problems with respect to various algebraic operations on Mn ,
the algebra of n×n complex matrices, attracted a lot of attention of researchers in the
fields; see for instance [7] where Chan et al. treated the preservers of zero product of
matrices, Dobovišek et al. [14] concerned with the preservers of zero Jordan semi-triple
product, Šemrl [19] studied non-linear commutativity preserving maps on matrices, and
Hou et al. [16] determined the structure of mappings on Mn that preserve zero skew
semi-triple product of matrices. On the subject focused on the structures of nonlinear
transformations on Mn that respect the pseudo spectra of certain algebraic operations,
we mention: [12] where the authors studied mappings on Mn that preserve the pseudo
spectra of matrix Lie products, [2] concerned with the preservers of the pseudo spectra
of the usual matrix products, and [3] general preserver problems that to do with pre-
servers of pseudo spectra of matrix Jordan triple products are considered. It should be
pointed out that the results of the all above cited papers hold for n � 3, and no details
were given for n = 2. In this paper we consider the preservers of pseudo spectra of
matrix products where n = 2, and, in particular, we complement [3, Theorem 4]. Con-
trary to what could be expected, the techniques used here do not allow us to include the
special case of n � 3 as a consequence; which deserve their own independent study. In
the next section, we study the pseudo spectra preservers of matrix Jordan semi-triple
products. While the last section is devoted to the preservers of pseudo spectra of matrix
skew products.

For other preserver problems on different types of products on matrices and oper-
ators, one may see [1, 4, 5, 6, 8, 9, 10, 11, 13, 15, 17, 18, 21] and their references.

2. Pseudo spectra preservers of matrix Jordan semi-triple products

We first fix some notation. The inner product on H will be denoted by 〈., .〉 . For
x, f ∈ H , as usual we denote by x⊗ f the rank at most one operator on H given by
z �→ 〈z, f 〉x , and all at most rank one operators in L (H ) can written into this form.
For an operator T ∈ L (H ) we will denote by Ttr the transpose of T relative to an
arbitrary but fixed orthogonal basis of H . For a subset σ of C we will denote by σ
the complex conjugation set of σ , and for ε > 0 and a ∈ C we will denote by D(a,ε)
the open disc of C centered at a and of radius ε .

Before stating the main results of this section, we collect some lemmas needed
in what follows. The first one summarizes some properties of the pseudo spectrum;
see [20].

LEMMA 1. For ε > 0 and T ∈ L (H ) , the following statements hold.

(i) σ(T )+D(0,ε)⊆ σε(T ) .

(ii) If T is normal, then σε (T ) = σ(T )+D(0,ε) .

(iii) σε(Ttr) = σε (T ) , σε (T ∗) = σε(T ) and σε (UTU∗) = σε(T ) for every unitary
operator U ∈ L (H ) .
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The second lemma, quoted from [11], identifies the ε−pseudo spectra of some
special operators.

LEMMA 2. For ε > 0 and T ∈ L (H ) , the following statements hold.

(i) Let x, f ∈ H be arbitrary. Then

rε(x⊗ f ) =
1
2
(
√
|〈x, f 〉|2 +4ε2 +4ε‖x‖‖ f‖+ |〈x, f 〉|).

Furthermore, 〈x, f 〉 = 0 if and only if σε(x⊗ f ) = D(0,
√

ε2 +‖x‖‖ f‖ε).

(ii) T = aI for some scalar a ∈ C if and only if σε(T ) = D(a,ε) .

(iii) There exists a nontrivial projection P such that T = aP for some nonzero scalar
a ∈ C if and only if σε(aP) = D(0,ε)∪D(a,ε) .

(iv) T is self-adjoint if and only if σε(T ) ⊆ {z ∈ C : |Imz| < ε} .

The next lemma is quoted from [2].

LEMMA 3. Let ε > 0 , T ∈ L (H ) and u,v ∈ H . If rε(u⊗ f ) = rε(v⊗ f ) for
every unit vector f ∈ H , then u and v are linearly dependent.

Let us review some more notation that we will need in the sequel. We will denote
by (ei)1�i�2 the canonical basis of C2 and by (Ei j)1�i, j�2 the standard basis of M2 ,
i.e., Ei j = ei ⊗ e j for all 1 � i, j � 2.

We now have collected all the necessary ingredients and are therefore in a posi-
tion to state and prove the main result of this section. The following theorem com-
plements [3, Theorem 4] and characterizes nonlinear maps on M2 that preserve the
pseudo spectrum of Jordan semi-triple product of matrices.

THEOREM 1. Let ε > 0 . A map Φ : M2 → M2 satisfies

σε(Φ(A)Φ(B)Φ(A)) = σε(ABA) (A,B ∈ M2) (1)

if and only if there exist a scalar α ∈ C with α3 = 1 and a unitary matrix U ∈ M2

such that Φ has the form

Φ : A �→ αUAU∗ or Φ : A �→ αUAtrU∗,

where Atr denotes the transpose of A.

Proof. Checking the ‘if’ part is straightforward, so we will only deal with the
‘only if’ part. So assume that Φ satisfices (1). We divide the proof of it into several
steps.
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STEP 1. For every unit vector x ∈ C2 , there exist a scalar αx ∈ C with α3
x = 1

and a unit vector yx ∈ C2 such that

Φ(x⊗ x) = αxyx ⊗ yx. (2)

Let x ∈ C2 be a unit vector. By the third statement of Lemma 2, we have

D(0,ε)∪D(1,ε) = σε((x⊗ x)3) = σε(Φ(x⊗ x)3),

implying that Φ(x⊗ x)3 is a non trivial orthogonal projection. Observe that Φ(x⊗ x)3

is not invertible, and so Φ(x⊗ x)3 is a rank one orthogonal projection and Φ(x⊗ x)3 =
z⊗z for some unit vector z∈ C2 . Using the Shur decomposition, one can see that there

exist T =
(

a b
0 c

)
∈ M2 and a unitary matrix V ∈ M2 such that Φ(x⊗ x) = VTV ∗ .

Thus, {
a3,c3}= σ(Φ(x⊗ x))3 = σ(Φ(x⊗ x)3) = σ(z⊗ z) = {0,1}

and either (a3 = 1 and c = 0) or (a = 0 and c3 = 1). In the first case, we have

z⊗ z = Φ(x⊗ x)3 = V

(
1 ba2

0 0

)
V ∗;

which implies that ba2 = 0 and b = 0. Similarly, in the case when a = 0 and c3 = 1,
we have b = 0 too, and consequently either

Φ(x⊗ x) = aVE11V
∗ = aV (e1 ⊗ e1)V ∗ = aV (e1)⊗V(e1),

or
Φ(x⊗ x) = cVE22V

∗ = aV (e2 ⊗ e2)V ∗ = cV (e2)⊗V(e2).

This together with the fact that the vectors V (e1) and V (e2) are unit vectors yields the
desired conclusion in the step.

As the matrices E11 and E22 are unitary similar, the proof of the above step en-
sures that there is a unitary matrix V ∈ M2 and α ∈ C with α3 = 1 such Φ(E11) =
αVE11V ∗ . Set

Ψ(A) =
1
α

V ∗Φ(A)V

for every A ∈ M2 , and note that, by Lemma 1, the map Ψ preserves the pseudo spec-
trum of Jordan semi-triple product of matrices and satisfies (2) and Ψ(E11) = E11 .

STEP 2. Ψ(I) = I and Ψ(E22) = E22 .

Write Ψ(I) =
(

a b
c d

)
, and note that

D(0,ε)∪D(1,ε) = σε(E11IE11) = σε(Ψ(E11)Ψ(I)Ψ(E11)) = σε(E11Ψ(I)E11)
= σε(aE11) = D(0,ε)∪D(a,ε),
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which implies that a = 1. On the other hand, we have

D(0,ε)∪D(1,ε) = σε(IE11I) = σε(Ψ(I)E11Ψ(I));

which proves that Ψ(I)E11Ψ(I) =
(

1 b
c bc

)
is a non trivial orthogonal projection. Con-

sequently, c = b and

(
1 b
b |b|2

)2

=
(

1 b
b |b|2

)
; which shows that b = c = 0 and Ψ(I) =(

1 0
0 d

)
. Furthermore, by the second statement of Lemma 2 together with the fact that

σε(Ψ(I)3) = σε(I3) = D(1,ε) , one gets d3 = 1.
Now, write Ψ(E22) = γz⊗z for some unit vector z = (z1,z2)∈C2 and some scalar

γ ∈ C with γ3 = 1. We have

D(0,ε) = σε(E11E22E11) = σε(Ψ(E11)Ψ(E22)Ψ(E11)) = σε (E11Ψ(E22)E11)

= σε(γ |z1|2 E11),

implying that γ |z1|2 E11 = 0; which shows that z1 = 0, |z2| = 1 and

Ψ(E22) = γE22.

We assert that γ = 1. To do that, observe firstly that γ = d is a consequence of the
following equality

D(0,ε)∪D(1,ε) = σε(E22IE22) = σε(Ψ(E22)Ψ(I)Ψ(E22)) = σε(γ2dE22)
= D(0,ε)∪D(γ2d,ε),

since γ3 = 1. Next, set A :=
(

0 1
1 0

)
∈ M2 , and write Ψ(A) =

(
x y
z t

)
. We have

E11AE11 = 0, and so

D(0,ε) = σε(Ψ(E11)Ψ(A)Ψ(E11) = σε(E11Ψ(A)E11) = σε(xE11);

which yields that x = 0. Similarly, we have t = 0 since E22AE22 = 0, and thus Ψ(A) =(
0 y
z 0

)
. We claim that |y| = 1. Indeed, the fact that

D(1,ε)∪D(−1,ε) = σε(A) = σε(Ψ(I)Ψ(A)Ψ(I)) = σε (γΨ(A))

together with Lemma 1 and the fourth statement of Lemma 2 imply that γΨ(A) is a
self-adjoint matrix and σ(γΨ(A)) = {−1,1} . This proves that γy = γz , z = γ y and

γΨ(A) =
(

0 γy
γ y 0

)
. Thus,

{−1,1} = σ(γΨ(A)) = {−|γy| , |γy|} = {−|y| , |y|} ,

and so |y| = 1 as claimed.
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In order to complete the proof of the step, observe that A2 = I and Ψ(A)Ψ(I)Ψ(A)

=
(

γ 0
0 γ

)
since |y| = 1 and d = γ , and so

D(1,ε) = σε(AIA) = σε(Ψ(A)Ψ(I)Ψ(A)) = σε (
(

γ 0
0 γ

)
);

which implies that γ = 1 as asserted.
Thus, Ψ(E22) = E22 and Ψ(I) = E11 + dE22 = E11 + γE22 = I ; which achieves

the proof of the step.

STEP 3. There exists a unimodular scalar β ∈ C such that either

Ψ(E12) = βE12 and Ψ(E21) = βE21, (3)

or
Ψ(E12) = βE21 and Ψ(E21) = βE12. (4)

Write Ψ(E12) =
(

a b
c d

)
, and note that

D(0,ε) = σε(E11E12E11) = σε(Ψ(E11)Ψ(E12)Ψ(E11)) = σε (aE11),

implying that a = 0. Similarly, we have d = 0 since E22E12E22 = 0. Furthermore,
it follows from the equality D(0,ε) = σε (E3

12) = σε(Ψ(E12)3) that Ψ(E12)3 = 0 and
bc = 0, and thus

Ψ(E12) = bE12 or Ψ(E12) = cE21.

Similar to the above argument, we also get

Ψ(E21) = b′E12 or Ψ(E21) = c′E21

for some scalars b′,c′ ∈ C . We claim that either

Ψ(E12) = bE12 and Ψ(E21) = c′E21 with |b| = ∣∣c′∣∣= 1,

or
Ψ(E12) = cE21 and Ψ(E21) = b′E12 with |c| = ∣∣b′∣∣= 1.

Indeed, if Ψ(E12) = bE12 and Ψ(E21) = b′E12 , we have

σε(E12) = σε(E12E21E12) = σε(Ψ(E12)Ψ(E21)Ψ(E12)) = σε(b2b′E3
12) = D(0,ε).

However this implies that E12 = 0, a contradiction. Thus, Ψ(E12)= bE12 and Ψ(E21)=
c′E21 . Observe that

σε (Ψ(X)) = σε (X),

for every X ∈ M2 since Ψ(I) = I . This together with the first statement of Lemma 2
implies that

D(0,
√

ε2 + ε) = σε(E12) = σε(Ψ(E12)) = σε (bE12) = D(0,
√

ε2 + |b|ε);
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which shows that |b| = 1. Similarly, we have, in this case, |c′| = 1. The remainder
case can be treated analogously, and the claim is proved.

Now, set B =
(

1 1
1 1

)
, and let us prove that Ψ(B) =

(
1 y
y 1

)
for some scalar y ∈ C

with |y| = 1. To do so, write Ψ(B) =
(

x y
z t

)
, and note that E11BE11 = E11 ; which

yields that

D(0,ε)∪D(1,ε) = σε (E11BE11) = σε(Ψ(E11)Ψ(B)Ψ(E11)) = σε(xE11)
= D(0,ε)∪D(x,ε)

and shows that x = 1. Similarly, we get t = 1 since E22BE22 = E22 . As

σε(Ψ(B)) = σε(B) = D(0,ε)∪D(2,ε),

we get from the forth statement of Lemma 2 that Ψ(B) is self-adjoint and σ(Ψ(B)) =
{0,2} , which imply that y = z and |y| = 1, as desired.

In order to complete the proof of the step, assume firstly that Ψ(E12) = bE12 and
Ψ(E21) = c′E21 with |b| = |c′| = 1, and let us prove that c′ = b . We have

BE12B = B and Ψ(B)Ψ(E12)Ψ(B) =
(

by b
by2 by

)
,

and so
D(0,ε)∪D(2,ε) = σε(BE12B) = σε(Ψ(B)Ψ(E12)Ψ(B)). (5)

This implies that

(
by b
by2 by

)
is a self-adjoint matrix having 0 and 2 as eigenvalues.

In particular, we have b = by2 and so b2 = y2 since |b| = |y| = 1; which shows that
b = y or b = −y . The case when b = −y cannot occur since otherwise we have

Ψ(B)Ψ(E12)Ψ(B) =
(−1 b

b −1

)
,

and so from (5) we deduce that

D(0,ε)∪D(2,ε) = σε

((−1 b
b −1

))
= D(0,ε)∪D(−2,ε),

a contradiction. Consequently, b = y . Similarly, we also have y = c′ since

BE21B = B and Ψ(B)Ψ(E21)Ψ(B) =
(

cy cy2

c cy

)
;

which proves the step in this case.
In the remainder case when Ψ(E12) = cE21 and Ψ(E21) = b′E12 , replacing Ψ by

the mapping X �→ Ψ(Atr) , similar to the above argument, we also get c = b′ ; which
proves the step in this case too.
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STEP 4. If Ψ satisfies the the condition (3), then

Ψ
((

1 x
0 0

))
=
(

1 βx
0 0

)
and Ψ

((
1 0
x 0

))
=
(

1 0

βx 0

)
,

for all x ∈ C .

Set S :=
(

1 x
0 0

)
, and write Ψ(S) =

(
a b
c d

)
. From the equalities

E11SE11 = E11, E22SE22 = 0 and E12SE12 = 0

together with (1), we deduce that

a = 1, d = 0 and c = 0,

respectively. To prove the first part of the step it suffices to show that b = βx . To do so,

let B =
(

1 1
1 1

)
, and note that, by the proof of the above step, Ψ(B) =

(
1 β
β 1

)
. It easy

to check that

BSB = (1+ x)B and Ψ(B)Ψ(S)Ψ(B) =

(
1+ βb β +b

β + β
2
b 1+ βb

)
,

and so

σε

((
1+ βb β +b

β + β
2
b 1+ βb

))
= σε ((1+ x)B) = D(0,ε)∪D(2(1+ x),ε);

which implies that

σ

((
1+ βb β +b

β + β
2
b 1+ βb

))
= {0,2(1+ x)} .

On the other hand, straightforward computations give that

σ

((
1+ βb β +b

β + β
2
b 1+ βb

))
=
{

0,2(1+ βb)
}

,

and thus
2(1+ βb) = 2(1+ x).

This implies that b = βx and Ψ
((

1 x
0 0

))
=
(

1 βx
0 0

)
as desired.

To prove the second part of the step, set L :=
(

1 0
x 0

)
, and write Ψ(L) =

(
a′ b′
c′ d′

)
.

Again from the condition (1) together with the fact that

E11LE11 = E11, E22LE22 = 0 and E12LE12 = 0,
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one gets that
a′ = 1, d′ = 0 and b′ = 0.

Similar augment as above together with the fact that

BLB = (1+ x)B, Ψ(B)Ψ(L)Ψ(B) =
(

1+ βc′ β + β 2c′

β + c′ 1+ βc′

)

and

σ
((

1+ βc′ β + β 2c′

β + c′ 1+ βc′

))
=
{
0,2(1+ βc′)

}
allows to get that c′ = βx ; which concludes the proof of the step.

STEP 5. Let A =
(

a11 a12

a21 a22

)
be a matrix in M2 . If Ψ satisfies the condition (3),

then

Ψ(A) =
(

a11 βa12

βa21 a22

)
.

Set Ψ(A) =
(

a′11 a′12
a′21 a′22

)
. We claim that

ai j = 0 ⇐⇒ a′i j = 0,

for all 1 � i, j � 2. Observe that, for any 1 � i, j � 2,

Ei jAEi j =
{

ai jEi j, if i = j,
a jiEi j, if i �= j,

and

Ψ(Ei j)Ψ(A)Ψ(Ei j) =

⎧⎪⎨
⎪⎩

a′i jEi j, if i = j,
β 2a′jiEi j, if i = 1 and j = 2,

β
2
a′jiEi j, if i = 2 and j = 1.

This and the condition (1) yield that

Ψ(Ei j)Ψ(A)Ψ(Ei j) = 0 ⇐⇒ Ei jAEi j = 0;

which implies that a′i j = 0 if and only if ai j = 0 for all 1 � i, j � 2, as claimed.
We assert that if aii �= 0, then a′ii = aii for every 1 � i � 2. Indeed, we have

D(0,ε)∪D(aii,ε) = σε(EiiAEii) = σε(Ψ(Eii)Ψ(A)Ψ(Eii)) = D(0,ε)∪D(a′ii,ε),

and so a′ii = aii as asserted. Thus

Ψ(A) =
(

a11 a′12
a′21 a22

)
.
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Now, let x ∈ C be a nonzero scalar, and set X :=
(

1 x
0 0

)
. By the above step, we have

Ψ(X) =
(

1 βx
0 0

)
. Note that the matrices X and Ψ(X) are nontrivial projections, and

thus from the condition (1) together with the fact that

XAX = (a11 + xa21)X

and
Ψ(X)Ψ(A)Ψ(X) =

(
a11 + βxa′21

)
Ψ(X),

we deduce that
a11 + xa21 = a11 + βxa′21;

which implies that a′21 = βa21 .

Next, let x ∈C be a nonzero scalar, and set Y =
(

1 0
x 0

)
. Again, by the above step,

we have Ψ(Y ) =
(

1 0

βx 0

)
. Since the matrices Y and Ψ(Y ) are nontrivial projections

satisfying
YAY = (a11 + xa12)Y

and
Ψ(Y )Ψ(A)Ψ(Y ) =

(
a11 + βxa′12

)
Ψ(Y ),

similar argument as above allows to get that a′12 = βa12 , and finishes the proof of the
step.

In order to complete the proof of the theorem, set

W :=
(

1 0

0 β

)
,

and note that W is a unitary matrix. Assume firstly that Ψ satisfies the condition (3),
and observe that

Ψ(A) =
(

a11 βa12

βa21 a22

)
= W

(
a11 a12

a21 a22

)
W ∗ = WAW ∗

for every A = (ai j) ∈ M2 . This proves, in this case, by letting U = VW , that Φ has
the form

Φ : A �→ αUAU∗,

as required.
In the remainder case when Ψ satisfies the condition (4), set χ(A) = Ψ(Atr) , for

every A = (ai j) ∈ M2, and note that the mapping χ satisfies the condition (1),

χ(E12) = βE12,χ(E21) = βE21 and χ(X) = X for every X ∈ {I,E11,E22} .
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Similar to the above argument, we get

χ
((

a11 a12

a21 a22

))
=
(

a11 βa12

βa21 a22

)
,

for every A = (ai j) ∈ M2 . Thus

Ψ
((

a11 a12

a21 a22

))
=
(

a11 βa21

βa12 a22

)
=
(

a11 βa12

βa21 a22

)tr

,

and so
Ψ(A) = (WAW ∗)tr =

(
Wtr)∗AtrWtr = W ∗AtrW,

for every A = (ai j) ∈ M2 . This shows, in this case, by letting U = VW ∗ , that Φ has
the form

Φ : A �→ αUAtrU∗,

as asserted. The proof of the theorem is therefore complete. �

3. Pseudo spectra preservers of matrix skew products

In this section, we give the structure of non linear maps on M2 that preserve the
pseudo spectrum of Jordan semi-triple product of matrices.

THEOREM 2. Let ε > 0 . A map Φ : M2 → M2 satisfies

σε (Φ(A)Φ(B)∗) = σε (AB∗) (A,B ∈ M2) (6)

if and only if there exist unitary matrices U,V ∈ M2 such that Φ has the form

Φ : A �→UAV.

Proof. The sufficiency condition can be readily checked. To prove the necessity,
assume that

σε (Φ(A)Φ(B)∗) = σε (AB∗) (A,B ∈ M2).

We divide the proof of it into several claims.

CLAIM 1. There are unitary matrices U,V ∈ M2 such that

Φ(E11) = UE11V.

Proof. For every nonzero vector x ∈ C
2 , we have

D(0,ε)∪D(‖x‖2 ,ε) = σε((x⊗ x)(x⊗ x)∗) = σε (Φ(x⊗ x)Φ(x⊗ x)∗) .

The third statement of Lemma 2 tells us that there is a nontrivial projection P ∈ M2

such that
Φ(x⊗ x)Φ(x⊗ x)∗ = ‖x‖2 P,
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and then
σ (Φ(x⊗ x)Φ(x⊗ x)∗) =

{
0,‖x‖2

}
.

Hence, the singular values of Φ(x⊗x) are 0 and ‖x‖ , and thus there are unitary matri-
ces Ux,Vx ∈ M2 such that

Φ(x⊗ x) = Ux

(‖x‖ 0
0 0

)
Vx = ‖x‖UxE11Vx.

In particular, for x = e1 , there are unitary matrices U1,V1 ∈ M2 such that

Φ(E11) = U1E11V1. �

Set
Ψ(A) = U∗

1 Φ(A)V ∗
1 ,

for every A ∈ M2 , and note that the map Ψ preserves the pseudo spectrum of skew-
product of matrices and satisfies Ψ(E11) = E11 .

CLAIM 2. There is a unimodular scalar λ ∈ C such that

Ψ(I) =
(

1 0
0 λ

)
and Ψ(E22) =

(
0 0
0 λ

)
.

Proof. Write Ψ(I) =
(

a b
c d

)
. We have

σε

((
a c
0 0

))
= σε (Ψ(E11)Ψ(I)∗) = σε(E11I

∗) = D(0,ε)∪D(1,ε).

This proves that

(
a c
0 0

)
is a nontrivial projection and shows that a = 1 and c = 0. On

the other hand, we have

σε

((
1+ |b|2 bd

db |d|2
))

= σε(Ψ(I)Ψ(I)∗) = σε (II∗) = D(1,ε).

Thus, by the second statement of Lemma 2, we have b = 0 and |d| = 1.

Now, write Ψ(E22) =
(

x y
z t

)
, and note that

σε

((
x z
0 0

))
= σε(Ψ(E11)Ψ(E22)∗) = σε (E11E

∗
22) = D(0,ε),

implying that x = z = 0. Furthermore, the fact that

σε

((
0 yd
0 td

))
= σε(Ψ(E22)Ψ(I)∗) = σε(E22I

∗) = D(0,ε)∪D(1,ε)
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proves that the matrix

(
0 yd
0 td

)
is a nontrivial projection, and shows that y = 0 and

t = d since |d| = 1. Thus, by letting λ = d , we get the desired conclusion in the
claim. �

Set
χ(A) := Ψ(I)∗Ψ(A),

for every A ∈ M2 . Observe that Ψ(I) is a unitary matrix, and so the mapping χ
satisfies

σε(χ(A)χ(B)∗) = σε (Ψ(A)Ψ(B)∗) = σε(AB∗) (A,B ∈ M2)

and
χ(A) = A, for all A ∈ {E11,E22, I}.

CLAIM 3. There is a unimodular scalar ξ ∈ C such that

χ(E12) =
(

0 ξ
0 0

)
, χ(E21) =

(
0 0

ξ 0

)
and χ

((
0 1
1 0

))
=
(

0 ξ
ξ 0

)
.

Proof. Write χ(E12) =
(

a b
c d

)
. We have

σε

((
a c
0 0

))
= σε (χ(E11)χ(E12)∗) = σε(E11E

∗
12) = D(0,ε),

implying that a = c = 0. The fact that

σε

((
|b|2 bd
db |d|2

))
= σε(χ(E12)χ(E12)∗) = σε (E12E

∗
12) = D(0,ε)∪D(1,ε)

yields that

σ

((
|b|2 bd
db |d|2

))
= {0,1} ,

and so

|b|2 + |d|2 = Trace

((
|b|2 bd
db |d|2

))
= 1;

where Trace denotes the usual trace function on matrices. Since χ(I) = I , we have
σε(E12) = σε(χ(E12)) , and then, by Lemma 2, we have

√
ε2+ε = rε(E12) = rε(χ(E12)) = rε ((be1+de2)⊗ e2) =

1
2

(√
|d|2+4ε2+4ε+|d|

)
;
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which proves that d = 0. Consequently, |b| = 1 and χ(E12) =
(

0 b
0 0

)
.

Again, since

σε(χ(E22)χ(E21)∗) = σε(E22E
∗
21) = D(0,ε),

we have
E22χ(E21)∗ = χ(E22)χ(E21)∗ = 0;

which implies that χ(E21) = b′E11 + c′E21 for some b′,c′ ∈ C . Similar to the above

argument, we also get b′ = 0, |c′| = 1 and χ(E21) =
(

0 0
c′ 0

)
.

Now, let A :=
(

0 1
1 0

)
and write χ(A) =

(
x y
z t

)
. We have

D(1,ε)∪D(−1,ε) = σε(AI∗) = σε(χ(A)χ(I)∗) = σε (χ(A)),

implying that χ(A) is a self-adjoint matrix and σ(χ(A)) = {−1;1} . Thus,

z = y , x+ t = Trace(χ(A)) = 0 and xt− yz = det(χ(A)) = −1;

which shows that
t = −x and x2 + |y|2 = 1.

Furthermore, we have

σε(E12) = σε(E11A
∗) = σε (χ(E11)χ(A)∗) = σε(xE11 + yE12) = σε(e1 ⊗ (xe1 + ye2)),

and so√
ε2 + ε = rε(E12) = rε (e1⊗ (xe1 + ye2)) =

1
2
(
√
|x|2 +4ε2 +4ε + |x|);

which yields that x = 0, |y| = 1 and χ(A) =
(

0 y
y 0

)
.

To complete the proof of the claim, it suffices to show that b = y = c′ . Observe
that

σε(E11) = σε (E12A
∗) = σε (χ(E12)χ(A)∗) = σε (byE11),

and so by = 1 and b = y . Similarly, we have

σε (E22) = σε(E21A
∗) = σε(χ(E21)χ(A)∗) = σε(c′yE22),

implying that c′y = 1 and y = c′ . Thus, by letting ξ = y , we get the desired conclusion
in the claim. �

Let W =
(

1 0
0 ξ

)
and T =

(
0 1
1 0

)
. Set

ϕ(A) = Wχ(A)W ∗,
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for every A ∈ M2 , and note that W is a unitary matrix and the mapping ϕ satisfies

σε(ϕ(A)ϕ(B)∗) = σε (χ(A)χ(B)∗) = σε(AB∗) (A,B ∈ M2)

and
ϕ(A) = A for every A ∈ {E11,E12,E21,E22, I,T} .

CLAIM 4. ϕ
((

x y
0 0

))
=
(

x y
0 0

)
and ϕ

((
0 0
x y

))
=
(

0 0
x y

)
for all nonzero scalars

x,y ∈ C .

Proof. Let X =
(

x y
0 0

)
, and write ϕ(X) =

(
a b
c d

)
. We have

D(0,ε)∪D(x,ε) = σε

((
x 0
0 0

))
= σε(XE∗

11) = σε(ϕ(X)ϕ(E11)∗) = σε

((
a 0
c 0

))
.

This proves that

(
a 0
c 0

)
= xP for some nontrivial projection P ∈ M2 , and shows that

a = x and c = 0. Since

σε

((|x|2 + |y|2 0
0 0

))
= σε(XX∗) = σε(ϕ(X)ϕ(X)∗) = σε

((
|x|2 + |b|2 bd

db |d|2
))

,

we deduce that

σ
((|x|2 + |y|2 0

0 0

))
= σ(XX∗) = σ(ϕ(X)ϕ(X)∗) = σ

((
|x|2 + |b|2 bd

db |d|2
))

.

In particular, we have

0 = det(XX∗) = det(ϕ(X)ϕ(X)∗) = (|x|2 + |b|2) |d|2 −|bd|2

and
|x|2 + |y|2 = Trace(XX∗) = Trace(ϕ(X)ϕ(X)∗) = |x|2 + |b|2 + |d|2 ;

which yield that d = 0, |y| = |b| . On the other hand, the fact that

σε (yE11) = σε(XE∗
12) = σε (ϕ(X)ϕ(E12)∗) = σε(bE11)

proves that b = y , and consequently ϕ(X) =
(

x y
0 0

)
as required.

Now, let Y =
(

0 0
x y

)
, and write ϕ(Y ) =

(
a′ b′
c′ d′

)
. We have

σε(yE22) = σε(YE∗
22) = σε(ϕ(Y )ϕ(E22)∗) = σε(b′E12 +d′E22),
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implying that b′ = 0 and d′ = y . Using the equality σε(YY ∗) = σε(ϕ(Y )ϕ(Y )∗) , sim-

ilar to the above argument we get that a′ = 0 and |x| = |c′| , and so ϕ(Y ) =
(

0 0
c′ y

)
.

Finally, the fact that

σε(xE22) = σε (YE∗
21) = σεε (ϕ(Y )ϕ(E21)∗) = σε(c′E22)

ensures that x = c′ and ϕ(Y ) =
(

0 0
x y

)
as claimed. �

CLAIM 5. ϕ(X) = X for all X ∈ M2 .

Proof. Let X =
(

x11 x12

x21 x22

)
∈ M2 , and write ϕ(X) =

(
y11 y12

y21 y22

)
. For any 1 �

i, j � 2, we have
σε (Ei jX

∗) = σε (ϕ(Ei j)ϕ(X)∗) ,

implying that
xi j = 0 ⇐⇒ yi j = 0.

Thus, we may assume that xi j �= 0 and yi j �= 0 for all 1 � i, j � 2. Let a,b ∈ C be

nonzero scalars and set Y =
(

a b
0 0

)
∈ M2 . The fact that

YX∗ =
(

ax11 +bx12 ax21 +bx22

0 0

)

and

ϕ(Y )ϕ(X)∗ = Yϕ(X)∗ =
(

ay11 +by12 ay21 +by22
0 0

)

together with the equality (6) imply that

ax21 +bx22 = 0 ⇐⇒ ay21 +by22 = 0.

In particular, the vectors (a,b) and (x21,x22) are orthogonal if and only if the vectors
(a,b) and (y21,y22) are. Consequently, there exists a nonzero α ∈ C such that y21 =

αx21 and y22 = αx22 . Using the matrix Y ′ =
(

0 0
a b

)
instead of Y , similar to the

above argument allows to get that there is a nonzero μ ∈ C such that y11 = βx11 and
y12 = βx12 , and thus

ϕ(X) =
(

βx11 βx12

αx21 αx22

)
. (7)

First consider the case when X is invertible. Then the row vectors (x21,x22) and
(x11,x12) of the matrix X are linearly independent, and so there is (c,d) ∈ C

2 such
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that cx11 + dx12 �= 0 and cx21 + dx22 = 0. Set Z :=
(

c d
0 0

)
, and note that ϕ(Z) = Z

and

σε((cx11 +dx12)E11) = σε(XZ∗) = σε(ϕ(X)ϕ(Z)∗) = σε (β (cx11 +dx12)E11).

This implies that cx11 + dx12 = β (cx11 + dx12) and shows that β = 1. Consider the

column vectors of X and the matrix Z′ :=
(

0 0
c d

)
instead of Z , similar to the above

argument yields that α = 1, and thus ϕ(X) = X for every invertible matrix X ∈ M2 .
Next consider the case when X is of rank one. The equality (7) shows that there

is a map τ : M2 → M2 such that

ϕ(x⊗ f ) = τ(x)⊗ f ,

for every rank one matrix x⊗ f ∈ M2 . This together with the fact that σε(ϕ(X)) =
σε(X) for every X ∈ M2 imply that, for every x ∈ C

2 ,

rε(x⊗ f ) = rε (τ(x)⊗ f ), ∀ f ∈ C
2.

Lemma 3 tells us that, for every x ∈ C2 , the vectors τ(x) and x are linearly dependent,
and so there is a functional � : C2 → C such that τ(x) = �(x)x for every x ∈ C2 .
Furthermore, we have

σε(�(x)x⊗ x) = σε (ϕ(x⊗ x)) = σε(x⊗ x),

for every x ∈ C
2 , implying that �(x) = 1 for every x ∈ C

2 . Therefore ϕ(X) = X for
every rank one matrix X ∈ M2 . Consequently, ϕ(X) = X for all X ∈ M2 and the
claim is proved. �

By letting U = U1ψ(I)W ∗ and V = WV1 , the map Φ has the form

Φ : A �→UAV,

as asserted, and the proof of the theorem is therefore complete. �
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