MEASURES OF NONCOMPACTNESS IN $\bar{N}(p, q)$ SUMMABLE SEQUENCE SPACES

Ishfaq Ahmad Malik* and Tanweer Jalal

(Communicated by T. S. S. R. K. Rao)

Abstract

In this paper, we first define the $\bar{N}(p, q)$ summable sequence spaces and obtain some basic results related to these spaces. The necessary and sufficient conditions for an infinite matrix A to map these spaces into the spaces c_{0}, c and ℓ_{∞} is obtained and Hausdorff measure of noncompactness is then used to obtain the necessary and sufficient conditions for the compactness of linear operators defined on these spaces.

1. Introduction and preliminaries

Measures of non-compactness is very useful tool in Banach spaces. The degree of non-compactness of a set is measured by means of functions called measures of noncompactness. Kuratowski [13] first introduced this concept, after that many measures of non-compactness have been defined and studied as in [2, 3]. Many researcher have used the concept of measure of non-compactness to characterize the linear operator between sequence spaces like $[11,12,14,16,17,18]$.

By ω we denote the set of all complex sequences $x=\left(x_{k}\right)_{k=0}^{\infty}$ and ϕ, c_{0}, c and ℓ_{∞} denotes the sets of all finite sequences, sequences convergent to zero, convergent sequences and bounded sequences respectively. By e we denote the sequence of 1 's, $e=(1,1,1, \ldots)$ and by $e^{(n)}$ the sequence with 1 as only nonzero term at the nth place for each $n \in \mathbb{N}$, where $\mathbb{N}=\{0,1,2, \ldots\}$. Further by $c s$ and ℓ_{1} we denote the convergent and absolutely convergent series respectively. If $x=\left(x_{k}\right)_{k=0}^{\infty} \in \omega$ then $x^{[m]}=\sum_{k=0}^{m} x_{k} e^{(k)}$ denotes the $m-$ th section of x.

If X and Y are Banach Spaces, then by $\mathscr{B}(X, Y)$ we denote the set of all bounded (continuous) linear operators $L: X \rightarrow Y$, which is itself a Banach space with the operator norm $\|L\|=\sup _{x}\left\{\|L(x)\|_{Y}:\|x\|=1\right\}$ for all $L \in \mathscr{B}(X, Y)$. The linear operator $L: X \rightarrow Y$ is said to be compact if its domain is all of X and for every bounded sequence $\left(x_{n}\right) \in X$, the sequence $\left(L\left(x_{n}\right)\right)$ has a subsequence which converges in Y. The operator $L \in \mathscr{B}(X, Y)$ is said to be of finite rank if $\operatorname{dim} R(L)<\infty$, where $R(L)$ denotes the range space of L.

[^0]DEFINITION 1. A sequence space X is a linear subspace of ω, such a space is called a BK space if it is a Banach space with continuous coordinates $P_{n}: X \rightarrow \mathbb{C}(n=0,1,2, \ldots)$, where

$$
P_{n}(x)=x_{n}, x=\left(x_{k}\right)_{k=0}^{\infty} \in X
$$

The BK space X is said to have AK if every $x=\left(x_{k}\right)_{k=0}^{\infty} \in X$ has a unique representation $x=\sum_{k=0}^{\infty} x_{k} e^{(k)}$ [15, Definition 1.18].
The spaces c_{0}, c and ℓ_{∞} are BK spaces with respect to the norm

$$
\|x\|_{\infty}=\sup _{k}\left\{\left|x_{k}\right|: k \in \mathbb{N}\right\} .
$$

Definition 2. The β-dual of a subset X of ω is defined by

$$
X^{\beta}=\left\{a \in \omega: a x=\left(a_{k} x_{k}\right) \in c s, \text { for all } x=\left(x_{k}\right) \in X\right\} .
$$

Let $(X,\|\cdot\|)$ be a Banach space, for any $E \subset X, \bar{E}$ denotes closure of E and $\operatorname{conv}(E)$ denotes the closed convex hull of E. We denote the family of non-empty bounded subsets of X by M_{X} and family of non-empty and relatively compact subsets of X by N_{X}. Let \mathbb{N} denote the set of natural numbers and \mathbb{R} the set of real numbers for $\mathbb{R}_{+}=[0, \infty)$ the axiomatic definition of measures of noncompactness is

DEFINITION 3. [3] The measure of noncompactness on X is a function $\psi: \mathrm{M}_{X} \rightarrow$ \mathbb{R}_{+}the accompanying conditions hold:
(i) The family Ker $\psi=\left\{E \in \mathrm{M}_{X}: \psi(E)=0\right\}$ is non-empty and $\operatorname{Ker} \psi \subset \mathrm{N}_{X}$;
(ii) $E_{1} \subset E_{2} \Rightarrow \psi\left(E_{1}\right) \leqslant \psi\left(E_{2}\right)$;
(iii) $\psi(\bar{E})=\psi(E)$;
(iv) $\psi(\operatorname{conv} E)=\psi(E)$;
(v) $\psi\left[\lambda E_{1}+(1-\lambda) E_{2}\right] \leqslant \lambda \psi\left(E_{1}\right)+(1-\lambda) \psi\left(E_{2}\right)$ for $0 \leqslant \lambda \leqslant 1$;
(vi) Given a sequence $\left(E_{n}\right)$ of closed set of M_{X} such that $E_{n+1} \subset E_{n}$ and $\lim _{n \rightarrow \infty} \psi\left(E_{n}\right)=$ 0 then the intersection set $E_{\infty}=\bigcap_{n=1}^{\infty} E_{n}$ is non-empty.
The measure of noncompactness ψ is said to be regular measure if following additional conditions are satisfied:
(vii) $\psi\left(E_{1} \cup E_{2}\right)=\max \left\{\psi\left(E_{1}\right), \psi\left(E_{2}\right)\right\}$;
(viii) $\psi\left(E_{1}+E_{2}\right) \leqslant \psi\left(E_{1}\right)+\psi\left(E_{2}\right)$;
(ix) $\psi(\lambda E)=|\lambda| \psi(E)$, for $\lambda \in \mathbb{R}$;
(x) $\operatorname{Ker} \psi=N_{X}$.

More on different measures of noncompactness can be found in [1, 2, 3, 12].
In this paper, we first define $\bar{N}(p, q)$ summable sequence spaces as the matrix domains X_{T} of arbitrary triangle \bar{N}_{p}^{q} and obtain some basic results related to these spaces. We then find out the necessary and sufficient condition for matrix transformations to map these spaces into c_{0}, c and ℓ_{∞}. Finally we characterize the classes of compact matrix operators from these spaces into c_{0}, c and ℓ_{∞}.

2. Matrix domains

Given any infinite matrix $A=\left(a_{n k}\right)_{n, k=0}^{\infty}$ of complex numbers, we write A_{n} for the sequence in the nth row of $A, A_{n}=\left(a_{n k}\right)_{k=0}^{\infty}$. The A - transform of any $x=\left(x_{k}\right) \in \omega$ is given by $A x=\left(A_{n}(x)\right)_{n=0}^{\infty}$, where

$$
A_{n}(x)=\sum_{k=0}^{\infty} a_{n k} x_{k}, \quad n \in \mathbb{N}
$$

the series on right must converge for each $n \in \mathbb{N}$.
If X and Y are subsets of ω, we denote by (X, Y), the class of all infinite matrices that map X into Y. So $A \in(X, Y)$ if and only if $A_{n} \in X^{\beta}, n=0,1,2, \ldots$ and $A x \in Y$ for all $x \in X$. The matrix domain of an infinite matrix A in X is defined by

$$
X_{A}=\{x \in \omega: A x \in X\}
$$

The idea of constructing a new sequence space by means of the matrix domain of a particular limitation method has been studied by several authors see $[4,6,7,8,9,10]$.

For any two sequences x and y in ω the product $x y$ is given by $x y=\left(x_{k} y_{k}\right)_{k=0}^{\infty}$ and for any subset X of ω

$$
y^{-1} * X=\{a \in \omega: a y \in X\}
$$

We denote by \mathfrak{U} the set of all sequences $u=\left(u_{k}\right)_{k=0}^{\infty}$ such that $u_{k} \neq 0, \forall k=0,1,2, \ldots$ and for any $u \in \mathfrak{U}, \frac{1}{u}=\left(\frac{1}{u_{k}}\right)_{k=0}^{\infty}$.

THEOREM 1. a) Let X be a BK space with basis $\left(\alpha^{(k)}\right)_{k=0}^{\infty}, u \in \mathfrak{U}$ and $\beta^{(k)}=$ $(1 / u) \alpha^{(k)}, k=0,1, \ldots$. Then $\left(\beta^{(k)}\right)_{k=0}^{\infty}$ is a basis of $Y=u^{-1} * X$.
b) Let $\left(p_{k}\right)_{k=0}^{\infty}$ be a positive sequence, $u \in \mathfrak{U}$ a sequence such that

$$
\left|u_{0}\right| \leqslant\left|u_{1}\right| \leqslant \cdots \quad \text { and }\left|u_{n}\right| \rightarrow \infty \quad(n \rightarrow \infty)
$$

and T a triangle with

$$
t_{n k}=\left\{\begin{array}{cc}
\frac{p_{n-k}}{u_{n}}, & 0 \leqslant k \leqslant n \\
0, & k>n
\end{array}, \quad n=0,1,2, \ldots\right.
$$

Then $\left(c_{0}\right)_{T}$ has AK.

Proof.
a) Proof same as [11, Theorem 2].
b) $\left(c_{0}\right)_{T}$ is a BK space by [22, Theorem 4.3.12], the norm $\|x\|_{\left(c_{0}\right)_{T}}$ on it is defined as

$$
\|x\|_{\left(c_{0}\right)_{T}}=\sup _{n}\left|\frac{1}{u_{n}} \sum_{k=0}^{n} p_{n-k} x_{k}\right| .
$$

Since, $\left|u_{n}\right| \rightarrow \infty(n \rightarrow \infty)$ gives $\phi \subset\left(c_{0}\right)_{T}$. Let $\varepsilon>0$ and $x \in\left(c_{0}\right)_{T}$ then there exists integer $N>0$, such that $\left|T_{n}(x)\right|<\frac{\varepsilon}{2}$ for all $n \geqslant N$. Let $m>N$, then

$$
\begin{equation*}
\left\|x-x^{[m]}\right\|_{\left(c_{0}\right)_{T}}=\sup _{n \geqslant m+1}\left|\frac{1}{u_{n}} \sum_{k=m+1}^{n} p_{n-k} x_{k}\right| \tag{1}
\end{equation*}
$$

Now,

$$
\begin{aligned}
T_{n}(x) & =\frac{1}{u_{n}} \sum_{k=0}^{n} p_{n-k} x_{k}, \quad T_{m}(x)=\frac{1}{u_{n}} \sum_{k=0}^{m} p_{n-k} x_{k} \\
\Rightarrow T_{n}(x)+T_{m}(x) & =\frac{1}{u_{n}}\left[2\left(p_{n} x_{0}+\cdots+p_{n-m} x_{m}\right)+\sum_{k=m+1}^{n} p_{n-k} x_{k}\right] .
\end{aligned}
$$

Then, by (1), we have

$$
\left\|x-x^{[m]}\right\|_{\left(c_{0}\right)_{T}} \leqslant \sup _{n \geqslant m+1}\left(\left|T_{n}(x)\right|+\left|T_{m}(x)\right|\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

Hence, $x=\sum_{k=0}^{\infty} x_{k} \beta^{(k)}$.
This representation is obviously unique.

3. $\bar{N}(p, q)$ summable sequence spaces

Let $\left(p_{k}\right)_{k=0}^{\infty},\left(q_{k}\right)_{k=0}^{\infty}$ be positive sequences in \mathfrak{U} and $\left(R_{n}\right)_{n=0}^{\infty}$ the sequence with $R_{n}=\sum_{j=0}^{n} p_{n-j} q_{j}$. The $\bar{N}(p, q)$ transform of the sequence $\left(x_{k}\right)_{k=0}^{\infty}$ is the sequence $\left(t_{n}\right)_{n=0}^{\infty}$ defined as

$$
t_{n}=\frac{1}{R_{n}} \sum_{j=0}^{n} p_{n-j} q_{j} x_{j}
$$

The matrix \bar{N}_{p}^{q} for this transformation is

$$
\left(\bar{N}_{p}^{q}\right)_{n k}=\left\{\begin{array}{cc}
\frac{p_{n-k} q_{k}}{R_{n}}, & 0 \leqslant k \leqslant n \tag{2}\\
0, & k>n
\end{array} .\right.
$$

We define the spaces $\left(\bar{N}_{p}^{q}\right)_{0},\left(\bar{N}_{p}^{q}\right)$ and $\left(\bar{N}_{p}^{q}\right)_{\infty}$ that are $\bar{N}(p, q)$ summable to zero, summable and bounded respectively as

$$
\begin{aligned}
& \left(\bar{N}_{p}^{q}\right)_{0}=\left(c_{0}\right)_{\bar{N}_{p}^{q}}=\left\{x \in \omega: \bar{N}_{p}^{q} x=\left(\frac{1}{R_{n}} \sum_{k=0}^{n} p_{n-k} q_{k} x_{k}\right)_{n=0}^{\infty} \in c_{0}\right\}, \\
& \left(\bar{N}_{p}^{q}\right)=(c)_{\bar{N}_{p}^{q}}=\left\{x \in \omega: \bar{N}_{p}^{q} x=\left(\frac{1}{R_{n}} \sum_{k=0}^{n} p_{n-k} q_{k} x_{k}\right)_{n=0}^{\infty} \in c\right\}, \\
& \left(\bar{N}_{p}^{q}\right)_{\infty}=\left(\ell_{\infty}\right)_{\bar{N}_{p}^{q}}=\left\{x \in \omega: \bar{N}_{p}^{q} x=\left(\frac{1}{R_{n}} \sum_{k=0}^{n} p_{n-k} q_{k} x_{k}\right)_{n=0}^{\infty} \in \ell_{\infty}\right\} .
\end{aligned}
$$

For any sequence $x=\left(x_{k}\right)_{k=0}^{\infty}$, define $\tau=\tau(x)$ as the sequence with nth term given by

$$
\begin{equation*}
\tau_{n}=\left(\bar{N}_{p}^{q}\right)_{n}(x)=\frac{1}{R_{n}} \sum_{k=0}^{n} p_{n-k} q_{k} x_{k} \quad(n=0,1,2, \ldots) \tag{3}
\end{equation*}
$$

This sequence τ is called as weighted means of x.
THEOREM 2. The spaces $\left(\bar{N}_{p}^{q}\right)_{0},\left(\bar{N}_{p}^{q}\right)$ and $\left(\bar{N}_{p}^{q}\right)_{\infty}$ are $B K$ spaces with respect to the norm $\|\cdot\|_{\bar{N}_{p}^{q}}$ given by

$$
\|x\|_{\bar{N}_{p}^{q}}=\sup _{n}\left|\frac{1}{R_{n}} \sum_{k=0}^{n} p_{n-k} q_{k} x_{k}\right| .
$$

If $R_{n} \rightarrow \infty(n \rightarrow \infty)$, then $\left(\bar{N}_{p}^{q}\right)_{0}$ has AK, and every sequence $x=\left(x_{k}\right)_{k=0}^{\infty} \in\left(\bar{N}_{p}^{q}\right)$ has unique representation

$$
\begin{equation*}
x=l e+\sum_{k=0}^{\infty}\left(x_{k}-l\right) e^{(k)} \tag{4}
\end{equation*}
$$

where $l \in \mathbb{C}$ is such that $x-l e \in\left(\bar{N}_{p}^{q}\right)_{0}$.

Proof. The sets $\left(\bar{N}_{p}^{q}\right)_{0},\left(\bar{N}_{p}^{q}\right)$ and $\left(\bar{N}_{p}^{q}\right)_{\ell_{\infty}}$ are BK spaces [22, Theorem 4.3.12]. Let us consider the matrix $T=\left(t_{n k}\right)$ defined by

$$
t_{n k}=\left\{\begin{array}{cc}
\frac{p_{n-k}}{R_{n}}, & 0 \leqslant k \leqslant n \\
0, & k>n
\end{array}, \quad n=0,1,2, \ldots\right.
$$

Then $\left(\bar{N}_{p}^{q}\right)_{0}=q^{-1} *\left(c_{0}\right)_{T}$ has AK by Theorem 1.
Now if $x \in\left(\bar{N}_{p}^{q}\right)$, then there exists a $l \in \mathbb{C}$ such that $x-l e \in\left(\bar{N}_{p}^{q}\right)_{0}$. Now $\tau(e)=$ $\left(\tau_{n}\right)_{n=0}^{\infty}$ where

$$
\tau_{n}=\left(\bar{N}_{p}^{q}\right)_{n}(e)=\frac{1}{R_{n}} \sum_{k=0}^{n} p_{n-k} q_{k} e_{k} \quad(n=0,1,2, \ldots)
$$

$$
\begin{aligned}
& =\frac{1}{R_{n}} \sum_{k=0}^{n} p_{n-k} q_{k} \quad \text { as } e_{k}=1 \forall(k=0,1,2, \ldots) \\
& =1
\end{aligned}
$$

Therefore, $\tau(e)=e$ which implies the uniqueness of l. Therefore, (4) follows from the fact that $\left(\bar{N}_{p}^{q}\right)_{\infty}$ has AK.

Now, \bar{N}_{p}^{q} is a triangle, it has a unique inverse and the inverse is also a triangle [12]. Take $H_{0}^{(p)}=\frac{1}{p_{0}}$ and

$$
H_{n}^{(p)}=\frac{1}{p_{0}^{n+1}}\left|\begin{array}{cccccc}
p_{1} & p_{0} & 0 & 0 & \ldots & 0 \tag{5}\\
p_{2} & p_{1} & p_{0} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
p_{n-1} & p_{n-2} & p_{n-3} & p_{n-4} & \ldots & p_{0} \\
p_{n} & p_{n-1} & p_{n-2} & p_{n-3} & \ldots & p_{1}
\end{array}\right| .
$$

Then, the inverse of matrix defined in (2) is the matrix $S=\left(s_{n k}\right)_{n, k=0}^{\infty}$ which is defined as see [19] in

$$
s_{n k}=\left\{\begin{array}{cc}
(-1)^{n-k} \frac{H_{n-k}^{(p)}}{q_{n}} R_{k}, & 0 \leqslant k \leqslant n \tag{6}\\
0, & k>n
\end{array} .\right.
$$

3.1. β dual of $\bar{N}(p, q)$ sequence spaces

In order to find the β dual we need the following results:

Lemma 1. [21] If $A=\left(a_{n k}\right)_{n, k=0}^{\infty}$, then $A \in\left(c_{0}, c\right)$ if and only if

$$
\begin{gather*}
\sup _{n} \sum_{k=0}^{\infty}\left|a_{n k}\right|<\infty \tag{7}\\
\lim _{n \rightarrow \infty} a_{n k}-\alpha_{k}=0, \quad \text { for every } k . \tag{8}
\end{gather*}
$$

LEMMA 2. [5] If $A=\left(a_{n k}\right)_{n, k=0}^{\infty}$, then $A \in(c, c)$ if and only if conditions (7), (8) hold and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} A_{n}=\lim _{n \rightarrow \infty} a_{n k} \quad \text { exists for all } k \tag{9}
\end{equation*}
$$

LEMMA 3. [5] If $A=\left(a_{n k}\right)_{n, k=0}^{\infty}$, then $A \in\left(\ell_{\infty}, c\right)$ if and only if condition (8) holds and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty}\left|a_{n k}\right|=\sum_{k=0}^{\infty}\left|\lim _{n \rightarrow \infty} a_{n k}\right| \tag{10}
\end{equation*}
$$

THEOREM 3. Let $\left(p_{k}\right)_{k=0}^{\infty}$, $\left(q_{k}\right)_{k=0}^{\infty}$ be positive sequences, $R_{n}=\sum_{j=0}^{n} p_{n-j} q_{j}$ and $a=\left(a_{k}\right) \in \omega$, we define a matrix $C=\left(c_{n k}\right)_{n, k=0}^{\infty}$ as

$$
c_{n k}=\left\{\begin{array}{cc}
R_{k}\left[\sum_{j=k}^{n}(-1)^{j-k}\left(\frac{H_{j-k}^{(p)}}{q_{j}} a_{j}\right)\right], & 0 \leqslant k \leqslant n \tag{11}\\
0, & k>n
\end{array}\right.
$$

and consider the sets

$$
\begin{aligned}
& c_{1}=\left\{a \in \omega: \sup _{n} \sum_{k}\left|c_{n k}\right|<\infty\right\}, \quad c_{2}=\left\{a \in \omega: \lim _{n \rightarrow \infty} c_{n k} \text { exists for each } k \in \mathbb{N}\right\}, \\
& c_{3}=\left\{a \in \omega: \lim _{n \rightarrow \infty} \sum_{k}\left|c_{n k}\right|=\sum_{k}\left|\lim _{n \rightarrow \infty} c_{n k}\right|\right\}, \quad c_{4}=\left\{a \in \omega: \lim _{n \rightarrow \infty} \sum_{k} c_{n k} \text { exists }\right\} .
\end{aligned}
$$

Then $\left[\left(\bar{N}_{p}^{q}\right)_{0}\right]^{\beta}=c_{1} \cap c_{2},\left[\left(\bar{N}_{p}^{q}\right)\right]^{\beta}=c_{1} \cap c_{2} \cap c_{4}$ and $\left[\left(\bar{N}_{p}^{q}\right)_{\infty}\right]^{\beta}=c_{2} \cap c_{3}$.
Proof. We prove the result for $\left[\left(\bar{N}_{p}^{q}\right)_{0}\right]^{\beta}$. Let $x \in\left(\bar{N}_{p}^{q}\right)_{0}$ then there exists a y such that $y=\bar{N}_{p}^{q} x$. Hence

$$
\begin{aligned}
\sum_{k=0}^{n} a_{k} x_{k} & =\sum_{k=0}^{n} a_{k}\left(\bar{N}_{p}^{q}\right)^{-1} y_{k}=\sum_{k=0}^{n} a_{k}\left[\sum_{j=0}^{k}(-1)^{k-j} R_{j}\left(\frac{H_{k-j}^{(p)}}{q_{k}}\right) y_{j}\right] \\
& =\sum_{k=0}^{n} R_{k}\left[\sum_{j=k}^{n}(-1)^{j-k}\left(\frac{H_{j-k}^{(p)}}{q_{j}} a_{j}\right)\right] y_{k}=(C y)_{n}
\end{aligned}
$$

So, $a x=\left(a_{n} x_{n}\right) \in c s$ whenever $x \in\left(\bar{N}_{p}^{q}\right)_{0}$ if and only if $C y \in c s$ whenever $y \in c_{0}$.
Using Lemma 1 we get $\left[\left(\bar{N}_{p}^{q}\right)_{0}\right]^{\beta}=c_{1} \cap c_{2}$.
Similarly, using Lemma 2 and Lemma 3 the β dual of $\left(\bar{N}_{p}^{q}\right)$ and $\left(\bar{N}_{p}^{q}\right)_{\infty}$ can be found same way we can show the other two results as well.
Let $X \subset \omega$ be a normed space and $a \in \omega$. Then we write

$$
\|a\|^{*}=\sup \left\{\left|\sum_{k=0}^{\infty} a_{k} x_{k}\right|:\|x\|=1\right\}
$$

provided the term on the right side exists and is finite, which is the case whenever X is a BK space and $a \in X^{\beta}$ [22, Theorem 7.2.9].

THEOREM 4. For $\left[\left(\bar{N}_{p}^{q}\right)_{0}\right]^{\beta},\left[\left(\bar{N}_{p}^{q}\right)\right]^{\beta}$ and $\left[\left(\bar{N}_{p}^{q}\right)_{\infty}\right]^{\beta}$ the norm $\|\cdot\|^{*}$ is defined as

$$
\|a\|^{*}=\sup _{n}\left\{\sum_{k=0}^{n} R_{k}\left|\sum_{j=k}^{n}(-1)^{j-k} \frac{H_{j-k}^{(p)}}{q_{j}} a_{j}\right|\right\}
$$

Proof. If $x^{[n]}$ denotes the nth section of the sequence $x \in\left(\bar{N}_{p}^{q}\right)_{0}$ then using (3) we have

$$
\tau_{k}^{[n]}=\tau_{k}\left(x^{[n]}\right)=\frac{1}{R_{k}} \sum_{j=0}^{k} p_{n-j} q_{j} x_{j}^{[n]} .
$$

Let $a \in\left[\left(\bar{N}_{p}^{q}\right)_{0}\right]^{\beta}$, then for any non-negative integer n define the sequence $d^{[n]}$ as

$$
d_{k}^{[n]}=\left\{\begin{array}{cc}
R_{k}\left[\sum_{j=k}^{n}(-1)^{j-k} \frac{H_{j-k}^{(p)}}{q_{j}} a_{j}\right], & 0 \leqslant k \leqslant n \\
0, & k>n
\end{array} .\right.
$$

Let $\|a\|_{\Pi}=\sup _{n}\left\|d^{[n]}\right\|_{1}=\sup _{n}\left(\sum_{k=0}^{\infty}\left|d_{k}^{[n]}\right|\right)$, where $\Pi=\left[\left(\bar{N}_{p}^{q}\right)\right]^{\beta}$. Then

$$
\begin{align*}
\left|\sum_{k=0}^{\infty} a_{k} x_{k}^{[n]}\right| & =\left|\sum_{k=0}^{n} a_{k}\left(\sum_{j=0}^{k}(-1)^{k-j} \frac{H_{k-j}^{(p)}}{q_{k}} R_{j} \tau_{j}^{[n]}\right)\right| \quad \text { using (6) } \tag{6}\\
& =\left|\sum_{k=0}^{n} R_{k}\left(\sum_{j=k}^{n}(-1)^{j-k} \frac{H_{j-k}^{(p)}}{q_{j}} a_{j}\right) \tau_{k}^{[n]}\right| \\
& \leqslant \sup _{k}\left|\tau_{k}^{[n]}\right| \cdot\left(\sum_{k=0}^{n} R_{k}\left|\sum_{j=k}^{n}(-1)^{j-k} \frac{H_{j-k}^{(p)}}{q_{j}} a_{j}\right|\right)=\left\|x^{[n]}\right\|_{\bar{N}_{p}^{q}}\left\|d^{[n]}\right\|_{1} \\
& =\|a\|_{\Pi}\left\|x^{[n]}\right\|_{\bar{N}_{p}^{q}} .
\end{align*}
$$

Hence,

$$
\begin{equation*}
\|a\|^{*} \leqslant\|a\|_{\Pi} . \tag{12}
\end{equation*}
$$

To prove the converse define the sequence $x^{(n)}$ for any arbitrary n by

$$
\tau_{k}\left(x^{(n)}\right)=\operatorname{sign}\left(d_{k}^{[n]}\right) \quad(k=0,1,2, \ldots)
$$

Then

$$
\tau_{k}\left(x^{(n)}\right)=0 \text { for } k>n \text { i.e } x^{(n)} \in\left(\bar{N}_{p}^{q}\right)_{0}, \quad\left\|x^{(n)}\right\|_{\bar{N}_{p}^{q}}=\left\|\tau_{k}\left(x^{(n)}\right)\right\|_{\infty} \leqslant 1
$$

and

$$
\left|\sum_{k=0}^{\infty} a_{k} x_{k}^{(n)}\right|=\left|\sum_{k=0}^{n} d_{k}^{[n]} x_{k}^{(n)}\right| \leqslant \sum_{k=0}^{n}\left|d_{k}^{[n]}\right| \leqslant\|a\|^{*}
$$

Since, n is arbitrarily choosen so

$$
\begin{equation*}
\|a\|_{\Pi} \leqslant\|a\|^{*} \tag{13}
\end{equation*}
$$

From (12) and (13) we get the required conclusion.
Some well known results that are required for proving the compactness of operators are:

Proposition 1. [17, Theorem 7] Let X and Y be $B K$ spaces, then $(X, Y) \subset$ $\mathscr{B}(X, Y)$ that is every matrix A from X into Y defines an element L_{A} of $\mathscr{B}(X, Y)$ where

$$
L_{A}(x)=A(x), \quad \forall x \in X
$$

Also $A \in\left(X, \ell_{\infty}\right)$ if and only if

$$
\|A\|^{*}=\sup _{n}\left\|A_{n}\right\|^{*}=\left\|L_{A}\right\|<\infty .
$$

If $\left(b^{(k)}\right)_{k=0}^{\infty}$ is a basis of X, Y and Y_{1} are $F K$ spaces with Y_{1} a closed subspace of Y, then $A \in\left(X, Y_{1}\right)$ if and only if $A \in(X, Y)$ and $A\left(b^{(k)}\right) \in Y_{1}$ for all $k=0,1,2, \ldots$.

Proposition 2. [18, Proposition 3.4] Let T be a triangle.
(i) If X and Y are subsets of ω, then $A \in\left(X, Y_{T}\right)$ if and only if $B=T A \in(X, Y)$.
(ii) If X and Y are $B K$ spaces and $A \in\left(X, Y_{T}\right)$, then

$$
\left\|L_{A}\right\|=\left\|L_{B}\right\|
$$

Using Proposition 1 and Theorem 4 we conclude the following corollary:
Corollary 1. Let $\left(p_{k}\right)_{k=0}^{\infty},\left(q_{k}\right)_{k=0}^{\infty}$ be given positive sequences, and $R_{n}=\sum_{k=0}^{n} p_{n-k} q_{k}$ then:
i) $A \in\left(\left(N_{p}^{q}\right)_{\infty}, \ell_{\infty}\right)$ if and only if

$$
\begin{equation*}
\sup _{n, m}\left\{\sum_{k=0}^{m} R_{k}\left|\sum_{j=k}^{m}(-1)^{j-k} \frac{H_{j-k}^{(p)}}{q_{j}} a_{n j}\right|\right\}<\infty, \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{A_{n} H_{n}^{(p)} R}{q} \in c_{0}, \quad \forall n=0,1, \ldots \tag{15}
\end{equation*}
$$

ii) $A \in\left(\left(\bar{N}_{p}^{q}\right), \ell_{\infty}\right)$ if and only if condition (14) holds and

$$
\begin{equation*}
\frac{A_{n} H_{n}^{(p)} R}{q} \in c, \quad \forall n=0,1,2, \ldots \tag{16}
\end{equation*}
$$

iii) $A \in\left(\left(\bar{N}_{p}^{q}\right)_{0}, \ell_{\infty}\right)$ if and only if condition (14) holds.
iv) $A \in\left(\left(\bar{N}_{p}^{q}\right)_{0}, c_{0}\right)$ if and only if condition (14) holds and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n k}=0, \quad \text { for all } k=0,1,2 \ldots \tag{17}
\end{equation*}
$$

v) $A \in\left(\left(\bar{N}_{p}^{q}\right)_{0}, c\right)$ if and only if condition (14) holds and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n k}=\alpha_{k}, \quad \text { for all } k=0,1,2 \ldots \tag{18}
\end{equation*}
$$

vi) $A \in\left(\left(\bar{N}_{p}^{q}\right), c_{0}\right)$ if and only if conditions (14), (15) and (17) hold and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} a_{n k}=0, \quad \text { for all } k=0,1,2 \ldots \tag{19}
\end{equation*}
$$

vii) $A \in\left(\left(\bar{N}_{p}^{q}\right), c\right)$ if and only if conditions (14), (15) and (18) hold and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} a_{n k}=\alpha, \quad \text { for all } k=0,1,2 \ldots \tag{20}
\end{equation*}
$$

From Theorem 2, Theorem 4 and Proposition 2 we conclude the following corollary:
Corollary 2. Let X be a $B K$-space and $\left(p_{k}\right)_{k=0}^{\infty},\left(q_{k}\right)_{k=0}^{\infty}$ be positive sequences, $R_{n}=\sum_{k=0}^{n} p_{n-k} q_{k}$ then:
i) $A \in\left(X,\left(\bar{N}_{p}^{q}\right)_{\infty}\right)$ if and only if

$$
\begin{equation*}
\sup _{m}\left\|\frac{1}{R_{m}} \sum_{n=0}^{m} p_{m-n} q_{n} A_{n}\right\|^{*}<\infty . \tag{21}
\end{equation*}
$$

ii) $A \in\left(X,\left(\bar{N}_{p}^{q}\right)_{0}\right)$ if and only if (21) holds and

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(\frac{1}{R_{m}} \sum_{n=0}^{m} p_{m-n} q_{n} A_{n}\left(c^{(k)}\right)\right)=0, \quad \forall k=0,1,2 \ldots, \tag{22}
\end{equation*}
$$

where $\left(c^{(k)}\right)$ is a basis of X.
iii) $A \in\left(X,\left(\bar{N}_{p}^{q}\right)\right)$ if and only if (22) holds and

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(\frac{1}{R_{m}} \sum_{n=0}^{m} p_{m-n} q_{n} A_{n}\left(c^{(k)}\right)\right)=\alpha_{k}, \quad \forall k=0,1,2 \ldots \tag{23}
\end{equation*}
$$

4. Hausdorff measure of noncompactness

Let S and M be the subsets of a metric space (X, d) and $\varepsilon>0$. Then S is called an ε - net of M in X if for every $x \in M$ there exists $s \in S$ such that $d(x, s)<\varepsilon$. Further, if the set S is finite, then the ε - net S of M is called finite ε - net of M. A subset of
a metric space is said to be totally bounded if it has a finite ε - net for every $\varepsilon>0$ see [20].
If \mathscr{M}_{X} denotes the collection of all bounded subsets of metric space (X, d) and $Q \in$ \mathscr{M}_{X} then the Hausdorff measure of noncompactness of the set Q is defined by

$$
\chi(Q)=\inf \{\varepsilon>0: Q \text { has a finite } \varepsilon-\text { net in } X\} .
$$

The function $\chi: \mathscr{M}_{X} \rightarrow[0, \infty)$ is called Hausdorff measure of noncompactness [2].
DEFInITION 4. For a metric space (Ω, d), Hausdorff measure of noncompactness (also called as the ball measure) is defined as

$$
\chi(A)=\inf \left\{\varepsilon>0: A \subset \bigcup_{i=1}^{n} B\left(x_{i}, r_{i}\right), x_{i} \in \Omega, r_{i}<\varepsilon(i=1, \ldots, n), n \in \mathbb{N}\right\}
$$

where $A \subset \Omega$ is bounded and $B\left(x_{i}, r_{i}\right)$ denotes closed ball with center at x_{i} and radius r_{i}.

The basic properties of Hausdorff measure of noncompactness can be found in ([2, 3, 15]). Some of those properties are:
If Q, Q_{1} and Q_{2} are bounded subsets of a metric space (X, d), then:

$$
\begin{aligned}
\chi(Q) & =0 \Leftrightarrow Q \text { is totally bounded set; } \\
\chi(Q) & =\chi(\bar{Q}) ; \\
Q_{1} \subset Q_{2} & \Rightarrow \chi\left(Q_{1}\right) \leqslant \chi\left(Q_{2}\right) ; \\
\chi\left(Q_{1} \cup Q_{2}\right) & =\max \left\{\chi\left(Q_{1}\right), \chi\left(Q_{2}\right)\right\} ; \\
\chi\left(Q_{1} \cap Q_{2}\right) & =\min \left\{\chi\left(Q_{1}\right), \chi\left(Q_{2}\right)\right\} .
\end{aligned}
$$

Further if X is a normed space then Hausdorff measure of noncompactness χ has the following additional properties connected with the linear structure.

$$
\begin{aligned}
\chi\left(Q_{1}+Q_{2}\right) & \leqslant \chi\left(Q_{1}\right)+\chi\left(Q_{2}\right) ; \\
\chi(\eta Q) & =|\eta| \chi(Q),
\end{aligned} \quad \eta \in \mathbb{C} .
$$

The most effective way of characterizing operators between Banach spaces is by applying Hausdorff measure of noncompactness. If X and Y are Banach spaces, and $L \in \mathscr{B}(X, Y)$, then the Hausdorff measure of noncompactness of L, denoted by $\|L\|_{\chi}$ is defined as

$$
\|L\|_{\chi}=\chi\left(L\left(S_{X}\right)\right)
$$

Where $S_{X}=\{x \in X:\|x\|=1\}$ is the unit ball in X.
From [12, Corollary 1.15] we know that
L is compact if and only if $\|L\|_{\chi}=0$.

Proposition 3. [2, Theorem 6.1.1, $X=c_{0}$] Let $Q \in M_{c_{0}}$ and $P_{r}: c_{0} \rightarrow c_{0} \quad(r \in$ \mathbb{N} be the operator defined by $P_{r}(x)=\left(x_{0}, x_{1}, \ldots, x_{r}, 0,0, \ldots\right)$ for all $x=\left(x_{k}\right) \in c_{0}$. Then we have

$$
\chi(Q)=\lim _{r \rightarrow \infty}\left(\sup _{x \in Q}\left\|\left(I-P_{r}\right)(x)\right\|\right)
$$

where I is the identity operator on c_{0}.

Proposition 4. [2, Theorem 6.1.1] Let X be a Banach space with a Schauder basis $\left\{e_{1}, e_{2}, \ldots\right\}$, and $Q \in M_{X}$ and $P_{n}: X \rightarrow X(n \in \mathbb{N}$ be the projector onto the linear span of $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$. Then we have

$$
\begin{aligned}
\frac{1}{a} \lim _{n \rightarrow \infty} \sup \left(\sup _{x \in Q}\left\|\left(I-P_{n}\right)(x)\right\|\right) & \leqslant \chi(Q) \leqslant \inf _{n}\left(\sup _{x \in Q}\left\|\left(I-P_{n}\right)(x)\right\|\right) \\
& \leqslant \lim _{n \rightarrow \infty} \sup \left(\sup _{x \in Q}\left\|\left(I-P_{n}\right)(x)\right\|\right)
\end{aligned}
$$

where $a=\lim _{n \rightarrow \infty} \sup \left\|I-P_{n}\right\|$, and I is the identity operator on c. If $X=c$ then $a=2$ (see [2]).

5. Compact operators on the spaces $\left(\bar{N}_{p}^{q}\right)_{0},\left(\bar{N}_{p}^{q}\right)$ and $\left(\bar{N}_{p}^{q}\right)_{\infty}$

THEOREM 5. Consider the matrix A as in Corollary 1, and for any integers n, s, $n>s$ set

$$
\begin{equation*}
\|A\|^{(s)}=\operatorname{supsup}_{n>s}\left\{\sum_{k=0}^{m} R_{k}\left|\sum_{j=k}^{m}(-1)^{j-k} \frac{H_{j-k}^{(p)}}{q_{j}} a_{n j}\right|\right\} . \tag{24}
\end{equation*}
$$

If X be either $\left(\bar{N}_{p}^{q}\right)_{0}$ or $\left(\bar{N}_{p}^{q}\right)$ and $A \in\left(X, c_{0}\right)$, then

$$
\begin{equation*}
\left\|L_{A}\right\|_{\chi}=\lim _{s \rightarrow \infty}\|A\|^{(s)} \tag{25}
\end{equation*}
$$

If X be either $\left(\bar{N}_{p}^{q}\right)_{0}$ or $\left(\bar{N}_{p}^{q}\right)$ and $A \in(X, c)$, then

$$
\begin{equation*}
\frac{1}{2} \cdot \lim _{s \rightarrow \infty}\|A\|^{(s)} \leqslant\left\|L_{A}\right\|_{\chi} \leqslant \lim _{r \rightarrow \infty}\|A\|^{(s)} \tag{26}
\end{equation*}
$$

and if X be either $\left(\bar{N}_{p}^{q}\right)_{0},\left(\bar{N}_{p}^{q}\right)$ or $\left(\bar{N}_{p}^{q}\right)_{\infty}$ and $A \in\left(X, \ell_{\infty}\right)$, then

$$
\begin{equation*}
0 \leqslant\left\|L_{A}\right\|_{\chi} \leqslant \lim _{s \rightarrow \infty}\|A\|^{(s)} \tag{27}
\end{equation*}
$$

Proof. Let $F=\{x \in X:\|x\| \leqslant 1\}$ if $A \in\left(X, c_{0}\right)$ and X is one of the spaces $\left(\bar{N}_{p}^{q}\right)_{0}$ or $\left(\bar{N}_{p}^{q}\right)$, then by Proposition 3

$$
\begin{equation*}
\left\|L_{A}\right\|_{\chi}=\chi(A F)=\lim _{s \rightarrow \infty}\left[\sup _{x \in F}\left\|\left(I-P_{s}\right) A x\right\|\right] \tag{28}
\end{equation*}
$$

Again using Proposition 1 and Corollary 1, we have

$$
\begin{equation*}
\|A\|^{s}=\sup _{x \in F}\left\|\left(I-P_{S}\right) A x\right\| . \tag{29}
\end{equation*}
$$

From (28) and (29) we get

$$
\left\|L_{A}\right\|_{\chi}=\lim _{s \rightarrow \infty}\|A\|^{(s)}
$$

Since every sequence $x=\left(x_{k}\right)_{k=0}^{\infty} \in c$ has a unique representation

$$
x=l e+\sum_{k=0}^{\infty}\left(x_{k}-l\right) e^{(k)}, \quad \text { where } l \in \mathbb{C} \text { is such that } x-l e \in c_{0}
$$

We define $P_{s}: c \rightarrow c$ by $P_{s}(x)=l e+\sum_{k=0}^{s}\left(x_{k}-l\right) e^{(k)}, s=0,1,2, \ldots$.
Then $\left\|I-P_{s}\right\|=2$ and using (29) and Proposition 4 we get

$$
\frac{1}{2} \cdot \lim _{s \rightarrow \infty}\|A\|^{(s)} \leqslant\left\|L_{A}\right\|_{\chi} \leqslant \lim _{s \rightarrow \infty}\|A\|^{(s)}
$$

Finally, we define $P_{s}: \ell_{\infty} \rightarrow \ell_{\infty}$ by $P_{s}(x)=\left(x_{0}, x_{1}, \ldots, x_{s}, 0,0 \ldots\right), x=\left(x_{k}\right) \in \ell_{\infty}$. Clearly, $A F \subset P_{s}(A F)+\left(I-P_{s}\right)(A F)$.
So, using the properties of χ we get

$$
\chi(A F) \leqslant \chi\left[P_{s}(A F)\right]+\chi\left[\left(I-P_{s}\right)(A F)\right]=\chi\left[\left(I-P_{S}\right)(A F)\right] \leqslant \sup _{x \in F}\left\|\left(I-P_{s}\right) A(x)\right\|
$$

Hence, by Proposition 1 and Corollary 1 we get

$$
0 \leqslant\left\|L_{A}\right\|_{\chi} \leqslant \lim _{s \rightarrow \infty}\|A\|^{(s)}
$$

A direct corollary of the above theorem is:
Corollary 3. Consider the matrix A as in Corollary 1, and $X=\left(\bar{N}_{p}^{q}\right)_{0}$ or $X=\left(\bar{N}_{p}^{q}\right)$, then if $A \in\left(X, c_{0}\right)$ or $A \in(X, c)$ we have

$$
L_{A} \text { is compact if and only if } \lim _{s \rightarrow \infty}\|A\|^{(s)}=0 .
$$

Further, for $X=\left(\bar{N}_{p}^{q}\right)_{0}, X=\left(\bar{N}_{p}^{q}\right)$ or $X=\left(\bar{N}_{p}^{q}\right)_{\infty}$, if $A \in\left(X, \ell_{\infty}\right)$ then we have

$$
\begin{equation*}
L_{A} \text { is compact if } \lim _{s \rightarrow \infty}\|A\|^{(s)}=0 \tag{30}
\end{equation*}
$$

In (30) it is possible for L_{A} to be compact although $\lim _{s \rightarrow \infty}\|A\|^{(s)} \neq 0$, that is the condition is only sufficient condition for L_{A} to be compact.
For example, let the matrix A be defined as $A_{n}=e^{(1)} \quad n=0,1,2, \ldots$ and the positive sequences $q_{n}=3^{n}, n=0,1,2, \ldots$ and $p_{0}=1, p_{1}=1, p_{k}=0, \forall k=2,3, \ldots$.
Then by (14) we have

$$
\sup _{n, m}\left\{\sum_{k=0}^{m} R_{k}\left|\sum_{j=k}^{m}(-1)^{j-k} \frac{H_{j-k}^{(p)}}{q_{j}} a_{n j}\right|\right\}=\sup _{m}\left(2-\frac{2}{3^{m}}\right)=2<\infty .
$$

Now, by Corollary 1 we know $A \in\left(\left(\bar{N}_{p}^{q}\right)_{\infty}, \ell_{\infty}\right)$.
But,

$$
\|A\|^{(s)}=\sup _{n>s}\left[2-\frac{2}{3^{m}}\right]=2-\frac{1}{2 \cdot 3^{s}}, \quad \forall s
$$

Which gives $\lim _{s \rightarrow \infty}\|A\|^{(s)}=2 \neq 0$.
Since $A(x)=x_{1}$ for all $x \in\left(\bar{N}_{p}^{q}\right)_{\infty}$, so L_{A} is a compact operator.
Acknowledgement. The authors are grateful to the anonymous referees for their careful reading of the manuscript and their valuable suggestions, which improved the presentation of the paper.

REFERENCES

[1] R. R. Akhmerov, M. I. Kamenskif, A. S. Potapov, A. E. Rodkina, B. N. Sadovskil and J. AppeLL, Measures of noncompactness and condensing operators, Vol. 55. Basel: Birkhäuser, 1992.
[2] J. Banas̀ and K. Goebel, Measures of noncompactness in Banach spaces. Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York and Basel, 1980.
[3] J. Banas̀ and M. Mursaleen, Sequence spaces and measures of noncompactness with applications to differential and integral equations, Springer, 2014.
[4] C. H. E. N. Bocong, L. I. N. Liren and L. I. U. Hongwei, Matrix product codes with Rosenbloom-Tsfasman metric, Acta Math. Sci. 33 (2013), no. 3, 687-700.
[5] R. G. Cooke, Infinite matrices and sequence spaces, Courier Corporation, 2014.
[6] I. DJolović and E. Malkowsky, Matrix transformations and compact operators on some new mth-order difference sequences, Appl. Math. Comput. 198 (2008), no. 2, 700-714.
[7] T. JACOB, Matrix transformations involving simple sequence spaces, Pacific J. Math. 70 (1977), no. 1, 179-187.
[8] T. Jalal and Z. U. Ahmad, A new sequence space and matrix transformations, Thai J. Math. 8 (2012), no. 2, 373-381.
[9] T. JaLaL, Some matrix transformations of $\ell(p, u)$ into the spaces of invariant means, Int. J. Modern Math. Sci. 13 (2015), no. 4, 385-391.
[10] T. Jalal, Some new I-lacunary generalized difference sequence spaces in n-normed space, In Modern Mathematical Methods and High Performance Computing in Science and Technology, 249-258. Springer, Singapore, 2016.
[11] A. M. Jarrah and E. Malkowsky, BK spaces, bases and linear operators, Rend. del Circ. Mat. di Palermo. Serie II. Suppl. 52 (1990), 177-191.
[12] A. M. Jarrah and E. Malkowsky, Ordinary, absolute and strong summability and matrix transformations, Filomat (2003), 59-78.
[13] C. Kuratowski, Sur les espaces complets, Fund.Math., 1(15), (1930), 301-309.
[14] I. A. Malik and T. Jalal, Measures of noncompactness in $\left(\bar{N}_{\Delta}^{q}\right)$ summable difference sequence spaces, Filomat, 32 (2018), no. 15, 5459-5470.
[15] E. MALKOWSKY AND V. RAKOČEVIĆ, An introduction into the theory of sequence spaces and measures of noncompactness, Matematički institut SANU, 2000.
[16] E. MALKOWSKy and V. Rakočević, Measure of noncompactness of linear operators between spaces of sequences that are (N, q) summable or bounded, Czechoslovak Math. J. 51 (2001), no. 3, 505-522.
[17] E. MALKOWSKY AND V. RAKOČEVIĆ, The measure of noncompactness of linear operators between certain sequence spaces, Acta Sci. Math. 64 (1998), no. 1, 151-170.
[18] E. MALKOWSKY AND V. RAKOČEVIĆ, The measure of noncompactness of linear operators between spaces of m th-order difference sequences, Studia Sci. Math. Hungar. 35 (1999), no. 4, 381-396.
[19] A. Manna, M. Amit and P. D. Srivastava, Difference sequence spaces derived by using generalized means, J. Egyptian Math. Soc. 23 (2015), no. 1, 127-133.
[20] M. Mursaleen, V. Karakaya, H. Polat and N. Şimşek, Measure of noncompactness of matrix operators on some difference sequence spaces of weighted means, Comput. Math. Appl. 62 (2011), no. 2, 814-820.
[21] M. Stieglitz and T. Hubert, Matrixtransformationen von Folgenräumen eine Ergebnisübersicht, Math. Z. 154 (1977), no. 1, 1-16.
[22] A. Wilansky, Summability through functional analysis, Elsevier, 2000.

[^0]: Mathematics subject classification (2010): 40H05, 46A45, 47B07.
 Keywords and phrases: Matrix domains, summable sequence spaces, BK spaces, matrix transformations, measures of noncompactness.

 * Corresponding author.

