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MEASURES OF NONCOMPACTNESS IN

N(p,q) SUMMABLE SEQUENCE SPACES
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(Communicated by T. S. S. R. K. Rao)

Abstract. In this paper, we first define the N(p,q) summable sequence spaces and obtain some
basic results related to these spaces. The necessary and sufficient conditions for an infinite matrix
A to map these spaces into the spaces c0, c and �∞ is obtained and Hausdorff measure of non-
compactness is then used to obtain the necessary and sufficient conditions for the compactness
of linear operators defined on these spaces.

1. Introduction and preliminaries

Measures of non-compactness is very useful tool in Banach spaces. The degree of
non-compactness of a set is measured by means of functions called measures of non-
compactness. Kuratowski [13] first introduced this concept, after that many measures
of non-compactness have been defined and studied as in [2, 3]. Many researcher have
used the concept of measure of non-compactness to characterize the linear operator
between sequence spaces like [11, 12, 14, 16, 17, 18].

By ω we denote the set of all complex sequences x = (xk)∞
k=0 and φ , c0 , c

and �∞ denotes the sets of all finite sequences, sequences convergent to zero, con-
vergent sequences and bounded sequences respectively. By e we denote the sequence
of 1’s, e = (1,1,1, . . .) and by e(n) the sequence with 1 as only nonzero term at the
n th place for each n ∈ N , where N = {0,1,2, . . .} . Further by cs and �1 we denote
the convergent and absolutely convergent series respectively. If x = (xk)∞

k=0 ∈ ω then
x[m] = ∑m

k=0 xke(k) denotes the m− th section of x .
If X and Y are Banach Spaces, then by B(X ,Y ) we denote the set of all bounded

(continuous) linear operators L : X → Y , which is itself a Banach space with the op-
erator norm ‖L‖ = supx {‖L(x)‖Y : ‖x‖ = 1} for all L ∈ B(X ,Y ). The linear operator
L : X → Y is said to be compact if its domain is all of X and for every bounded se-
quence (xn) ∈ X , the sequence (L(xn)) has a subsequence which converges in Y . The
operator L ∈ B(X ,Y ) is said to be of finite rank if dimR(L) < ∞ , where R(L) denotes
the range space of L .
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DEFINITION 1. A sequence space X is a linear subspace of ω , such a space is
called a BK space if it is a Banach space with continuous coordinates
Pn : X → C (n = 0,1,2, . . .) , where

Pn(x) = xn, x = (xk)∞
k=0 ∈ X .

The BK space X is said to have AK if every x = (xk)∞
k=0 ∈X has a unique representation

x = ∑∞
k=0 xke(k) [15, Definition 1.18].

The spaces c0 , c and �∞ are BK spaces with respect to the norm

‖x‖∞ = sup
k
{|xk| : k ∈ N}.

DEFINITION 2. The β−dual of a subset X of ω is defined by

Xβ = {a ∈ ω : ax = (akxk) ∈ cs, for all x = (xk) ∈ X} .

Let (X ,‖ · ‖) be a Banach space, for any E ⊂ X , E denotes closure of E and
conv(E) denotes the closed convex hull of E . We denote the family of non-empty
bounded subsets of X by MX and family of non-empty and relatively compact subsets
of X by NX . Let N denote the set of natural numbers and R the set of real numbers
for R+ = [0,∞) the axiomatic definition of measures of noncompactness is

DEFINITION 3. [3] The measure of noncompactness on X is a function ψ : MX →
R+ the accompanying conditions hold:

(i) The family Ker ψ = {E ∈ MX : ψ(E) = 0} is non-empty and Ker ψ ⊂ NX ;

(ii) E1 ⊂ E2 ⇒ ψ(E1) � ψ(E2) ;

(iii) ψ(E) = ψ(E) ;

(iv) ψ(convE) = ψ(E) ;

(v) ψ [λE1 +(1−λ )E2] � λ ψ(E1)+ (1−λ )ψ(E2) for 0 � λ � 1;

(vi) Given a sequence (En) of closed set of MX such that En+1 ⊂En and lim
n→∞

ψ(En)=

0 then the intersection set E∞ =
∞⋂

n=1

En is non-empty.

The measure of noncompactness ψ is said to be regular measure if following additional
conditions are satisfied:

(vii) ψ(E1∪E2) = max{ψ(E1),ψ(E2)} ;

(viii) ψ(E1 +E2) � ψ(E1)+ ψ(E2) ;

(ix) ψ(λE) = |λ |ψ(E) , for λ ∈ R ;

(x) Ker ψ = NX .
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More on different measures of noncompactness can be found in [1, 2, 3, 12].
In this paper, we first define N(p,q) summable sequence spaces as the matrix do-

mains XT of arbitrary triangle N
q
p and obtain some basic results related to these spaces.

We then find out the necessary and sufficient condition for matrix transformations to
map these spaces into c0 , c and �∞ . Finally we characterize the classes of compact
matrix operators from these spaces into c0 , c and �∞ .

2. Matrix domains

Given any infinite matrix A = (ank)∞
n,k=0 of complex numbers, we write An for the

sequence in the n th row of A , An = (ank)∞
k=0 . The A− transform of any x = (xk) ∈ ω

is given by Ax = (An(x))
∞
n=0 , where

An(x) =
∞

∑
k=0

ankxk, n ∈ N,

the series on right must converge for each n ∈ N .
If X and Y are subsets of ω , we denote by (X ,Y ) , the class of all infinite matrices

that map X into Y . So A ∈ (X ,Y ) if and only if An ∈ Xβ , n = 0,1,2, . . . and Ax ∈ Y
for all x ∈ X . The matrix domain of an infinite matrix A in X is defined by

XA = {x ∈ ω : Ax ∈ X} .

The idea of constructing a new sequence space by means of the matrix domain of a
particular limitation method has been studied by several authors see [4, 6, 7, 8, 9, 10].

For any two sequences x and y in ω the product xy is given by xy = (xkyk)∞
k=0

and for any subset X of ω

y−1 ∗X = {a ∈ ω : ay ∈ X} .

We denote by U the set of all sequences u = (uk)∞
k=0 such that uk 	= 0, ∀ k = 0,1,2, . . .

and for any u ∈ U , 1
u =
(

1
uk

)∞

k=0
.

THEOREM 1. a) Let X be a BK space with basis (α(k))∞
k=0 , u∈U and β (k) =

(1/u)α(k) , k = 0,1, . . . . Then (β (k))∞
k=0 is a basis of Y = u−1 ∗X .

b) Let (pk)∞
k=0 be a positive sequence , u ∈ U a sequence such that

|u0| � |u1| � · · · and |un| → ∞ (n → ∞),

and T a triangle with

tnk =
{ pn−k

un
, 0 � k � n

0, k > n
, n = 0,1,2, . . . .

Then (c0)T has AK.
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Proof.

a) Proof same as [11, Theorem 2].

b) (c0)T is a BK space by [22, Theorem 4.3.12], the norm ‖x‖(c0)T on it is defined
as

‖x‖(c0)T = sup
n

∣∣∣∣∣ 1
un

n

∑
k=0

pn−kxk

∣∣∣∣∣ .
Since, |un| → ∞ (n → ∞) gives φ ⊂ (c0)T . Let ε > 0 and x ∈ (c0)T then there
exists integer N > 0, such that |Tn(x)| < ε

2 for all n � N . Let m > N, then

‖x− x[m]‖(c0)T = sup
n�m+1

∣∣∣∣∣ 1
un

n

∑
k=m+1

pn−kxk

∣∣∣∣∣ . (1)

Now,

Tn(x) =
1
un

n

∑
k=0

pn−kxk, Tm(x) =
1
un

m

∑
k=0

pn−kxk

⇒ Tn(x)+Tm(x) =
1
un

[
2(pnx0 + · · ·+ pn−mxm)+

n

∑
k=m+1

pn−kxk

]
.

Then, by (1), we have

‖x− x[m]‖(c0)T � sup
n�m+1

(|Tn(x)|+ |Tm(x)|) <
ε
2

+
ε
2

= ε.

Hence, x = ∑∞
k=0 xkβ (k) .

This representation is obviously unique. �

3. N(p,q) summable sequence spaces

Let (pk)∞
k=0 , (qk)∞

k=0 be positive sequences in U and (Rn)∞
n=0 the sequence with

Rn = ∑n
j=0 pn− jq j . The N(p,q) transform of the sequence (xk)∞

k=0 is the sequence
(tn)∞

n=0 defined as

tn =
1
Rn

n

∑
j=0

pn− jq jx j .

The matrix N
q
p for this transformation is

(N
q
p)nk =

{ pn−kqk
Rn

, 0 � k � n
0, k > n

. (2)
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We define the spaces (N
q
p)0 , (N

q
p) and (N

q
p)∞ that are N(p,q) summable to zero,

summable and bounded respectively as

(N
q
p)0 = (c0)N

q
p
=

{
x ∈ ω : N

q
px =

(
1
Rn

n

∑
k=0

pn−kqkxk

)∞

n=0

∈ c0

}
,

(N
q
p) = (c)N

q
p
=

{
x ∈ ω : N

q
px =

(
1
Rn

n

∑
k=0

pn−kqkxk

)∞

n=0

∈ c

}
,

(N
q
p)∞ = (�∞)N

q
p
=

{
x ∈ ω : N

q
px =

(
1
Rn

n

∑
k=0

pn−kqkxk

)∞

n=0

∈ �∞

}
.

For any sequence x = (xk)∞
k=0 , define τ = τ(x) as the sequence with n th term given by

τn = (N
q
p)n(x) =

1
Rn

n

∑
k=0

pn−kqkxk (n = 0,1,2, . . .). (3)

This sequence τ is called as weighted means of x .

THEOREM 2. The spaces (N
q
p)0 , (N

q
p) and (N

q
p)∞ are BK spaces with respect to

the norm ‖ . ‖N
q
p

given by

‖x‖N
q
p
= sup

n

∣∣∣∣∣ 1
Rn

n

∑
k=0

pn−kqkxk

∣∣∣∣∣ .
If Rn → ∞ (n → ∞), then (N

q
p)0 has AK, and every sequence x = (xk)∞

k=0 ∈ (N
q
p) has

unique representation

x = le+
∞

∑
k=0

(xk − l)e(k), (4)

where l ∈ C is such that x− le ∈ (N
q
p)0.

Proof. The sets (N
q
p)0 , (N

q
p) and (N

q
p)�∞ are BK spaces [22, Theorem 4.3.12]. Let us

consider the matrix T = (tnk) defined by

tnk =
{ pn−k

Rn
, 0 � k � n

0, k > n
, n = 0,1,2, . . . .

Then (N
q
p)0 = q−1 ∗ (c0)T has AK by Theorem 1.

Now if x ∈ (N
q
p) , then there exists a l ∈ C such that x− le ∈ (N

q
p)0 . Now τ(e) =

(τn)∞
n=0 where

τn = (N
q
p)n(e) =

1
Rn

n

∑
k=0

pn−kqkek (n = 0,1,2, . . .)
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=
1
Rn

n

∑
k=0

pn−kqk as ek = 1 ∀ (k = 0,1,2, . . .)

= 1.

Therefore, τ(e) = e which implies the uniqueness of l . Therefore, (4) follows from the
fact that (N

q
p)∞ has AK. �

Now, N
q
p is a triangle, it has a unique inverse and the inverse is also a triangle [12].

Take H(p)
0 = 1

p0
and

H(p)
n =

1

pn+1
0

∣∣∣∣∣∣∣∣∣∣∣

p1 p0 0 0 . . . 0
p2 p1 p0 0 . . . 0
...

...
...

...
. . .

...
pn−1 pn−2 pn−3 pn−4 . . . p0

pn pn−1 pn−2 pn−3 . . . p1

∣∣∣∣∣∣∣∣∣∣∣
. (5)

Then, the inverse of matrix defined in (2) is the matrix S = (snk)
∞
n,k=0 which is defined

as see [19] in

snk =

{
(−1)n−k H

(p)
n−k
qn

Rk, 0 � k � n
0, k > n

. (6)

3.1. β dual of N(p,q) sequence spaces

In order to find the β dual we need the following results:

LEMMA 1. [21] If A = (ank)∞
n,k=0 , then A ∈ (c0,c) if and only if

sup
n

∞

∑
k=0

|ank| < ∞, (7)

lim
n→∞

ank −αk = 0, for every k. (8)

LEMMA 2. [5] If A = (ank)∞
n,k=0 , then A ∈ (c,c) if and only if conditions (7), (8)

hold and

lim
n→∞

An = lim
n→∞

ank exists for all k. (9)

LEMMA 3. [5] If A = (ank)∞
n,k=0 , then A∈ (�∞,c) if and only if condition (8) holds

and

lim
n→∞

∞

∑
k=0

|ank| =
∞

∑
k=0

∣∣∣ lim
n→∞

ank

∣∣∣ . (10)
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THEOREM 3. Let (pk)
∞
k=0 , (qk)

∞
k=0 be positive sequences, Rn = ∑n

j=0 pn− jq j

and a = (ak) ∈ ω , we define a matrix C = (cnk)∞
n,k=0 as

cnk =

⎧⎨
⎩Rk

[
∑n

j=k (−1) j−k
(

H
(p)
j−k
q j

a j

)]
, 0 � k � n

0, k > n
, (11)

and consider the sets

c1 =

{
a ∈ ω : sup

n
∑
k

|cnk| < ∞

}
, c2 =

{
a ∈ ω : lim

n→∞
cnk exists for each k ∈ N

}
,

c3 =

{
a ∈ ω : lim

n→∞∑
k

|cnk| = ∑
k

∣∣∣ lim
n→∞

cnk

∣∣∣
}

, c4 =

{
a ∈ ω : lim

n→∞∑
k

cnk exists

}
.

Then
[(

N
q
p

)
0

]β
= c1∩ c2 ,

[(
N

q
p

)]β
= c1∩ c2∩ c4 and

[(
N

q
p

)
∞

]β
= c2 ∩ c3 .

Proof. We prove the result for
[(

N
q
p

)
0

]β
. Let x ∈

(
N

q
p

)
0

then there exists a y

such that y = N
q
px . Hence

n

∑
k=0

akxk =
n

∑
k=0

ak

(
N

q
p

)−1
yk =

n

∑
k=0

ak

⎡
⎣ k

∑
j=0

(−1)k− jR j

⎛
⎝H(p)

k− j

qk

⎞
⎠y j

⎤
⎦

=
n

∑
k=0

Rk

⎡
⎣ n

∑
j=k

(−1) j−k

⎛
⎝H(p)

j−k

q j
a j

⎞
⎠
⎤
⎦yk = (Cy)n.

So, ax = (anxn) ∈ cs whenever x ∈
(
N

q
p

)
0

if and only if Cy ∈ cs whenever y ∈ c0 .

Using Lemma 1 we get
[(

N
q
p

)
0

]β
= c1∩ c2 .

Similarly, using Lemma 2 and Lemma 3 the β dual of
(
N

q
p

)
and
(
N

q
p

)
∞

can be found

same way we can show the other two results as well. �
Let X ⊂ ω be a normed space and a ∈ ω . Then we write

‖a‖∗ = sup

{∣∣∣∣∣
∞

∑
k=0

akxk

∣∣∣∣∣ : ‖x‖ = 1

}
,

provided the term on the right side exists and is finite, which is the case whenever X is
a BK space and a ∈ Xβ [22, Theorem 7.2.9].

THEOREM 4. For
[(

N
q
p

)
0

]β
,
[(

N
q
p

)]β
and

[(
N

q
p

)
∞

]β
the norm ‖ . ‖∗ is

defined as

‖a‖∗ = sup
n

⎧⎨
⎩

n

∑
k=0

Rk

∣∣∣∣∣∣
n

∑
j=k

(−1) j−k H(p)
j−k

q j
a j

∣∣∣∣∣∣
⎫⎬
⎭ .
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Proof. If x[n] denotes the n th section of the sequence x ∈
(
N

q
p

)
0

then using (3) we

have

τ [n]
k = τk(x[n]) =

1
Rk

k

∑
j=0

pn− jq jx
[n]
j .

Let a ∈
[(

N
q
p

)
0

]β
, then for any non-negative integer n define the sequence d[n] as

d[n]
k =

⎧⎨
⎩Rk

[
∑n

j=k (−1) j−k H(p)
j−k
q j

a j

]
, 0 � k � n

0, k > n
.

Let ‖a‖Π = supn ‖d[n]‖1 = supn

(
∑∞

k=0 |d[n]
k |
)

, where Π =
[(

N
q
p

)]β
. Then

∣∣∣∣∣
∞

∑
k=0

akx
[n]
k

∣∣∣∣∣=
∣∣∣∣∣∣

n

∑
k=0

ak

⎛
⎝ k

∑
j=0

(−1)k− j H(p)
k− j

qk
R jτ

[n]
j

⎞
⎠
∣∣∣∣∣∣ using (6)

=

∣∣∣∣∣∣
n

∑
k=0

Rk

⎛
⎝ n

∑
j=k

(−1) j−k H(p)
j−k

q j
a j

⎞
⎠τ [n]

k

∣∣∣∣∣∣
� sup

k
|τ [n]

k | ·
⎛
⎝ n

∑
k=0

Rk

∣∣∣∣∣∣
n

∑
j=k

(−1) j−k H(p)
j−k

q j
a j

∣∣∣∣∣∣
⎞
⎠= ‖x[n]‖N

q
p
‖d[n]‖1

= ‖a‖Π‖x[n]‖N
q
p
.

Hence,
‖a‖∗ � ‖a‖Π. (12)

To prove the converse define the sequence x(n) for any arbitrary n by

τk

(
x(n)
)

= sign
(
d[n]

k

)
(k = 0,1,2, . . .).

Then

τk

(
x(n)
)

= 0 for k > n i.e x(n) ∈
(
N

q
p

)
0
, ‖x(n)‖N

q
p
= ‖τk

(
x(n)
)
‖∞ � 1,

and ∣∣∣∣∣
∞

∑
k=0

akx
(n)
k

∣∣∣∣∣=
∣∣∣∣∣

n

∑
k=0

d[n]
k x(n)

k

∣∣∣∣∣�
n

∑
k=0

∣∣∣d[n]
k

∣∣∣� ‖a‖∗.

Since, n is arbitrarily choosen so

‖a‖Π � ‖a‖∗. (13)

From (12) and (13) we get the required conclusion. �
Some well known results that are required for proving the compactness of operators
are:
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PROPOSITION 1. [17, Theorem 7] Let X and Y be BK spaces, then (X ,Y ) ⊂
B(X ,Y ) that is every matrix A from X into Y defines an element LA of B(X ,Y )
where

LA(x) = A(x), ∀ x ∈ X .

Also A ∈ (X , �∞) if and only if

‖A‖∗ = sup
n
‖An‖∗ = ‖LA‖ < ∞.

If
(
b(k)
)∞

k=0
is a basis of X ,Y and Y1 are FK spaces with Y1 a closed subspace of Y ,

then A ∈ (X ,Y1) if and only if A ∈ (X ,Y ) and A
(
b(k)
)
∈ Y1 for all k = 0,1,2, . . . .

PROPOSITION 2. [18, Proposition 3.4] Let T be a triangle.

(i) If X and Y are subsets of ω , then A ∈ (X ,YT ) if and only if B = TA ∈ (X ,Y ) .

(ii) If X and Y are BK spaces and A ∈ (X ,YT ) , then

‖LA‖ = ‖LB‖.

Using Proposition 1 and Theorem 4 we conclude the following corollary:

COROLLARY 1. Let (pk)
∞
k=0 ,(qk)

∞
k=0 be given positive sequences, and

Rn = ∑n
k=0 pn−kqk then:

i) A ∈ ((Nq
p
)

∞ , �∞
)

if and only if

sup
n,m

⎧⎨
⎩

m

∑
k=0

Rk

∣∣∣∣∣∣
m

∑
j=k

(−1) j−k H(p)
j−k

q j
an j

∣∣∣∣∣∣
⎫⎬
⎭< ∞, (14)

and
AnH

(p)
n R
q

∈ c0, ∀ n = 0,1, . . . . (15)

ii) A ∈
((

N
q
p

)
, �∞

)
if and only if condition (14) holds and

AnH
(p)
n R
q

∈ c, ∀ n = 0,1,2, . . . . (16)

iii) A ∈
((

N
q
p

)
0
, �∞

)
if and only if condition (14) holds.

iv) A ∈
((

N
q
p

)
0
,c0

)
if and only if condition (14) holds and

lim
n→∞

ank = 0, for all k = 0,1,2 . . . . (17)
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v) A ∈
((

N
q
p

)
0
,c
)

if and only if condition (14) holds and

lim
n→∞

ank = αk, for all k = 0,1,2 . . . . (18)

vi) A ∈
((

N
q
p

)
,c0

)
if and only if conditions (14), (15) and (17) hold and

lim
n→∞

∞

∑
k=0

ank = 0, for all k = 0,1,2 . . . . (19)

vii) A ∈
((

N
q
p

)
,c
)

if and only if conditions (14), (15) and (18) hold and

lim
n→∞

∞

∑
k=0

ank = α, for all k = 0,1,2 . . . . (20)

From Theorem 2, Theorem 4 and Proposition 2 we conclude the following corollary:

COROLLARY 2. Let X be a BK-space and (pk)
∞
k=0 ,(qk)

∞
k=0 be positive sequences,

Rn = ∑n
k=0 pn−kqk then:

i) A ∈
(
X ,
(
N

q
p

)
∞

)
if and only if

sup
m

∥∥∥∥∥ 1
Rm

m

∑
n=0

pm−nqnAn

∥∥∥∥∥
∗
< ∞. (21)

ii) A ∈
(
X ,
(
N

q
p

)
0

)
if and only if (21) holds and

lim
m→∞

(
1

Rm

m

∑
n=0

pm−nqnAn

(
c(k)
))

= 0, ∀ k = 0,1,2 . . . , (22)

where
(
c(k)
)

is a basis of X .

iii) A ∈
(
X ,
(
N

q
p

))
if and only if (22) holds and

lim
m→∞

(
1

Rm

m

∑
n=0

pm−nqnAn

(
c(k)
))

= αk, ∀ k = 0,1,2 . . . . (23)

4. Hausdorff measure of noncompactness

Let S and M be the subsets of a metric space (X ,d) and ε > 0. Then S is called an
ε−net of M in X if for every x ∈ M there exists s ∈ S such that d(x,s) < ε . Further,
if the set S is finite, then the ε−net S of M is called finite ε−net of M . A subset of
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a metric space is said to be totally bounded if it has a finite ε−net for every ε > 0 see
[20].
If MX denotes the collection of all bounded subsets of metric space (X ,d) and Q ∈
MX then the Hausdorff measure of noncompactness of the set Q is defined by

χ(Q) = inf{ε > 0 : Q has a finite ε −net in X} .

The function χ : MX → [0,∞) is called Hausdorff measure of noncompactness [2].

DEFINITION 4. For a metric space (Ω,d) , Hausdorff measure of noncompactness
(also called as the ball measure) is defined as

χ(A) = inf

{
ε > 0 : A ⊂

n⋃
i=1

B(xi,ri),xi ∈ Ω,ri < ε (i = 1, . . . ,n) ,n ∈ N

}
,

where A ⊂ Ω is bounded and B(xi,ri) denotes closed ball with center at xi and radius
ri .

The basic properties of Hausdorff measure of noncompactness can be found in ([2, 3,
15]). Some of those properties are:
If Q,Q1 and Q2 are bounded subsets of a metric space (X ,d), then:

χ(Q) = 0 ⇔ Q is totally bounded set;

χ(Q) = χ(Q);
Q1 ⊂ Q2 ⇒ χ(Q1) � χ(Q2);

χ(Q1∪Q2) = max{χ(Q1),χ(Q2)} ;

χ(Q1∩Q2) = min{χ(Q1),χ(Q2)} .

Further if X is a normed space then Hausdorff measure of noncompactness χ has the
following additional properties connected with the linear structure.

χ(Q1 +Q2) � χ(Q1)+ χ(Q2);
χ(ηQ) = |η |χ(Q), η ∈ C.

The most effective way of characterizing operators between Banach spaces is by ap-
plying Hausdorff measure of noncompactness. If X and Y are Banach spaces, and
L ∈ B(X ,Y ) , then the Hausdorff measure of noncompactness of L , denoted by ‖L‖χ
is defined as

‖L‖χ = χ (L(SX )) .

Where SX = {x ∈ X : ‖x‖ = 1} is the unit ball in X .
From [12, Corollary 1.15] we know that

L is compact if and only if ‖L‖χ = 0.
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PROPOSITION 3. [2, Theorem 6.1.1, X = c0 ] Let Q ∈ Mc0 and Pr : c0 → c0 (r ∈
N be the operator defined by Pr(x) = (x0,x1, . . . ,xr,0,0, . . .) for all x = (xk)∈ c0 . Then
we have

χ(Q) = lim
r→∞

(
sup
x∈Q

‖(I−Pr)(x)‖
)

,

where I is the identity operator on c0 .

PROPOSITION 4. [2, Theorem 6.1.1] Let X be a Banach space with a Schauder
basis {e1,e2, . . .} , and Q∈MX and Pn : X → X (n∈N be the projector onto the linear
span of {e1,e2, . . . ,en} . Then we have

1
a

lim
n→∞

sup

(
sup
x∈Q

‖(I−Pn)(x)‖
)

� χ(Q) � inf
n

(
sup
x∈Q

‖(I−Pn)(x)‖
)

� lim
n→∞

sup

(
sup
x∈Q

‖(I−Pn)(x)‖
)

,

where a = limn→∞ sup‖I−Pn‖ , and I is the identity operator on c.
If X = c then a = 2 (see [2]).

5. Compact operators on the spaces
(
N

q
p

)
0
,
(
N

q
p

)
and

(
N

q
p

)
∞

THEOREM 5. Consider the matrix A as in Corollary 1, and for any integers n,s,
n > s set

‖A‖(s) = sup
n>s

sup
m

⎧⎨
⎩

m

∑
k=0

Rk

∣∣∣∣∣∣
m

∑
j=k

(−1) j−k
H(p)

j−k

q j
an j

∣∣∣∣∣∣
⎫⎬
⎭ . (24)

If X be either
(
N

q
p

)
0

or
(
N

q
p

)
and A ∈ (X ,c0) , then

‖LA‖χ = lim
s→∞

‖A‖(s). (25)

If X be either
(
N

q
p

)
0

or
(
N

q
p

)
and A ∈ (X ,c) , then

1
2
· lim
s→∞

‖A‖(s) � ‖LA‖χ � lim
r→∞

‖A‖(s), (26)

and if X be either
(
N

q
p

)
0

,
(
N

q
p

)
or
(
N

q
p

)
∞

and A ∈ (X , �∞) , then

0 � ‖LA‖χ � lim
s→∞

‖A‖(s). (27)
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Proof. Let F = {x ∈ X : ‖x‖ � 1} if A ∈ (X ,c0) and X is one of the spaces
(
N

q
p

)
0

or(
N

q
p

)
, then by Proposition 3

‖LA‖χ = χ(AF) = lim
s→∞

[
sup
x∈F

‖(I−Ps)Ax‖
]
. (28)

Again using Proposition 1 and Corollary 1, we have

‖A‖s = sup
x∈F

‖(I−Ps)Ax‖. (29)

From (28) and (29) we get

‖LA‖χ = lim
s→∞

‖A‖(s).

Since every sequence x = (xk)∞
k=0 ∈ c has a unique representation

x = le+
∞

∑
k=0

(xk − l)e(k), where l ∈ C is such that x− le ∈ c0.

We define Ps : c → c by Ps(x) = le+ ∑s
k=0(xk − l)e(k) , s = 0,1,2, . . . .

Then ‖I−Ps‖ = 2 and using (29) and Proposition 4 we get

1
2
· lim
s→∞

‖A‖(s) � ‖LA‖χ � lim
s→∞

‖A‖(s).

Finally, we define Ps : �∞ → �∞ by Ps(x) = (x0,x1, . . . ,xs,0,0 . . .) , x = (xk) ∈ �∞ .
Clearly, AF ⊂ Ps(AF)+ (I−Ps)(AF).
So, using the properties of χ we get

χ(AF) � χ [Ps(AF)]+ χ [(I−Ps)(AF)] = χ [(I−Ps)(AF)] � sup
x∈F

‖(I−Ps)A(x)‖.

Hence, by Proposition 1 and Corollary 1 we get

0 � ‖LA‖χ � lims→∞ ‖A‖(s). �
A direct corollary of the above theorem is:

COROLLARY 3. Consider the matrix A as in Corollary 1, and X =
(
N

q
p

)
0

or

X =
(
N

q
p

)
, then if A ∈ (X ,c0) or A ∈ (X ,c) we have

LA is compact if and only if lim
s→∞

‖A‖(s) = 0.

Further, for X =
(
N

q
p

)
0

, X =
(
N

q
p

)
or X =

(
N

q
p

)
∞

, if A ∈ (X , �∞) then we have

LA is compact if lim
s→∞

‖A‖(s) = 0. (30)



1204 I. A. MALIK AND T. JALAL

In (30) it is possible for LA to be compact although lims→∞ ‖A‖(s) 	= 0, that is the
condition is only sufficient condition for LA to be compact.
For example, let the matrix A be defined as An = e(1) n = 0,1,2, . . . and the positive
sequences qn = 3n , n = 0,1,2, . . . and p0 = 1, p1 = 1, pk = 0 , ∀ k = 2,3, . . . .
Then by (14) we have

sup
n,m

⎧⎨
⎩

m

∑
k=0

Rk

∣∣∣∣∣∣
m

∑
j=k

(−1) j−k H(p)
j−k

q j
an j

∣∣∣∣∣∣
⎫⎬
⎭= sup

m

(
2− 2

3m

)
= 2 < ∞.

Now, by Corollary 1 we know A ∈
((

N
q
p

)
∞

, �∞

)
.

But,

‖A‖(s) = sup
n>s

[
2− 2

3m

]
= 2− 1

2 ·3s , ∀ s.

Which gives lims→∞ ‖A‖(s) = 2 	= 0.

Since A(x) = x1 for all x ∈
(
N

q
p

)
∞

, so LA is a compact operator.
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