G-DRAZIN INVERSES FOR OPERATOR MATRICES

Huanyin Chen and Marjan Sheibani Abdolyousefi*

(Communicated by Z. Drmač)

Abstract

Additive results for the generalized Drazin inverse of Banach space operators are presented. Suppose the bounded linear operators a and b on an arbitrary complex Banach space have generalized Drazin inverses. If $b^{\pi} a b a=0$ and $a b^{2}=0$, then $a+b$ has generalized Drazin inverse. This extends the main results of Djordjević and Wei (J. Austral. Math. J., 73(2002), 115-125). Then we apply our results to 2×2 operator matrices and thereby generalize the results of Deng, Cvetković-Ilić and Wei (Linear and Multilinear Algebra, 58(2010), 503-521).

1. Introduction

Let X be an arbitrary complex Banach space and $\mathscr{L}(X)$ denote the Banach algebra of all bounded operators on X. Set $\mathscr{A}=\mathscr{L}(X)$. The commutant of $a \in \mathscr{A}$ is defined by $\operatorname{comm}(a)=\{x \in \mathscr{A} \mid x a=a x\}$. The double commutant of $a \in \mathscr{A}$ is defined by $\operatorname{comm}^{2}(a)=\{x \in \mathscr{A} \mid x y=y x$ for all $y \in \operatorname{comm}(a)\}$. An element a in \mathscr{A} has g-Drazin inverse, i.e., a is GD-invertible if and only if there exists $b \in \operatorname{comm}(a)$ such that $b=b a b$ and $a-a^{2} b \in \mathscr{A}^{\text {qnil }}$. Such b, if exists, is unique, and is denoted by a^{d}. We call a^{d} the g-Drazin inverse of a. As is well known, a is GD-invertible if and only if it is quasipolar, i.e., there exists $e^{2}=e \in \operatorname{comm}^{2}(a)$ such that $a+e \in \mathscr{A}$ is invertible and $a e \in \mathscr{A}^{q n i l}$. Here, $\mathscr{A}^{\text {qnil }}=\{a \in \mathscr{A} \mid 1+a x \in U(\mathscr{A})$ for every $x \in \operatorname{comm}(a)\}$. As is well known,

$$
a \in \mathscr{A}^{\text {qnil }} \Leftrightarrow \lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{\frac{1}{n}}=0 .
$$

Suppose the bounded linear operators a and b on an arbitrary complex Banach space have g-Drazin inverses. In Section 2, we prove that if $b^{\pi} a b a=0$ and $a b^{2}=0$ then $a+b$ has g-Drazin inverse. This extends the results of Djordjevic and Wei (see [7, Theorem 2.3]).

We next consider the g-Drazin inverse of a 2×2 operator matrix

$$
M=\left(\begin{array}{ll}
A & B \tag{*}\\
C & D
\end{array}\right)
$$

where $A \in \mathscr{L}(X), D \in \mathscr{L}(Y)$ are GD-invertible and X, Y are complex Banach spaces. Here, M is a bounded operator on $X \oplus Y$. The g-Drazin inverses have various applications in singular differential and differential equations, Markov chains, and iterative

[^0]methods (see [1, 2, 4, 14]). In Section 3, we present some g-Drazin inverses for a 2×2 operator matrix M under a number of different conditions, which generalize [15, Theorem 2.1 and Theorem 2.2].

If $a \in \mathscr{A}$ has g-Drazin inverse a^{d}. The element $p=1-a a^{d}$ is called the spectral idempotent of a. In Section 4, we further consider the g-Drazin inverse of a 2×2 operator matrix M under the conditions on spectral idempotents. These also extends [5, Theorem 6 and Theorem 7] to wider cases.

Throughout the paper, X is a Banach space and $\mathscr{A}=\mathscr{L}(X)$. We use $U(\mathscr{A})$ to denote the set of all units in $\mathscr{A} . \mathscr{A}^{d}$ indicates the set of all GD-invertible elements in $\mathscr{A} . \mathbb{N}$ stands for the set of all natural numbers.

2. Additive results

The purpose of this section is to establish the generalized Drazin inverse of $P+Q$ in the case $P Q P=0$ and $P Q^{2}=0$. The explicit formula for the generalized Drazin inverse of $P+Q$ is illustrated as well. We start by

Lemma 2.1. Let $a, b \in \mathscr{A}$ and $a b=0$. If $a, b \in \mathscr{A}^{d}$, then $a+b \in \mathscr{A}^{d}$.

Proof. See [7, Theorem 2.3].
Lemma 2.2. Let $a \in \mathscr{A}$ and $n \in \mathbb{N}$. Then $a^{n} \in \mathscr{A}^{d}$ if and only if $a \in \mathscr{A}^{d}$.

Proof. See [10, Theorem 2.7].
Let $x \in \mathscr{A}$. Then we have Pierce decomposition

$$
x=p x p+p x(1-p)+(1-p) x p+(1-p) x(1-p)
$$

For further use, we induce a representation given by the matrix

$$
x=\left(\begin{array}{cc}
p x p & p x(1-p) \\
(1-p) \operatorname{xp} & (1-p) x(1-p)
\end{array}\right)_{p}
$$

We have

Lemma 2.3. Let \mathscr{A} be a Banach algebra, let $a \in \mathscr{A}$ and let

$$
x=\left(\begin{array}{ll}
a & c \\
0 & b
\end{array}\right)_{p}
$$

relative to $p^{2}=p \in \mathscr{A}$. If $a \in(p \mathscr{A} p)^{d}$ and $b \in((1-p) \mathscr{A}(1-p))^{d}$, then $x \in \mathscr{A}^{d}$.

Proof. See [3, Theorem 2.3].
We are now ready to extend [15, Theorem 2.1 and Theorem 2.2] and prove:

THEOREM 2.4. Let $a, b \in \mathscr{A}^{d}$. If $b^{\pi} a b a=0$ and $a b^{2}=0$, then $a+b \in \mathscr{A}^{d}$.
Proof. Let $p=b b^{d}$. Then we have

$$
a=\left(\begin{array}{ll}
a_{11} & a_{1} \\
a_{21} & a_{2}
\end{array}\right)_{p}, b=\left(\begin{array}{cc}
b_{1} & 0 \\
0 & b_{2}
\end{array}\right)_{p}
$$

where $b_{2}=\left(1-b b^{d}\right) b\left(1-b b^{d}\right)=b-b^{2} b^{d} \in \mathscr{A}^{\text {qnil }}$. Since $a b^{2}=0$, we see that $a p=\left(a b^{2}\right)\left(b^{d}\right)^{2}=0$, and so $a_{11}=a_{21}=0$. Hence, we have

$$
a+b=\left(\begin{array}{cc}
b_{1} & a_{1} \\
0 & a_{2}+b_{2}
\end{array}\right)_{p}
$$

Since $b_{1}=p b p=b\left(b b^{d}\right)$ and $b b^{d}=b^{d} b$, we easily see that $b_{1} \in(p \mathscr{A} p)^{d}$. By using Cline's formula, we have $a_{2}=b^{\pi} a b^{\pi} \in \mathscr{A}^{d}$. By hypothesis, we check that

$$
a_{2} b_{2} a_{2}=0, a_{2} b_{2}^{2}=0
$$

We will suffice to prove $\left.a_{2}+b_{2} \in(1-p) \mathscr{A}(1-p)\right)^{d}$.
Set

$$
M=\left(\begin{array}{cc}
a_{2}^{2}+a_{2} b_{2} & a_{2}^{2} b_{2} \\
a_{2}+b_{2} & a_{2} b_{2}+b_{2}^{2}
\end{array}\right)
$$

Then

$$
M=\left(\begin{array}{cc}
a_{2} b_{2} & a_{2}^{2} b_{2} \\
0 & a_{2} b_{2}
\end{array}\right)+\left(\begin{array}{cc}
a_{2}^{2} & 0 \\
a_{2}+b_{2} & b_{2}^{2}
\end{array}\right):=G+F
$$

We see that $G^{2}=0$ and $G F=0$.

$$
F=\left(\begin{array}{cc}
a_{2}^{2} & 0 \\
a_{2}+b_{2} & b_{2}^{2}
\end{array}\right)=\left(\begin{array}{ll}
a_{2}^{2} & 0 \\
a_{2} & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
b_{2} & b_{2}^{2}
\end{array}\right):=H+K
$$

One easily check that

$$
H=\left(\begin{array}{ll}
a_{2}^{2} & 0 \\
a_{2} & 0
\end{array}\right)=\binom{a_{2}}{1}\left(a_{2}, 0\right) .
$$

Since $\left(a_{2}, 0\right)\binom{a_{2}}{1}=a_{2}^{2} \in \mathscr{A}^{d}$, it follows by Cline's formula, we see that

$$
\begin{aligned}
H^{d} & =\binom{a_{2}}{1}\left(\left(a_{2}^{2}\right)^{d}\right)^{2}\left(a_{2}, 0\right)=\binom{a_{2}}{1}\left(a_{2}^{d}\right)^{4}\left(a_{2}, 0\right) \\
& =\left(\begin{array}{cc}
a_{2}\left(a_{2}^{d}\right)^{4} a_{2} & 0 \\
\left(a_{2}^{d}\right)^{4} a_{2} & 0
\end{array}\right)=\left(\begin{array}{cc}
\left(a_{2}^{d}\right)^{2} & 0 \\
\left(a_{2}^{d}\right)^{3} & 0
\end{array}\right)
\end{aligned}
$$

Likewise, we have

$$
K^{d}=\binom{0}{b_{2}}\left(b_{2}^{d}\right)^{4}\left(1, b_{2}\right)=\left(\begin{array}{cc}
0 & 0 \\
\left(b_{2}^{d}\right)^{3} & \left(b_{2}^{d}\right)^{2}
\end{array}\right)
$$

Clearly, $H K=0$. In light of Lemma 2.1,

$$
F^{d}=\left(I-K K^{d}\right)\left[\sum_{n=0}^{\infty} K^{n}\left(H^{d}\right)^{n}\right] H^{d}+K^{d}\left[\sum_{n=0}^{\infty}\left(K^{d}\right)^{n} H^{n}\right]\left(I-H H^{d}\right)
$$

In light of [15, Theorem 2.1], we see that

$$
M^{d}=F^{d}+G\left(F^{d}\right)^{2}
$$

Clearly, $M=\left(\binom{a_{2}}{1}\left(1, b_{2}\right)\right)^{2}$. By virtue of Lemma 2.1,

$$
\left(a_{2}+b_{2}\right)^{d}=\left(\left(1, b_{2}\right)\binom{a_{2}}{1}\right)^{d}=\left(1, b_{2}\right) M^{d}\binom{a_{2}}{1}
$$

as asserted.
As an immediate consequence, we can derive the following which was given in [9, Lemma 5].

Corollary 2.5. Let $a, b \in \mathscr{A}^{\text {qnil }}$. If $a b a=0$ and $a b^{2}=0$, then $a+b \in \mathscr{A}^{\text {qnil }}$.
Proof. Since $a, b \in \mathscr{A}^{\text {qnil }}$, we see that $a^{d}=b^{d}=0$. In light of Theorem 2.4, $(a+b)^{d}=0$, and therefore $a+b \in \mathscr{A}^{\text {qnil }}$, as required.

Let $P, Q \in \mathscr{A}(X)^{d}$. In [8, Theorem 4.2.2], Guo proved that $P+Q \in \mathscr{A}(X)^{d}$ if $P Q P=0$ and $Q^{2} P=0$ by a different route, and so it is worth noting the following examples.

ExAMPLE 2.6. Let $a=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), b=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \in M_{2}(\mathbb{C})$. Then $a b a=0$ and $a b^{2}=$ 0 , while $b^{2} a \neq 0$.

EXAMPLE 2.7. Let $a=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), b=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \in M_{2}(\mathbb{C})$. Then $a b a=0$ and $b^{2} a=$ 0 , while $a b^{2} \neq 0$.

3. Splitting approach

Let $A \in \mathscr{L}(X), D \in \mathscr{L}(Y)$ be GD-invertible and M be given by (*). The aim of this section is to consider a GD-invertible 2×2 operator matrix M. Using different splitting of the operator matrix M as $M=P+Q$, we will apply Theorem 2.4 to obtain various conditions for a GD-invertible M, which extend [15, Theorem 2.1 and Theorem 2.2].

THEOREM 3.1. If $B C A=0, B C B=0, D C A=0$ and $D C B=0$, then M is $G D$ invertible.

Proof. We easily see that

$$
M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=p+q,
$$

where

$$
p=\left(\begin{array}{cc}
A & B \\
0 & D
\end{array}\right), q=\left(\begin{array}{ll}
0 & 0 \\
C & 0
\end{array}\right)
$$

By virtue of [7, Lemma 2.2] p and q are GD-invertible. Obviously, $p q^{2}=0, p q p=0$ and then we complete the proof by Theorem 2.4.

Corollary 3.2. If $B C=0$ and $D C=0$, then M is GD-invertible.
Proof. If $B C=0$ then $B C A=0$ and $B C B=0$. If $D C=0$, then $D C A=0$ and $D C B=0$. So we get the result by Theorem 3.1.

Corollary 3.3. If $C A=0$ and $C B=0$, then M is GD-invertible.
Proof. If $C A=0$ then $B C A=0$ and $D C A=0$. If $C B=0$, then $D C B=0$ and $B C B=0$. So we get the result by Theorem 3.1.

THEOREM 3.4. If $A B C=0, A B D=0, C B C=0, C B D=0$, then M is $G D$ invertible.

Proof. Clearly, we have

$$
M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=p+q
$$

where

$$
p=\left(\begin{array}{ll}
A & 0 \\
C & D
\end{array}\right), q=\left(\begin{array}{ll}
0 & B \\
0 & 0
\end{array}\right) .
$$

Then by Theorem 2.4, we complete the proof as in Theorem 3.1.
Corollary 3.5. (1) If $B C=0$ and $B D=0$, then M is $G D$-invertible.
(2) If $A B=0$ and $C B=0$, then M is GD-invertible.

Example 3.6. Let A, B, C, D be operators, acting on separable Hilbert space $l_{2}(\mathbb{N})$, defined as follows respectively:

$$
\begin{aligned}
& A\left(x_{1}, x_{2}, x_{3}, x_{4}, \cdots\right)=\left(x_{1}, x_{1}, x_{3}, x_{4}, \cdots\right) \\
& B\left(x_{1}, x_{2}, x_{3}, x_{4}, \cdots\right)=\left(x_{1},-x_{1}, x_{3}, x_{4}, \cdots\right) \\
& C\left(x_{1}, x_{2}, x_{3}, x_{4}, \cdots\right)=\left(x_{1}+x_{2}, x_{1}-x_{2}, 0,0, \cdots\right), \\
& D\left(x_{1}, x_{2}, x_{3}, x_{4}, \cdots\right)=\left(-x_{2}, x_{2}, 0,0, \cdots\right)
\end{aligned}
$$

Set $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$. Then $B C A=0, B C B=0, D C A=0$ and $D C B=0$. By virtue of Theorem 3.4, M is GD-invertible.

It is convenient this stage to include the following spiliting theorem.
THEOREM 3.7. If $B C A=0, B C B=0, B D C=0$ and $B D^{2}=0$, then M is $G D$ invertible.

Proof. Let

$$
p=\left(\begin{array}{cc}
A & B \\
0 & 0
\end{array}\right), q=\left(\begin{array}{ll}
0 & 0 \\
C & D
\end{array}\right)
$$

Then $M=p+q$. In view of [7, Lemma 2.2,] p and q are GD-invertible. By hypothesis, we easily verify that $p q p=0$ and $p q^{2}=0$. This completes the proof, by Theorem 2.4.

4. Spectral conditions

The goal of this section is to consider another splitting of the block matrix M and present alternative theorems on spectral idempotents. Let $A \in \mathscr{L}(X), D \in \mathscr{L}(Y)$ be GD-invertible and M be given by $(*)$. We derive

THEOREM 4.1. (1) If $B C A=0, B C B=0, D^{d} C=0$ and $B D D^{\pi}=0$, then M is GD-invertible.
(2) If $C B C=0, C B D=0, C A^{d}=0$ and $A A^{\pi} B=0$, then M is $G D$-invertible.

Proof.

(1) Let

$$
P=\left(\begin{array}{cc}
A^{2} A^{d} & B \\
0 & D^{2} D^{d}
\end{array}\right), Q=\left(\begin{array}{cc}
A A^{\pi} & 0 \\
C & D D^{\pi}
\end{array}\right)
$$

Then P and Q are GD-invertible by Theorem 3.1. We compute that

$$
\begin{aligned}
P Q P & =\left(\begin{array}{cc}
B C A^{2} A^{d} & B C B \\
D^{2} D^{d} C A^{2} A^{d} & D^{2} D^{d} C B
\end{array}\right), \\
P Q^{2} & =\left(\begin{array}{cc}
B C A A^{\pi} & B D^{2} D^{\pi} \\
D^{2} D^{d} C A A^{\pi} & 0
\end{array}\right) .
\end{aligned}
$$

By hypothesis, $P Q P=0$ and $P Q^{2}=0$. In light of Lemma $2.1, M=P+Q$ is GD- invertible.
(2) Choosing the same P and Q as in (1) we have $Q P Q=0$ and $Q P^{2}=0$. As P and Q are GD- invertible, we complete the proof by Theorem 2.4.

Corollary 4.2. ([5, Theorem 6])
(1) If $B C=0, D^{d} C=0$ and $B D D^{\pi}=0$, then M is GD-invertible.
(2) If $C B=0, C A^{d}=0$ and $A A^{\pi} B=0$, then M is GD-invertible.

THEOREM 4.3. If $B C A=0, B C B=0, B D^{d}=0$ and $D^{\pi} D C=0$, then M is $G D$ invertible.

Proof. Let

$$
P=\left(\begin{array}{cc}
A\left(I-A^{\pi}\right) & B \\
0 & D D^{\pi}
\end{array}\right), Q=\left(\begin{array}{cc}
A A^{\pi} & 0 \\
C & D\left(I-D^{\pi}\right)
\end{array}\right)
$$

In view of Theorem 3.1, P and Q are GD- invertible. Moreover, we have

$$
\begin{aligned}
P Q P & =\left(\begin{array}{cc}
B C A\left(I-A^{\pi}\right) & B C B \\
D D^{\pi} C A\left(I-A^{\pi}\right) & D D^{\pi} C B
\end{array}\right) \\
P Q^{2} & =\left(\begin{array}{cc}
B C A A^{\pi}+B D\left(I-D^{\pi}\right) C B D^{2}\left(I-D^{\pi}\right) \\
D D^{\pi} C A A^{\pi} & 0
\end{array}\right) .
\end{aligned}
$$

By hypothesis, we get $P Q P=0$ and $P Q^{2}=0$. According to Theorem 2.4, $M=P+Q$ is G-Drazin invertible, as asserted.

Corollary 4.4. ([5, Theorem 7]) If $B C=0, B D^{d}=0$ and $D^{\pi} D C=0$, then M is GD-invertible.

Example 4.5. Let A, B, C, D be operators, acting on separable Hilbert space $l_{2}(\mathbb{N})$, defined as follows respectively:

$$
\begin{aligned}
& A\left(x_{1}, x_{2}, x_{3}, x_{4}, \cdots\right)=\left(0, x_{1}, x_{3}, x_{4}, \cdots\right), \\
& B\left(x_{1}, x_{2}, x_{3}, x_{4}, \cdots\right)=\left(0, x_{1}, x_{3}, x_{4}, \cdots\right), \\
& C\left(x_{1}, x_{2}, x_{3}, x_{4}, \cdots\right)=\left(x_{1}, x_{1}+x_{2}, 0,0, \cdots\right), \\
& D\left(x_{1}, x_{2}, x_{3}, x_{4}, \cdots\right)=\left(x_{1}, x_{1}, 0,0, \cdots\right)
\end{aligned}
$$

Then

$$
D^{\pi}\left(x_{1}, x_{2}, x_{3}, x_{4}, \cdots\right)=\left(0,-x_{1}+x_{2}, x_{3}, x_{4}, \cdots\right)
$$

Moreover, we have $B C A=0, B C B=0, B D\left(I-D^{\pi}\right)=0$ and $D^{\pi} D C=0$. In light of Theorem 4.3, $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ is GD-invertible. In this case, $B C \neq 0$.

Theorem 4.6. Let $A \in \mathscr{L}(X)$ be GD-invertible, $D \in \mathscr{L}(Y)$ and M be given by $(*)$. Let $W=A A^{d}+A^{d} B C A^{d}$. If $A W$ is GD-invertible,

$$
A C A^{\pi} B C=0, C A^{\pi} B C=0, D=C A^{d} B
$$

then M is GD-invertible.

Proof. Clearly, we have

$$
M=\left(\begin{array}{cc}
A & B \\
C & C A^{d} B
\end{array}\right)=P+Q
$$

where

$$
P=\binom{A A A^{d} B}{C C A^{d} B}, Q=\left(\begin{array}{cc}
0 & A^{\pi} B \\
0 & 0
\end{array}\right) .
$$

By hypothesis, we easily check that $P Q P=0$ and $P Q^{2}=0$ and Q is GD-invertible. Moreover, we have

$$
P=P_{1}+P_{2}, P_{1}=\left(\begin{array}{cc}
A^{2} A^{d} & A A^{d} B \\
C A A^{d} & C A^{d} B
\end{array}\right), P_{2}=\left(\begin{array}{cc}
A A^{\pi} & 0 \\
C A^{\pi} & 0
\end{array}\right)
$$

and $P_{2} P_{1}=0$. In light of [7, Lemma 2.2,] P_{2} is GD-invertible. It is easy to verify that

$$
P_{1}=\binom{A A^{d}}{C A^{d}}\left(A, A A^{d} B\right)
$$

By hypothesis, we see that

$$
\left(A, A A^{d} B\right)\binom{A A^{d}}{C A^{d}}=A W
$$

is GD-invertible. In light of the Cline's formula, we see that P_{1} is GD-invertible. According to [7, Theorem 2.3] P is GD-invertible. This completes the proof.

Similarly with application of Theorem 2.4 we deduce the following result.
THEOREM 4.7. Let $A \in \mathscr{L}(X)$ be GD-invertible, $D \in \mathscr{L}(Y)$ and M be given by $(*)$. Let $W=A A^{d}+A^{d} B C A^{d}$. If $A W$ is GD-invertible,

$$
B C A A^{\pi}=0, B C A^{\pi} B=0, D=C A^{d} B
$$

then M is GD-invertible.

Acknowledgement. The first author was supported by the Natural Science Foundation of Zhejiang Province, China (No. LY17A010018).

REFERENCES

[1] S. L. Campbell and C. D. Mayer, Generalized Inverse of Linear Transformations, Pitman, London, 1979.
[2] S. L. Campbell, The Drazin inverse and systems of second order linear differential equations, Linear and Multilinear Algebra 14(1983), 195-198.
[3] N. Castro-GonZÁlez and J.J. Koliha, New additive results for the g-Drazin inverse, Proceedings of the Royal Society of Edinburgh, Section A 134(2004), 1085-1097.
[4] X. Chen and R. E. Hartwig, The group inverse of the triangular matrix, Linear Algebra Appl., 237-238(1996), 97-108.
[5] C. Deng, D. S. Cvetković-Ilić and Y. Wei, Some results on the genrealized Derazin inverse of operator matrices, Linear and Multilinear Algebra 58(2010), 503-521.
[6] C. DENG and Y. Wei, New additive results for the generalized Drazin inverse, J. Math. Analysis Appl., 379(2010), 313-321.
[7] D.S. Djordjević and Y. Wei, Additive results for the generalized Drazin inverse, J. Austral. Math. Soc., 73(2002), 115-125.
[8] L. Guo, Representations of Generalized Drazin Inverses for Operator Matrices, Ph.D. Thesis, Jilin University, Changchun, 2010.
[9] L. Guo, J. Chen and H. Zou, Some additive results for the generalized Drazin inverse in a Banach algebra, J. Southeast Univ., 33(2017), 382-386.
[10] Y. JIANG, Y. WEN AND Q. ZENG, Generalizations of Cline's formula for three generalized inverses, Revista. Un. Mat. Argentina, 58(2017), 127-134.
[11] Y. Liao, J. Chen and J. Cui, Cline's formula for the generalized Drazin inverse, Bull. Malays. Math. Sci. Soc., 37(2014), 37-42.
[12] V.G. Miller and H. Zguitti, New extensions of Jacobson's lemma and Cline's formula, Rend. Circ. Mat. Palermo, II. Ser., Published online: 09 February 2017, Doi: 10.1007/s12215-017-0298-6.
[13] D. Mosić, Extensions of Jacobson's lemma for Drazin inverses, Aequat. Math., Published online: 04 April 2017, Doi: 10.1007/s00010-017-0476-9.
[14] Y. Wei and H. Diao, On group inverse of singular Toeplitz matrices, Linear Algebra Appl., 339(2005), 109-123.
[15] H. Yang and X. Liu, The Drazin inverse of the sum of two matrices and its applications, J. Comput. Appl. Math., 235(2011), 1412-1417.
(Received June 23, 2018)

> Huanyin Chen
> Department of Mathematics
> Hangzhou Normal University
> Hangzhou, China
> e-mail: huanyinchen@aliyun.com
> Marjan Sheibani Abdolyousefi Women's University of Semnan (Farzanegan) Semnan, Iran
> e-mail: sheibani@fgusem.ac.ir

[^0]: Mathematics subject classification (2010): 15A09, 32A65, 16E50.
 Keywords and phrases: g-Drazin inverse, additive property, operator matrix, spectral idempotent.

 * Corresponding auhtor.

