ON THE NORM OF HANKEL OPERATOR RESTRICTED TO FOCK SPACE

YUCHENG LI* AND YAMENG LI

(Communicated by G. Misra)

Abstract. In this note, we characterize the norm of Hankel operator $H_{\overline{z}}$. Then we find the formula of the norm of $H_{\overline{z}^n}(g)$ and give an upper bound of the norm of H_n on Fock space. Lastly, we prove the concomitant operator P_n of $H_{\overline{z}^n}$ is quasi-affine to the direct sum of n copies of the concomitant operator P_1 of $H_{\overline{z}}$.

1. Introduction

Let \mathbb{C} be the complex plane. The Fock space F_{α}^2 (see [14]) consists of all entire functions f in $L^2(\mathbb{C}, d\lambda_{\alpha})$, where $\alpha > 0$ and the Gaussian measure

$$d\lambda_{\alpha}(z) = \frac{\alpha}{\pi} e^{-\alpha|z|^2} dA(z),$$

dA is the Euclidean area measure on \mathbb{C} . It is easy to show that F_{α}^2 is a closed subspace of $L^2(\mathbb{C}, d\lambda_{\alpha})$. F_{α}^2 is a Hilbert space. The inner product is defined by

$$\langle f,g\rangle_{\alpha} = \int_{\mathbb{C}} f(z)\overline{g(z)}d\lambda_{\alpha}(z)$$

The reproducing kernel of F_{α}^2 is given by $K_{\alpha}(z,w) = e^{\alpha z \overline{w}}, z, w \in \mathbb{C}$. For any $z \in \mathbb{C}$, we let

$$k_{z}(w) = \frac{K_{\alpha}(w, z)}{\sqrt{K_{\alpha}(z, z)}} = e^{\alpha \overline{z}w - \frac{\alpha}{2}|z|^{2}}$$

denote the normalized reproducing kernel at *z*. The Fock projection $P: L^2(\mathbb{C}, d\lambda_\alpha) \to F_\alpha^2$ is an integral operator defined by

$$Pf(z) = \int_{\mathbb{C}} K_{\alpha}(z, w) f(w) d\lambda_{\alpha}(w)$$
 for $f(z) \in L^{2}(\mathbb{C}, d\lambda_{\alpha})$.

In [5], Haslinger researched the canonical solution operator to $\overline{\partial}$ restricted to Bergman spaces. He proved that in the case of the unit disc in \mathbb{C} the canonical solution operator to $\overline{\partial}$ restricted to (0,1)-forms with holomorphic coefficients is a Hilbert-Schmidt operator. In 2002, Haslinger researched the canonical solution operator to $\overline{\partial}$

^{*} Corresponding author.

Mathematics subject classification (2010): 32A36, 47B35.

Keywords and phrases: Fock space, Hankel operator, norm, quasi-affinity.

restricted to spaces of entire functions (see [6]). In 2006, Knirsch and Schneider researched generalized Hankel operators and the generalized solution operator to $\overline{\partial}$ on the Fock space and on the Bergman space of the unit disc (see [9]). Fu and Straube proved in [4] that compactness of the solution operator to $\overline{\partial}$ on (0,1)-forms implies that the boundary of a bounded domain Ω in \mathbb{C}^n does not contain any analytic variety of dimension greater than or equal to 1.

It is well known that the canonical solution operator to $\overline{\partial}$ -equation restricted to (0,1)-forms with holomorphic coefficients in the Bergman space can be interpreted by the Hankel operator

$$H_{\overline{z}}(g) = (I - P)(\overline{z}g),$$

where $P: L^2(\Omega) \to A^2(\Omega)$ denotes the Bergman projection, and Ω is a bounded domain in \mathbb{C}^n . See [1], [2], [3], [6], [7], [8], [9], [10], [12], [13] for details.

Unfortunately there exists $f \in F_{\alpha}^2$ such that $\overline{z}^n f \notin L^2(\mathbb{C}, d\lambda_{\alpha})$. In the sequel, for fixed positive integer *n*, we consider the space

$$A_n^2(\mathbb{C}) = \left\{ f: f \text{ entire}, \sum_{k=0}^{\infty} \frac{(k+n)!}{\alpha^{k+n}} \frac{|f^{(k)}(0)|^2}{(k!)^2} < \infty \right\}$$

as the Hankel operator's domain. It is easy to see that $A_n^2(\mathbb{C})$ is dense in F_α^2 , because the polynomials z^n belong to $A_n^2(\mathbb{C})$. In this note, we compute the norm of $H_{\overline{z}}$. Then we find the formula of the norm of $H_{\overline{z}^n}(g)$ and give an upper bound of the norm of H_n on Fock space. Lastly, we prove the concomitant operator P_n of $H_{\overline{z}^n}$ is quasi-affine to the direct sum of n copies of the concomitant operator P_1 of $H_{\overline{z}}$.

2. The norm of Hankel operators

The following example indicates $g(z) \in F_{\alpha}^2$ but $\overline{z}^n g(z) \notin L^2(\mathbb{C}, d\lambda_{\alpha})$.

EXAMPLE 1. For fixed positive integer *n*, let $g(z) = \sum_{k=0}^{\infty} \frac{\sqrt{\alpha}^{k+n}}{(k+n)\sqrt{(k+n-1)!}} z^k$. Then $g(z) \in F_{\alpha}^2(\mathbb{C})$, but $\overline{z}^n g(z) \notin L^2(\mathbb{C}, d\lambda_{\alpha})$.

From the definition of $A_n^2(\mathbb{C})$, we know that $g(z) \in A_n^2(\mathbb{C})$ implies that $\overline{z}^n g(z) \in L^2(\mathbb{C}, d\lambda_\alpha)$.

LEMMA 1. If $g(z) \in A_n^2(\mathbb{C})$, then:

- (1) $g^{(n)}(z) \in F^2_{\alpha}(\mathbb{C});$
- (2) $g(z) \in F^2_{\alpha}(\mathbb{C}).$

Proof.

(1) Suppose
$$g(z) = \sum_{k=0}^{\infty} a_k z^k$$
. Then we have $\sum_{k=0}^{\infty} \frac{|a_k|^2 (k+n)!}{\alpha^{k+n}} = C < +\infty$. Note that
 $g^{(n)}(z) = \sum_{k=0}^{\infty} \frac{(n+k)!}{k!} a_{n+k} z^k$, thus
 $\int_{\mathbb{C}} |\sum_{k=0}^{\infty} \frac{(n+k)!}{k!} a_{n+k} z^k|^2 \frac{\alpha}{\pi} e^{-\alpha |z|^2} dA(z) = \int_0^{+\infty} \sum_{k=0}^{\infty} \frac{[(n+k)!]^2}{(k!)^2} |a_{n+k}|^2 \rho^k \alpha e^{-\alpha \rho} d\rho$
 $= \sum_{k=0}^{\infty} \frac{[(n+k)!]^2 |a_{n+k}|^2}{k! \alpha^k}.$

Applying the inequality

$$\frac{[(n+k)!]^2}{k!} < (2n+k)! \tag{1}$$

we obtain

$$\sum_{k=0}^{\infty} \frac{[(n+k)!]^2 |a_{n+k}|^2}{k! \alpha^{k+n}} < \sum_{k=0}^{\infty} \frac{(2n+k)! |a_{n+k}|^2}{\alpha^{k+n}} = \sum_{k=n}^{\infty} \frac{(n+k)! |a_k|^2}{\alpha^k} < \sum_{k=0}^{\infty} \frac{(n+k)! |a_k|^2}{\alpha^k} = \alpha^n C.$$

This implies that $g^{(n)}(z) \in F^2_{\alpha}(\mathbb{C})$.

(2) Note that $||g(z)||^2 = \sum_{k=0}^{\infty} \frac{k!|a_k|^2}{\alpha^k} < \alpha^n C$. This implies that $g(z) \in F^2_{\alpha}(\mathbb{C})$. \Box

LEMMA 2. Let $g(z) \in A_n^2(\mathbb{C})$ and $P: L^2(\mathbb{C}, d\lambda_{\alpha}) \to F_{\alpha}^2(\mathbb{C})$. Then $P(\overline{z}^n g(z)) = \frac{1}{\alpha^n} g^{(n)}(z)$.

Proof. Suppose $g(z) = \sum_{k=0}^{\infty} a_k z^k$. Then we have

$$P(\overline{z}^{n}g(z)) = \int_{\mathbb{C}} \overline{w}^{n} \sum_{k=0}^{\infty} a_{k} w^{k} e^{\alpha z \overline{w}} d\lambda_{\alpha}(w) = \frac{\alpha}{\pi} \int_{\mathbb{C}} \overline{w}^{n} \sum_{k=0}^{\infty} a_{k} w^{k} \sum_{m=0}^{\infty} \frac{(\alpha z)^{m}}{m!} \overline{w}^{m} e^{-\alpha |w|^{2}} dA(w) = \frac{\alpha}{\pi} \int_{\mathbb{C}} \left(a_{n} |w|^{2n} + a_{n+1} \frac{\alpha z}{1!} |w|^{2(n+1)} + a_{n+2} \frac{(\alpha z)^{2}}{2!} |w|^{2(n+2)} + \cdots \right) e^{-\alpha |w|^{2}} dA(w) = \frac{1}{\alpha^{n}} \int_{0}^{\infty} \sum_{k=0}^{\infty} \frac{z^{k}}{k!} a_{n+k} x^{n+k} e^{-x} dx = \frac{1}{\alpha^{n}} \sum_{k=0}^{\infty} \frac{(n+k)!}{k!} a_{n+k} z^{k} = \frac{1}{\alpha^{n}} g^{(n)}(z). \quad \Box$$

For simpleness, we denote $H_{\overline{z}^n}$ by H_n . In [6, 9], Haslinger, Knirsch and Schneider proved in their paper that Hankel operator H_n fails to be compact on the Fock space. Now we prove that H_n is a bounded linear operator on $A_n^2(\mathbb{C})$. PROPOSITION 1. Let $H_1 : A_1^2(\mathbb{C}) \to L^2(\mathbb{C}, d\lambda_{\alpha})$. Then H_1 is a bounded linear operator, and $||H_1|| = \sqrt{\frac{1}{\alpha}}$.

Proof. For $g, h \in A_1^2(\mathbb{C}), a, b \in \mathbb{C}$, it is easy to show that

$$H_1(ag+bh)(z) = aH_1(g) + bH_1(h)$$

Suppose that $g(z) = \sum_{k=0}^{\infty} a_k z^k$. Then applying Lemma 2, we have

$$\begin{split} \|H_1(g)\|^2 &= \langle H_1(g), H_1(g) \rangle = \langle \overline{z}g - P(\overline{z}g), \overline{z}g - P(\overline{z}g) \rangle \\ &= \langle \overline{z}g, \overline{z}g \rangle - \langle P(\overline{z}g), \overline{z}g \rangle - \langle \overline{z}g, P(\overline{z}g) \rangle + \langle P(\overline{z}g), P(\overline{z}g) \rangle \\ &= \langle \overline{z}g, \overline{z}g \rangle - \frac{1}{\alpha} \langle g'(z), \overline{z}g \rangle - \frac{1}{\alpha} \langle \overline{z}g, g'(z) \rangle + \frac{1}{\alpha^2} \langle g'(z), g'(z) \rangle \\ &= I_1 - I_2 - I_3 + I_4. \end{split}$$

$$\begin{split} I_{1} &= \int_{\mathbb{C}} |z|^{2} \sum_{k=0}^{\infty} a_{k} z^{k} \sum_{m=0}^{\infty} \overline{a}_{m} \overline{z}^{m} \frac{\alpha}{\pi} e^{-\alpha |z|^{2}} dA(z) = \alpha \int_{0}^{\infty} \sum_{k=0}^{\infty} |a_{k}|^{2} r^{k+1} e^{-\alpha r} dr \\ &= \int_{0}^{\infty} \sum_{k=0}^{\infty} \frac{|a_{k}|^{2}}{\alpha^{k+1}} x^{k+1} e^{-x} dx = \sum_{k=0}^{\infty} \frac{|a_{k}|^{2} (k+1)!}{\alpha^{k+1}}. \\ I_{2} &= \frac{1}{\alpha} \int_{\mathbb{C}} \sum_{k=0}^{\infty} (k+1) a_{k+1} z^{k} \sum_{m=0}^{\infty} \overline{a}_{m} \overline{z}^{m} z \frac{\alpha}{\pi} e^{-\alpha |z|^{2}} dA(z) = \int_{0}^{\infty} \sum_{k=1}^{\infty} k |a_{k}|^{2} r^{k} e^{-\alpha r} dr \\ &= \sum_{k=1}^{\infty} \frac{k |a_{k}|^{2} k!}{\alpha^{k+1}}. \\ I_{3} &= \overline{I}_{2} = \sum_{k=1}^{\infty} \frac{k |a_{k}|^{2} k!}{\alpha^{k+1}}. \\ I_{4} &= \frac{1}{\alpha^{2}} \int_{\mathbb{C}} \sum_{k=0}^{\infty} (k+1) a_{k+1} z^{k} \sum_{m=0}^{\infty} (m+1) \overline{a}_{m+1} \overline{z}^{m} z \frac{\alpha}{\pi} e^{-\alpha |z|^{2}} dA(z) \\ &= \frac{1}{\alpha} \int_{0}^{\infty} \sum_{k=1}^{\infty} k^{2} |a_{k}|^{2} r^{k-1} e^{-\alpha r} dr = \sum_{k=1}^{\infty} \frac{k^{2} |a_{k}|^{2} (k-1)!}{\alpha^{k+1}} = \sum_{k=1}^{\infty} \frac{k |a_{k}|^{2} k!}{\alpha^{k+1}}. \end{split}$$

Therefore,

$$||H_1(g)||^2 = \sum_{k=0}^{\infty} \frac{|a_k|^2(k+1)!}{\alpha^{k+1}} - \sum_{k=1}^{\infty} \frac{k|a_k|^2k!}{\alpha^{k+1}} = \frac{1}{\alpha} \sum_{k=0}^{\infty} \frac{|a_k|^2k!}{\alpha^k}.$$
 (3)

Note that $||g(z)||^2 = \sum_{k=0}^{\infty} \frac{k!}{\alpha^k} |a_k|^2$. So $||H_1(g)||^2 = \frac{1}{\alpha} ||g||^2$. This implies that $||H_1|| = \sqrt{\frac{1}{\alpha}}$.

PROPOSITION 2. Let $H_1: A_1^2(\mathbb{C}) \to L^2(\mathbb{C}, d\lambda_{\alpha})$. Then ker $H_1 = \{0\}$.

Proof. Note that

$$H_1(g) = \overline{z}g - P(\overline{z}g) = \overline{z}g(z) - \frac{1}{\alpha}g'(z).$$

From $H_1(g) = 0$, we obtain $g'(z) = \alpha \overline{z}g(z)$. So $g(z) = ce^{\alpha |z|^2}$.

Observe that g(z) is an entire function, applying the Cauchy-Riemann equation, we get c = 0. Hence ker $H_1 = \{0\}$. \Box

In order to estimate the norm of H_n , we need the following lemma.

LEMMA 3. Let
$$p(k,1) = 1$$
, and $p(k,n) = \prod_{j=1}^{n} (k+j) - \prod_{j=1}^{n} (k+j-n)$, $n \ge 2$. Then

$$p(k,n) = n! + \sum_{j=2}^{n} \frac{C_n^{j-1}n!}{(j-1)!} k(k-1) \cdots (k-j+2),$$

where $C_n^{j-1} = \frac{n!}{(j-1)!(n-j+1)!}$.

Proof. We prove the lemma by mathematics induction.

Step 1 When n = 2, it is easy to see the equality holds.

Step 2 Assume that the equality holds for n = l. That is,

$$p(k,l) = \prod_{j=1}^{l} (k+j) - \prod_{j=1}^{l} (k+j-l) = l! + \sum_{j=2}^{l} \frac{C_l^{j-1}l!}{(j-1)!} k(k-1) \cdots (k-j+2)$$

When n = l + 1, we have

$$\begin{split} p(k,l+1) \\ &= \prod_{j=1}^{l+1} (k+j) - \prod_{j=1}^{l+1} (k+j-l-1) \\ &= (k+l+1) \prod_{j=1}^{l} (k+j) - (k+l+1) \prod_{j=1}^{l} (k+j-l) \\ &+ (k+l+1) \prod_{j=1}^{l} (k+j-l) - \prod_{j=1}^{l+1} (k+j-l-1) \\ &= (k+l+1) p(k,l) + \prod_{j=1}^{l} (k+j-l) (2l+1) \\ &= (k+l+1) [l! + \sum_{j=2}^{l} \frac{C_l^{j-1} l!}{(j-1)!} k(k-1) \cdots (k-j+2)] + \prod_{j=1}^{l} (k+j-l) (2l+1) \\ &= (l+1)! + kl! + \sum_{j=2}^{l} \frac{C_l^{j-1} l!}{(j-1)!} k(k-1) \cdots (k-j+2) (k+l+1) + \prod_{i=1}^{l} (k+i-l) (2l+1). \end{split}$$

Note that $p(k, l+1) = (l+1)! + \sum_{j=2}^{l+1} \frac{C_{l+1}^{j-1}(l+1)!}{(j-1)!} k(k-1) \cdots (k-j+2).$ We need only to show that

$$kl! + \sum_{j=2}^{l} \frac{C_l^{j-1}l!}{(j-1)!} k(k-1) \cdots (k-j+2)(k+l+1) + \prod_{i=1}^{l} (k+i-l)(2l+1)$$

$$= \sum_{j=2}^{l+1} \frac{C_{l+1}^{j-1}(l+1)!}{(j-1)!} k(k-1) \cdots (k-j+2).$$
(4)

We rewrite the above equality as the following form

$$kl! + \sum_{j=2}^{l} \frac{C_l^{j-1}l!}{(j-1)!} k(k-1) \cdots (k-j+2) [(k-j+1) + (l+j)] + \prod_{i=1}^{l} (k+i-l)(2l+1)$$

=
$$\sum_{j=2}^{l+1} \frac{C_{l+1}^{j-1}(l+1)!}{(j-1)!} k(k-1) \cdots (k-j+2).$$
(5)

Now by comparing the coefficient of the form polynomial $k(k-1)\cdots(k-j+2)$ $(j = 2, \cdots l+1)$ in the two sides of (5), we obtain the following facts. When j = 2, we have

$$l! + \frac{C_l^1 l!}{1!} (l+2) = \frac{C_{l+1}^1 (l+1)!}{1!}.$$
(6)

When 2 < j < l, we have

$$\frac{C_l^{j-1}l!}{(j-1)!} + \frac{C_l^j l!(l+j+1)}{j!} = \frac{C_{l+1}^j(l+1)!}{j!}.$$
(7)

When j = l, the coefficient of $k(k-1)\cdots(k-l+1)$ in the left hand side of (5) is $\frac{C_l^{l-1}l!}{(l-1)!} + (2l+1)$. The coefficient of $k(k-1)\cdots(k-l+1)$ in the right hand side of (5) is $\frac{C_{l+1}^{l}(l+1)!}{l!}$ (when j = l+1). Simple observation shows that

$$\frac{C_l^{l-1}l!}{(l-1)!} + (2l+1) = \frac{C_{l+1}^l(l+1)!}{l!}.$$
(8)

Therefore, the lemma is true, as desired. \Box

In the following proposition, we give the norm characterization of $H_n(g)$.

PROPOSITION 3. Let
$$g(z) = \sum_{k=0}^{\infty} a_k z^k \in A_n^2(\mathbb{C})$$
. Then $||H_n(g)||^2 = \sum_{j=1}^n \frac{C_n^{j-1}n!}{(j-1)!\alpha^{n+j-1}} ||g^{(j-1)}(z)||^2$, where $||g^{(j-1)}(z)||^2 = \sum_{k=0}^\infty \frac{k!k(k-1)\cdots(k-j+2)}{\alpha^{k-j+1}} |a_k|^2$, $(j = 2, 3, \dots, n)$.

Proof. Similar to Proposition 1 and applying Lemma 3, we have

$$\begin{split} \|H_n(g)\|^2 &= \sum_{k=0}^{\infty} \frac{|a_k|^2 (k+n)!}{\alpha^{k+n}} - \sum_{k=0}^{\infty} \frac{[(k+n)!]^2 |a_{k+n}|^2}{k! \alpha^{k+2n}} \\ &= \sum_{k=0}^{\infty} \frac{|a_k|^2 (k+n)!}{\alpha^{k+n}} - \sum_{k=n}^{\infty} \frac{(k!)^2 |a_k|^2}{(k-n)! \alpha^{k+n}} \\ &= \sum_{k=0}^{n-1} \frac{|a_k|^2 (k+n)!}{\alpha^{k+n}} + \sum_{k=n}^{\infty} \frac{|a_k|^2 k!}{\alpha^{k+n}} \left[(k+n)! - \frac{(k!)^2}{(k-n)!} \right] \\ &= \sum_{k=0}^{n-1} \frac{|a_k|^2 (k+n)!}{\alpha^{k+n}} + \sum_{k=n}^{\infty} \frac{|a_k|^2 k!}{\alpha^{k+n}} p(k,n) = \sum_{k=0}^{\infty} \frac{|a_k|^2 k!}{\alpha^{k+n}} p(k,n) \\ &= \sum_{k=0}^{\infty} \frac{|a_k|^2 k!}{\alpha^{k+n}} \left[n! + \sum_{j=2}^{n} \frac{C_n^{j-1} n!}{(j-1)!} k(k-1) \cdots (k-j+2) \right] \\ &= \sum_{k=0}^{\infty} \frac{|a_k|^2 k!}{\alpha^{k+n}} n! + \sum_{k=0}^{\infty} \frac{|a_k|^2 k!}{\alpha^{k+n}} \sum_{j=2}^{n} \frac{C_n^{j-1} n!}{(j-1)!} k(k-1) \cdots (k-j+2) \\ &= \frac{n!}{\alpha^n} ||g(z)||^2 + \sum_{j=2}^{n} \frac{C_n^{j-1} n!}{(j-1)! \alpha^{n+j-1}} \left\| g^{(j-1)}(z) \right\|^2 . \end{split}$$

Hence, we complete the proof of Proposition 3. \Box

Now we give an upper bound of the operator H_n .

THEOREM 1. The norm of the operator H_n is less than or equal to $\sqrt{\frac{n!(2^n-1)}{\alpha^n}}$.

Proof. Applying (1), we obtain

$$\begin{split} \|g^{(n)}\|^2 &= \sum_{k=0}^{\infty} \frac{[(n+k)!]^2 |a_{n+k}|^2}{k! \alpha^k} < \sum_{k=0}^{\infty} \frac{(2n+k)! |a_{n+k}|^2}{\alpha^k} = \alpha^n \sum_{k=0}^{\infty} \frac{(2n+k)! |a_{n+k}|^2}{\alpha^{n+k}} \\ &= \alpha^n \sum_{l=n}^{\infty} \frac{(n+l)! |a_l|^2}{\alpha^l} < \alpha^n \sum_{l=0}^{\infty} \frac{(n+l)! |a_l|^2}{\alpha^l} = \alpha^{2n} \|\overline{z}^n g\|^2 \leqslant \alpha^{2n} \|\overline{z}^n\|^2 \|g\|^2 \\ &= \alpha^n n! \|g\|^2. \end{split}$$

Thus,

$$\begin{aligned} \|H_n(g)\|^2 &= \sum_{j=1}^n \frac{C_n^{j-1} n!}{(j-1)! \alpha^{n+j-1}} \left\| g^{(j-1)}(z) \right\|^2 < \sum_{j=1}^n \frac{C_n^{j-1} n!}{(j-1)! \alpha^{n+j-1}} \alpha^{j-1} (j-1)! \|g\|^2 \\ &= \sum_{j=1}^n \frac{C_n^{j-1} n!}{\alpha^n} \|g\|^2 < \frac{n! (2^n-1)}{\alpha^n} \|g\|^2. \end{aligned}$$

Therefore, we have $||H_n|| \leq \sqrt{\frac{n!(2^n-1)}{\alpha^n}}$. \Box

3. Some properties of the operator P_n

For $f \in A_n^2(\mathbb{C})$, let $P_n f = P(\overline{z}^n f), n = 1, 2, \cdots$, and P is the Fock projection. Now we will consider the relationship of the concomitant operator P_n of $H_{\overline{z}^n}$ and the concomitant operator P_1 of $H_{\overline{z}}$.

PROPOSITION 4. If $f(z) \in A_n^2(\mathbb{C})$ for fixed $n \ge 1$, then $H_n f \in \ker P$.

Proof. By Lemma 1 and 2, we have

$$H_n f = \overline{z}^n f - P_n f = \overline{z}^n f - \frac{f^{(n)}(z)}{\alpha^n}.$$
(9)

Hence

$$PH_nf = P(\overline{z}^n f) - \frac{f^{(n)}(z)}{\alpha^n} = 0.$$

So $H_n f \in \ker P$. \Box

Recall that for two bounded linear operators T_1 and T_2 , T_1 is quasi-affine to T_2 , if there exists an intertwining bounded operator X with kernel zero and dense range such that $T_1X = XT_2$ (see [11]).

Let $e_k(z) = \sqrt{\frac{\alpha^k}{k!}} z^k (k = 0, 1, \cdots)$ be the orthonormal basis of $F_{\alpha}^2(\mathbb{C})$. Let $S_j = \overline{span} \{e_{nk+j} | j = 0, 1, \cdots, n-1, k = 0, 1, \cdots \}$. Clearly, $S_j (j = 0, 1, \cdots, n-1)$ are the closed subspaces of F_{α}^2 . And $F_{\alpha}^2 = S_0 \bigoplus S_1 \bigoplus \cdots \bigoplus S_{n-1}$. Denote $L_j = S_j|_{A_n^2(\mathbb{C})}$, Then we have $A_n^2(\mathbb{C}) = L_0 \bigoplus L_1 \bigoplus \cdots \bigoplus L_{n-1}$. Define $X_j : A_n^2(\mathbb{C}) \to L_j$, such that $X_j e_k = c_{k,j} e_{nk+j}$, where the coefficients $c_{k,j}$ are to be determined later. Denote $P_{nj} = P_n|_{L_j} (j = 0, 1, \cdots, n-1)$. Then we have the following theorem.

THEOREM 2. The operator $P_n(n \ge 2)$ is quasi-affine to $\bigoplus_{1}^{n} P_1$ on $A_n^2(\mathbb{C})$.

Proof. It is easy to show $P_{nj}X_je_0 = X_jP_1e_0 = 0$. When $k \ge 1$, we have

 $P_{n_i}X_ie_k$

$$=P_{nj}c_{k,j}e_{nk+j} = c_{k,j}\sqrt{\frac{\alpha^{nk+j}}{(nk+j)!}}P_{nj}(z^{nk+j})$$

$$=c_{k,j}\sqrt{\frac{\alpha^{nk+j}}{(nk+j)!}}\frac{(nk+j)(nk+j-1)\cdots(n(k-1)+j+1)}{\alpha^n}z^{n(k-1)+j}$$

$$=c_{k,j}\sqrt{\frac{\alpha^{nk+j}}{(nk+j)!}} \times \frac{(n(k-1)+j)!}{\alpha^{n(k-1)+j}}\frac{(nk+j)(nk+j-1)\cdots(n(k-1)+j+1)}{\alpha^n}}{\alpha^n}e_{n(k-1)+j}$$

$$\begin{aligned} X_j P_1 e_k &= X_j P_1 \left(\sqrt{\frac{\alpha^k}{k!}} z^k \right) = \sqrt{\frac{\alpha^k}{k!}} X_j \left(k \frac{z^{k-1}}{\alpha} \right) = \sqrt{\frac{\alpha^k}{k!}} \frac{k}{\alpha} X_j \left(\sqrt{\frac{(k-1)!}{\alpha^{k-1}}} e_{k-1} \right) \\ &= \sqrt{\frac{k}{\alpha}} c_{k-1,j} e_{n(k-1)+j}. \end{aligned}$$

From $P_{n_i}X_ie_k = X_iP_1e_k$, we have

$$\frac{c_{k,j}}{c_{k-1,j}} = \frac{\sqrt{\frac{k}{\alpha}}}{\sqrt{\frac{(nk+j)(nk+j-1)\cdots(n(k-1)+j+1)}{\alpha^n}}} = \sqrt{\frac{k\alpha^{n-1}}{(nk+j)(nk+j-1)\cdots(n(k-1)+j+1)}}.$$

So, we obtain

$$c_{k,j} = \sqrt{\frac{\Gamma(k+1)\alpha^{k(n-1)}\Gamma(j+1)}{\Gamma(nk+j+1)}}.$$
(10)

Put

$$b_{k,j} = \frac{\Gamma(k+1)\alpha^{k(n-1)}}{\Gamma(nk+j+1)} = \frac{\alpha^{k(n-1)}}{(nk+j)(nk+j-1)\cdots(k+1)},$$
(11)

then $c_{k,j} = \sqrt{b_{k,j}\Gamma(j+1)}$.

In the following, we will analyze the limit of sequence $c_{k,j}$ as $k \to +\infty$. **Case1**. When $0 < \alpha < 1$, we have $\lim_{k \to +\infty} c_{k,j} = 0$.

Case2. When $\alpha = 1$, it is easy to see that $\lim_{k \to +\infty} c_{k,j} = 0$.

Case3. When $\alpha > 1$, we will consider the following equality

$$-\ln b_{k,j} = -k(n-1)\ln \alpha + [\ln(nk+j) + \ln(nk+j-1) + \dots + \ln(k+1)] = A_k - B_k$$
$$= B_k \left(\frac{A_k}{B_k} - 1\right).$$

Note that B_k is a monotone increasing sequence, and $B_k \rightarrow +\infty$ as $k \rightarrow +\infty$. By Stolz's theorem, we have

$$\lim_{k \to +\infty} \frac{A_k}{B_k} = \lim_{k \to +\infty} \frac{\ln \frac{(nk+j)(nk+j-1)\cdots(k+1)}{(nk-n+j)\cdots k}}{(n-1)\ln\alpha}$$

$$= \lim_{k \to +\infty} \frac{\ln \left(n + \frac{j}{k}\right) + \ln((nk+j-1)\cdots(nk-n+j+1))}{(n-1)\ln\alpha} = +\infty.$$
(12)

Hence, there is a positive integer k_0 , such that when $k > k_0$, we have $\frac{A_k}{B_k} > 2$. This implies that $\ln \frac{1}{b_{k,j}} \to +\infty$ as $k \to +\infty$. So $\lim_{k \to +\infty} c_{k,j} = 0$.

Suppose that $f \in \ker X_j$, and $f = \sum_{k=0}^{\infty} d_k e_k, d_k \in \mathbb{C}$. Then from

$$0 = \left\langle X_j f, e_{nk+j} \right\rangle = \left\langle \sum_{k=0}^{\infty} d_k c_{k,j} e_{nk+j}, e_{nk+j} \right\rangle,$$

we deduce that $d_k = 0 (k = 0, 1, \dots)$. So ker $X_j = \{0\}$.

Next, for $g \in \ker X_j^*$, and $g = \sum_{k=0}^{\infty} m_k e_{nk+j}, m_k \in \mathbb{C}$. From

$$0 = \langle e_k, X_j^* g \rangle = \left\langle c_{k,j} e_{nk+j}, \sum_{k=0}^{\infty} m_k e_{nk+j} \right\rangle,$$

we obtain $m_k = 0$ $(k = 0, 1, \dots)$. So ker $X_j^* = (RanX_j)^{\perp} = \{0\}$, i.e., $\overline{RanX_j} = L_j$. Hence P_{nj} is quasi-affine to P_1 .

Moreover,
$$P_n|_{A_n^2} = P_{n0} \bigoplus P_{n1} \bigoplus \dots \bigoplus P_{nn-1}$$
 is quasi-affine to $\bigoplus_{n=1}^n P_1$. \Box

Acknowledgement. The authors are partially supported by the NNSF of China (11371119). The authors would like to express their sincere appreciation to the referee for his/her valuable suggestions and comments.

REFERENCES

- J. ARAZY, S. FISHER AND J. PEETRE, Hankel operators on weighted Bergman spaces, Amer. J. of Math. 110, (1988), 989–1054.
- [2] S. AXLER, The Bergman space, the Bloch spaces, and commutators of multiplication operators, Duke Math. J. 53, (1986), 315–332.
- [3] F. F. BONSTALL, *Hankel operator on the Bergman spaces for the disc*, J. London Math. Soc. (2) **33**, (1986), 355–364.
- [4] S. FU AND E. J. STRAUBE, Compactness of the ∂̄-Neumann problem on convex domains, J. Funct. Anal. 159, (1998), 629–641.
- [5] F. HASLINGER, The canonical solution operator to ∂ restricted to Bergman spaces, Proc. Amer. Math. Soc. 129, (2001), 3321–3329.
- [6] F. HASLINGER, The canonical solution operator to $\overline{\partial}$ restricted to spaces of entire functions, Ann. Fac. Sci. Toulous Math. (1) **11**, (2002), 57–70.
- [7] F. HASLINGER, Spectrum of the ∂̄-Neumann Laplacian on the Fock space, J. Math. Anal. Appl. 402, (2013), 739–744.
- [8] S. JANSON, Hankel operators between weighted Bergman spaces, Ark. Mat. 26, (1988), 205–219.
- [9] W. KNIRSCH AND G. SCHNEIDER, Generalized Hankel operators and the generalized solution operator to d
 on the Fock space and on the Bergman space of the unit disc, Math. Nachr. 279, (2006), 1684–1694.
- [10] R. ROCHBERG, Trace ideal criteria for Hankel operators and commutators, Indiana Univ. Math. J. 31, (1982), 913–925.
- [11] M. UCHIYAMA, Curvatures and similarity of operators with holomorphic eigenvectors, Trans. Amer. Math. Soc. 319, (1990), 405–415.
- [12] R. WALLSTERN, Hankel operators between weighted Bergman space in the ball, Ark. Math. 28, (1990), 183–192.

- [13] K. H. ZHU, Hilbert-Schmidt Hankel operators on the Bergman space, Proc. Amer. Math. Soc. 109, (1990), 721–730.
- [14] K. H. ZHU, Analysis on Fock spaces, GTM 263, Springer New York, 2012.

(Received October 30, 2019)

Yucheng Li Department of Mathematics Hebei Normal University Shijiazhuang, 050024, PR China e-mail: liyucheng@hebtu.edu.cn

Yameng Li Department of Mathematics Hebei Normal University Shijiazhuang, 050024, PR China e-mail: m19933063560@163.com

Operators and Matrices www.ele-math.com oam@ele-math.com