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ON THE NORM OF HANKEL OPERATOR

RESTRICTED TO FOCK SPACE

YUCHENG LI ∗ AND YAMENG LI

(Communicated by G. Misra)

Abstract. In this note, we characterize the norm of Hankel operator Hz . Then we find the
formula of the norm of Hz n (g) and give an upper bound of the norm of Hn on Fock space.
Lastly, we prove the concomitant operator Pn of Hz n is quasi-affine to the direct sum of n
copies of the concomitant operator P1 of Hz .

1. Introduction

Let C be the complex plane. The Fock space F2
α (see [14]) consists of all entire

functions f in L2(C,dλα) , where α > 0 and the Gaussian measure

dλα(z) =
α
π

e−α |z|2dA(z),

dA is the Euclidean area measure on C . It is easy to show that F2
α is a closed subspace

of L2(C,dλα) . F2
α is a Hilbert space. The inner product is defined by

〈 f ,g〉α =
∫
C

f (z)g(z)dλα(z).

The reproducing kernel of F2
α is given by Kα (z,w) = eαzw, z,w ∈ C . For any z ∈ C ,

we let

kz(w) =
Kα(w,z)√
Kα(z,z)

= eα zw− α
2 |z|2

denote the normalized reproducing kernel at z . The Fock projection
P : L2(C,dλα) → F2

α is an integral operator defined by

P f (z) =
∫
C

Kα(z,w) f (w)dλα (w) for f (z) ∈ L2(C,dλα).

In [5], Haslinger researched the canonical solution operator to ∂ restricted to
Bergman spaces. He proved that in the case of the unit disc in C the canonical solu-
tion operator to ∂ restricted to (0,1)-forms with holomorphic coefficients is a Hilbert-
Schmidt operator. In 2002, Haslinger researched the canonical solution operator to ∂
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restricted to spaces of entire functions (see [6]). In 2006, Knirsch and Schneider re-
searched generalized Hankel operators and the generalized solution operator to ∂ on
the Fock space and on the Bergman space of the unit disc (see [9]). Fu and Straube
proved in [4] that compactness of the solution operator to ∂ on (0,1)-forms implies that
the boundary of a bounded domain Ω in Cn does not contain any analytic variety of
dimension greater than or equal to 1.

It is well known that the canonical solution operator to ∂ -equation restricted to
(0,1)-forms with holomorphic coefficients in the Bergman space can be interpreted by
the Hankel operator

Hz(g) = (I−P)(zg),

where P : L2(Ω)→A2(Ω) denotes the Bergman projection, and Ω is a bounded domain
in Cn . See [1], [2], [3], [6], [7], [8], [9], [10], [12], [13] for details.

Unfortunately there exists f ∈ F2
α such that zn f /∈ L2(C,dλα) . In the sequel, for

fixed positive integer n , we consider the space

A2
n(C) =

{
f : f entire,

∞

∑
k=0

(k+n)!
αk+n

| f (k)(0)|2
(k!)2 < ∞

}

as the Hankel operator’s domain. It is easy to see that A2
n(C) is dense in F2

α , because
the polynomials zn belong to A2

n(C) . In this note, we compute the norm of Hz . Then
we find the formula of the norm of Hzn(g) and give an upper bound of the norm of Hn

on Fock space. Lastly, we prove the concomitant operator Pn of Hzn is quasi-affine to
the direct sum of n copies of the concomitant operator P1 of Hz .

2. The norm of Hankel operators

The following example indicates g(z) ∈ F2
α but zng(z) /∈ L2(C,dλα) .

EXAMPLE 1. For fixed positive integer n , let g(z) =
∞
∑

k=0

√
αk+n

(k+n)
√

(k+n−1)!
zk . Then

g(z) ∈ F2
α (C) , but zng(z) /∈ L2(C,dλα) .

From the definition of A2
n(C) , we know that g(z) ∈ A2

n(C) implies that zng(z) ∈
L2(C,dλα) .

LEMMA 1. If g(z) ∈ A2
n(C) , then:

(1) g(n)(z) ∈ F2
α (C);

(2) g(z) ∈ F2
α (C) .

Proof.
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(1) Suppose g(z) =
∞
∑

k=0
akzk . Then we have

∞
∑

k=0

|ak|2(k+n)!
αk+n = C < +∞ . Note that

g(n)(z) =
∞
∑

k=0

(n+k)!
k! an+kzk , thus

∫
C

|
∞

∑
k=0

(n+ k)!
k!

an+kz
k|2 α

π
e−α |z|2dA(z) =

∫ +∞

0

∞

∑
k=0

[(n+ k)!]2

(k!)2 |an+k|2ρkαe−αρdρ

=
∞

∑
k=0

[(n+ k)!]2|an+k|2
k!αk .

Applying the inequality

[(n+ k)!]2

k!
< (2n+ k)! (1)

we obtain

∞

∑
k=0

[(n+ k)!]2|an+k|2
k!αk+n <

∞

∑
k=0

(2n+ k)!|an+k|2
αk+n =

∞

∑
k=n

(n+ k)!|ak|2
αk

<
∞

∑
k=0

(n+ k)!|ak|2
αk = αnC.

This implies that g(n)(z) ∈ F2
α (C) .

(2) Note that ‖g(z)‖2 =
∞
∑

k=0

k!|ak|2
αk < αnC . This implies that g(z) ∈ F2

α (C) . �

LEMMA 2. Let g(z) ∈ A2
n(C) and P : L2(C,dλα) → F2

α (C) . Then P(zng(z)) =
1

αn g(n)(z) .

Proof. Suppose g(z) =
∞
∑

k=0
akzk . Then we have

P(zng(z))

=
∫

C

wn
∞

∑
k=0

akw
keαzwdλα(w) =

α
π

∫
C

wn
∞

∑
k=0

akw
k

∞

∑
m=0

(αz)m

m!
wme−α |w|2dA(w)

=
α
π

∫
C

(
an|w|2n +an+1

αz
1!

|w|2(n+1) +an+2
(αz)2

2!
|w|2(n+2) + · · ·

)
e−α |w|2dA(w)

=
1

αn

∫ ∞

0

∞

∑
k=0

zk

k!
an+kx

n+ke−xdx =
1

αn

∞

∑
k=0

(n+ k)!
k!

an+kz
k =

1
αn g(n)(z). �

(2)

For simpleness, we denote Hzn by Hn . In [6, 9], Haslinger, Knirsch and Schneider
proved in their paper that Hankel operator Hn fails to be compact on the Fock space.
Now we prove that Hn is a bounded linear operator on A2

n(C) .
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PROPOSITION 1. Let H1 : A2
1(C) → L2(C,dλα) . Then H1 is a bounded linear

operator, and ‖H1‖ =
√

1
α .

Proof. For g,h ∈ A2
1(C),a,b ∈ C , it is easy to show that

H1(ag+bh)(z) = aH1(g)+bH1(h).

Suppose that g(z) =
∞
∑

k=0
akzk . Then applying Lemma 2, we have

‖H1(g)‖2 = 〈H1(g),H1(g)〉 = 〈zg−P(zg), zg−P(zg)〉
= 〈zg, zg〉− 〈P(zg), zg〉− 〈zg,P(zg)〉+ 〈P(zg),P(zg)〉
= 〈zg, zg〉− 1

α
〈g′(z), zg〉− 1

α
〈zg,g′(z)〉+ 1

α2 〈g′(z),g′(z)〉
= I1− I2− I3 + I4.

I1 =
∫

C

|z|2
∞

∑
k=0

akz
k

∞

∑
m=0

am zm α
π

e−α |z|2dA(z) = α
∫ ∞

0

∞

∑
k=0

|ak|2rk+1e−αrdr

=
∫ ∞

0

∞

∑
k=0

|ak|2
αk+1 xk+1e−xdx =

∞

∑
k=0

|ak|2(k+1)!
αk+1 .

I2 =
1
α

∫
C

∞

∑
k=0

(k+1)ak+1z
k

∞

∑
m=0

am zmz
α
π

e−α |z|2dA(z) =
∫ ∞

0

∞

∑
k=1

k|ak|2rke−αrdr

=
∞

∑
k=1

k|ak|2k!
αk+1 .

I3 = I 2 =
∞

∑
k=1

k|ak|2k!
αk+1 .

I4 =
1

α2

∫
C

∞

∑
k=0

(k+1)ak+1z
k

∞

∑
m=0

(m+1)am+1 zmz
α
π

e−α |z|2dA(z)

=
1
α

∫ ∞

0

∞

∑
k=1

k2|ak|2rk−1e−αrdr =
∞

∑
k=1

k2|ak|2(k−1)!
αk+1 =

∞

∑
k=1

k|ak|2k!
αk+1 .

Therefore,

‖H1(g)‖2 =
∞

∑
k=0

|ak|2(k+1)!
αk+1 −

∞

∑
k=1

k|ak|2k!
αk+1 =

1
α

∞

∑
k=0

|ak|2k!
αk . (3)

Note that ‖g(z)‖2 =
∞
∑

k=0

k!
αk |ak|2 . So ‖H1(g)‖2 = 1

α ‖g‖2 .

This implies that ‖H1‖ =
√

1
α . �

PROPOSITION 2. Let H1 : A2
1(C) → L2(C,dλα) . Then kerH1 = {0} .
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Proof. Note that

H1(g) = zg−P(zg) = zg(z)− 1
α g′(z).

From H1(g) = 0, we obtain g′(z) = α zg(z) . So g(z) = ceα |z|2 .
Observe that g(z) is an entire function, applying the Cauchy-Riemann equation,

we get c = 0. Hence kerH1 = {0} . �
In order to estimate the norm of Hn , we need the following lemma.

LEMMA 3. Let p(k,1) = 1 , and p(k,n) =
n
∏
j=1

(k+ j)−
n
∏
j=1

(k+ j−n), n � 2 . Then

p(k,n) = n!+
n

∑
j=2

Cj−1
n n!

( j−1)!
k(k−1) · · ·(k− j +2),

where C j−1
n = n!

( j−1)!(n− j+1)! .

Proof. We prove the lemma by mathematics induction.
Step 1 When n = 2, it is easy to see the equality holds.
Step 2 Assume that the equality holds for n = l . That is,

p(k, l) =
l

∏
j=1

(k+ j)−
l

∏
j=1

(k+ j− l) = l!+
l
∑
j=2

Cj−1
l l!

( j−1)!k(k−1) · · ·(k− j +2).

When n = l +1, we have

p(k, l +1)

=
l+1

∏
j=1

(k+ j)−
l+1

∏
j=1

(k+ j− l−1)

=(k+ l +1)
l

∏
j=1

(k+ j)− (k+ l +1)
l

∏
j=1

(k+ j− l)

+ (k+ l +1)
l

∏
j=1

(k+ j− l)−
l+1

∏
j=1

(k+ j− l−1)

=(k+ l +1)p(k, l)+
l

∏
j=1

(k+ j− l)(2l +1)

=(k+ l +1)[l!+
l

∑
j=2

Cj−1
l l!

( j−1)!
k(k−1) · · ·(k− j +2)]+

l

∏
j=1

(k+ j− l)(2l +1)

=(l +1)!+ kl!+
l

∑
j=2

Cj−1
l l!

( j−1)!
k(k−1) · · ·(k− j +2)(k+ l+1)+

l

∏
i=1

(k+ i− l)(2l+1).
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Note that p(k, l +1) = (l +1)!+
l+1
∑
j=2

Cj−1
l+1 (l+1)!
( j−1)! k(k−1) · · ·(k− j +2) .

We need only to show that

kl!+
l

∑
j=2

Cj−1
l l!

( j−1)!
k(k−1) · · ·(k− j +2)(k+ l+1)+

l

∏
i=1

(k+ i− l)(2l+1)

=
l+1

∑
j=2

Cj−1
l+1 (l +1)!
( j−1)!

k(k−1) · · ·(k− j +2).

(4)

We rewrite the above equality as the following form

kl!+
l

∑
j=2

Cj−1
l l!

( j−1)!
k(k−1) · · ·(k− j +2)[(k− j +1)+ (l+ j)]+

l

∏
i=1

(k+ i− l)(2l +1)

=
l+1

∑
j=2

Cj−1
l+1 (l +1)!
( j−1)!

k(k−1) · · ·(k− j +2).

(5)

Now by comparing the coefficient of the form polynomial k(k−1) · · · (k− j +2)( j =
2, · · · l +1) in the two sides of (5) , we obtain the following facts.
When j = 2, we have

l!+
C1

l l!

1!
(l +2) =

C1
l+1(l +1)!

1!
. (6)

When 2 < j < l , we have

Cj−1
l l!

( j−1)!
+

Cj
l l!(l + j +1)

j!
=

Cj
l+1(l +1)!

j!
. (7)

When j = l , the coefficient of k(k− 1) · · ·(k− l + 1) in the left hand side of (5) is
Cl−1

l l!
(l−1)! +(2l +1) . The coefficient of k(k−1) · · ·(k− l +1) in the right hand side of (5)

is
Cl

l+1(l+1)!
l! (when j = l +1). Simple observation shows that

Cl−1
l l!

(l−1)!
+(2l +1) =

Cl
l+1(l +1)!

l!
. (8)

Therefore, the lemma is true, as desired. �
In the following proposition, we give the norm characterization of Hn(g) .

PROPOSITION 3. Let g(z) =
∞
∑

k=0
akzk ∈ A2

n(C) . Then ‖Hn(g)‖2 =

n
∑
j=1

Cj−1
n n!

( j−1)!αn+ j−1

∥∥∥g( j−1)(z)
∥∥∥2

, where
∥∥∥g( j−1)(z)

∥∥∥2
=

∞
∑

k=0

k!k(k−1)···(k− j+2)
αk− j+1 |ak|2 ,

( j = 2,3, · · · ,n) .
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Proof. Similar to Proposition 1 and applying Lemma 3, we have

‖Hn(g)‖2 =
∞

∑
k=0

|ak|2(k+n)!
αk+n −

∞

∑
k=0

[(k+n)!]2|ak+n|2
k!αk+2n

=
∞

∑
k=0

|ak|2(k+n)!
αk+n −

∞

∑
k=n

(k!)2|ak|2
(k−n)!αk+n

=
n−1

∑
k=0

|ak|2(k+n)!
αk+n +

∞

∑
k=n

|ak|2
αk+n

[
(k+n)!− (k!)2

(k−n)!

]

=
n−1

∑
k=0

|ak|2(k+n)!
αk+n +

∞

∑
k=n

|ak|2k!
αk+n p(k,n) =

∞

∑
k=0

|ak|2k!
αk+n p(k,n)

=
∞

∑
k=0

|ak|2k!
αk+n

[
n!+

n

∑
j=2

Cj−1
n n!

( j−1)!
k(k−1) · · ·(k− j +2)

]

=
∞

∑
k=0

|ak|2k!
αk+n n!+

∞

∑
k=0

|ak|2k!
αk+n

n

∑
j=2

Cj−1
n n!

( j−1)!
k(k−1) · · ·(k− j +2)

=
n!
αn ‖g(z)‖2 +

n

∑
j=2

Cj−1
n n!

( j−1)!αn+ j−1

∥∥∥g( j−1)(z)
∥∥∥2

=
n

∑
j=1

Cj−1
n n!

( j−1)!αn+ j−1

∥∥∥g( j−1)(z)
∥∥∥2

.

Hence, we complete the proof of Proposition 3. �
Now we give an upper bound of the operator Hn .

THEOREM 1. The norm of the operator Hn is less than or equal to
√

n!(2n−1)
αn .

Proof. Applying (1) , we obtain

‖g(n)‖2 =
∞

∑
k=0

[(n+ k)!]2|an+k|2
k!αk <

∞

∑
k=0

(2n+ k)!|an+k|2
αk = αn

∞

∑
k=0

(2n+ k)!|an+k|2
αn+k

= αn
∞

∑
l=n

(n+ l)!|al|2
α l < αn

∞

∑
l=0

(n+ l)!|al|2
α l = α2n‖zng‖2 � α2n‖zn‖2‖g‖2

= αnn!‖g‖2.

Thus,

‖Hn(g)‖2 =
n

∑
j=1

Cj−1
n n!

( j−1)!αn+ j−1

∥∥∥g( j−1)(z)
∥∥∥2

<
n

∑
j=1

Cj−1
n n!

( j−1)!αn+ j−1 α j−1( j−1)!‖g‖2

=
n

∑
j=1

Cj−1
n n!
αn ‖g‖2 <

n!(2n−1)
αn ‖g‖2.

Therefore, we have ‖Hn‖ �
√

n!(2n−1)
αn . �
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3. Some properties of the operator Pn

For f ∈ A2
n(C) , let Pn f = P(zn f ),n = 1,2, · · · , and P is the Fock projection.

Now we will consider the relationship of the concomitant operator Pn of Hzn and the
concomitant operator P1 of Hz .

PROPOSITION 4. If f (z) ∈ A2
n(C) for fixed n � 1 , then Hn f ∈ kerP.

Proof. By Lemma 1 and 2, we have

Hn f = zn f −Pn f = zn f − f (n)(z)
αn . (9)

Hence

PHn f = P(zn f )− f (n)(z)
αn = 0.

So Hn f ∈ kerP . �
Recall that for two bounded linear operators T1 and T2 , T1 is quasi-affine to T2 , if

there exists an intertwining bounded operator X with kernel zero and dense range such
that T1X = XT2 (see [11]).

Let ek(z) =
√

αk

k! zk (k = 0,1, · · ·) be the orthonormal basis of F2
α (C) . Let S j =

span{enk+ j| j = 0,1, · · · ,n− 1,k = 0,1, · · ·} . Clearly, S j ( j = 0,1, · · · ,n− 1) are the
closed subspaces of F2

α . And F2
α = S0

⊕
S1
⊕ · · ·⊕Sn−1 . Denote Lj = S j|A2

n(C) , Then

we have A2
n(C) = L0

⊕
L1
⊕ · · ·⊕Ln−1 . Define Xj : A2

n(C) → Lj , such that Xjek =
ck, jenk+ j , where the coefficients ck, j are to be determined later. Denote Pn j = Pn|Lj ( j =
0,1, · · · ,n−1) . Then we have the following theorem.

THEOREM 2. The operator Pn (n � 2) is quasi-affine to
n⊕
1

P1 on A2
n(C) .

Proof. It is easy to show Pn jXje0 = XjP1e0 = 0. When k � 1, we have

Pn jXjek

=Pn jck, jenk+ j = ck, j

√
αnk+ j

(nk+ j)!
Pn j(znk+ j)

=ck, j

√
αnk+ j

(nk+ j)!
(nk+ j)(nk+ j−1) · · ·(n(k−1)+ j +1)

αn zn(k−1)+ j

=ck, j

√
αnk+ j

(nk+ j)!
× (n(k−1)+ j)!

αn(k−1)+ j

(nk+ j)(nk+ j−1) · · ·(n(k−1)+ j +1)
αn en(k−1)+ j

=ck, j

√
(nk+ j)(nk+ j−1) · · ·(n(k−1)+ j +1)

αn en(k−1)+ j,
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XjP1ek = XjP1

(√
αk

k!
zk

)
=

√
αk

k!
Xj

(
k
zk−1

α

)
=

√
αk

k!
k
α

Xj

(√
(k−1)!

αk−1 ek−1

)

=

√
k
α

ck−1, jen(k−1)+ j.

From Pn jXjek = XjP1ek , we have

ck, j

ck−1, j
=

√
k
α√

(nk+ j)(nk+ j−1)···(n(k−1)+ j+1)
αn

=

√
kαn−1

(nk+ j)(nk+ j−1) · · ·(n(k−1)+ j +1)
.

So, we obtain

ck, j =

√
Γ(k+1)αk(n−1)Γ( j +1)

Γ(nk+ j +1)
. (10)

Put

bk, j =
Γ(k+1)αk(n−1)

Γ(nk+ j +1)
=

αk(n−1)

(nk+ j)(nk+ j−1) · · ·(k+1)
, (11)

then ck, j =
√

bk, jΓ( j +1) .
In the following, we will analyze the limit of sequence ck, j as k → +∞ .
Case1. When 0 < α < 1, we have lim

k→+∞
ck, j = 0.

Case2. When α = 1, it is easy to see that lim
k→+∞

ck, j = 0.

Case3. When α > 1, we will consider the following equality

− lnbk, j = −k(n−1) lnα +[ln(nk+ j)+ ln(nk+ j−1)+ · · ·+ ln(k+1)] = Ak −Bk

= Bk

(
Ak

Bk
−1

)
.

Note that Bk is a monotone increasing sequence, and Bk →+∞ as k→+∞ . By Stolz’s
theorem, we have

lim
k→+∞

Ak

Bk
= lim

k→+∞

ln (nk+ j)(nk+ j−1)···(k+1)
(nk−n+ j)···k

(n−1) lnα

= lim
k→+∞

ln
(
n+ j

k

)
+ ln((nk+ j−1) · · ·(nk−n+ j +1))

(n−1) lnα
= +∞.

(12)

Hence, there is a positive integer k0 , such that when k > k0 , we have Ak
Bk

> 2. This

implies that ln 1
bk, j

→ +∞ as k → +∞ . So lim
k→+∞

ck, j = 0.

Suppose that f ∈ kerXj , and f =
∞
∑

k=0
dkek,dk ∈ C . Then from

0 =
〈
Xj f ,enk+ j

〉
=

〈
∞

∑
k=0

dkck, jenk+ j,enk+ j

〉
,
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we deduce that dk = 0(k = 0,1, · · ·) . So kerXj = {0} .

Next, for g ∈ kerX∗
j , and g =

∞
∑

k=0
mkenk+ j,mk ∈ C . From

0 = 〈ek,X
∗
j g〉 =

〈
ck, jenk+ j,

∞

∑
k=0

mkenk+ j

〉
,

we obtain mk = 0(k = 0,1, · · ·) . So kerX∗
j = (RanXj)⊥={0}, i.e., RanXj = Lj . Hence

Pn j is quasi-affine to P1 .

Moreover, Pn|A2
n
= Pn0

⊕
Pn1
⊕ · · ·⊕Pnn−1 is quasi-affine to

n⊕
1

P1 . �
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