ON THE NORM OF HANKEL OPERATOR RESTRICTED TO FOCK SPACE

Yucheng Li* and Yameng Li

(Communicated by G. Misra)

Abstract. In this note, we characterize the norm of Hankel operator $H_{\bar{z}}$. Then we find the formula of the norm of $H_{\bar{z}^{n}}(g)$ and give an upper bound of the norm of H_{n} on Fock space. Lastly, we prove the concomitant operator P_{n} of $H_{\bar{z}^{n}}$ is quasi-affine to the direct sum of n copies of the concomitant operator P_{1} of $H_{\bar{z}}$.

1. Introduction

Let \mathbb{C} be the complex plane. The Fock space F_{α}^{2} (see [14]) consists of all entire functions f in $L^{2}\left(\mathbb{C}, d \lambda_{\alpha}\right)$, where $\alpha>0$ and the Gaussian measure

$$
d \lambda_{\alpha}(z)=\frac{\alpha}{\pi} e^{-\alpha|z|^{2}} d A(z)
$$

$d A$ is the Euclidean area measure on \mathbb{C}. It is easy to show that F_{α}^{2} is a closed subspace of $L^{2}\left(\mathbb{C}, d \lambda_{\alpha}\right) . F_{\alpha}^{2}$ is a Hilbert space. The inner product is defined by

$$
\langle f, g\rangle_{\alpha}=\int_{\mathbb{C}} f(z) \overline{g(z)} d \lambda_{\alpha}(z) .
$$

The reproducing kernel of F_{α}^{2} is given by $K_{\alpha}(z, w)=e^{\alpha z \bar{w}}, z, w \in \mathbb{C}$. For any $z \in \mathbb{C}$, we let

$$
k_{z}(w)=\frac{K_{\alpha}(w, z)}{\sqrt{K_{\alpha}(z, z)}}=e^{\alpha \bar{z} w-\frac{\alpha}{2}|z|^{2}}
$$

denote the normalized reproducing kernel at z. The Fock projection $P: L^{2}\left(\mathbb{C}, d \lambda_{\alpha}\right) \rightarrow F_{\alpha}^{2}$ is an integral operator defined by

$$
\operatorname{Pf}(z)=\int_{\mathbb{C}} K_{\alpha}(z, w) f(w) d \lambda_{\alpha}(w) \text { for } f(z) \in L^{2}\left(\mathbb{C}, d \lambda_{\alpha}\right)
$$

In [5], Haslinger researched the canonical solution operator to $\bar{\partial}$ restricted to Bergman spaces. He proved that in the case of the unit disc in \mathbb{C} the canonical solution operator to $\bar{\partial}$ restricted to (0,1)-forms with holomorphic coefficients is a HilbertSchmidt operator. In 2002, Haslinger researched the canonical solution operator to $\bar{\partial}$

[^0]restricted to spaces of entire functions (see [6]). In 2006, Knirsch and Schneider researched generalized Hankel operators and the generalized solution operator to $\bar{\partial}$ on the Fock space and on the Bergman space of the unit disc (see [9]). Fu and Straube proved in [4] that compactness of the solution operator to $\bar{\partial}$ on (0,1)-forms implies that the boundary of a bounded domain Ω in \mathbb{C}^{n} does not contain any analytic variety of dimension greater than or equal to 1 .

It is well known that the canonical solution operator to $\bar{\partial}$-equation restricted to $(0,1)$-forms with holomorphic coefficients in the Bergman space can be interpreted by the Hankel operator

$$
H_{\bar{z}}(g)=(I-P)(\bar{z} g)
$$

where $P: L^{2}(\Omega) \rightarrow A^{2}(\Omega)$ denotes the Bergman projection, and Ω is a bounded domain in \mathbb{C}^{n}. See [1], [2], [3], [6], [7], [8], [9], [10], [12], [13] for details.

Unfortunately there exists $f \in F_{\alpha}^{2}$ such that $\bar{z}^{n} f \notin L^{2}\left(\mathbb{C}, d \lambda_{\alpha}\right)$. In the sequel, for fixed positive integer n, we consider the space

$$
A_{n}^{2}(\mathbb{C})=\left\{f: f \text { entire, } \sum_{k=0}^{\infty} \frac{(k+n)!}{\alpha^{k+n}} \frac{\left|f^{(k)}(0)\right|^{2}}{(k!)^{2}}<\infty\right\}
$$

as the Hankel operator's domain. It is easy to see that $A_{n}^{2}(\mathbb{C})$ is dense in F_{α}^{2}, because the polynomials z^{n} belong to $A_{n}^{2}(\mathbb{C})$. In this note, we compute the norm of $H_{\bar{z}}$. Then we find the formula of the norm of $H_{\bar{z}^{n}}(g)$ and give an upper bound of the norm of H_{n} on Fock space. Lastly, we prove the concomitant operator P_{n} of $H_{\bar{z}^{n}}$ is quasi-affine to the direct sum of n copies of the concomitant operator P_{1} of $H_{\bar{z}}$.

2. The norm of Hankel operators

The following example indicates $g(z) \in F_{\alpha}^{2}$ but $\bar{z}^{n} g(z) \notin L^{2}\left(\mathbb{C}, d \lambda_{\alpha}\right)$.
EXAMPLE 1. For fixed positive integer n, let $g(z)=\sum_{k=0}^{\infty} \frac{\sqrt{\alpha}}{}{ }^{k+n}{ }_{(k+n) \sqrt{(k+n-1)!}}^{z^{k}}$. Then $g(z) \in F_{\alpha}^{2}(\mathbb{C})$, but $\bar{z}^{n} g(z) \notin L^{2}\left(\mathbb{C}, d \lambda_{\alpha}\right)$.

From the definition of $A_{n}^{2}(\mathbb{C})$, we know that $g(z) \in A_{n}^{2}(\mathbb{C})$ implies that $\bar{z}^{n} g(z) \in$ $L^{2}\left(\mathbb{C}, d \lambda_{\alpha}\right)$.

Lemma 1. If $g(z) \in A_{n}^{2}(\mathbb{C})$, then:
(1) $g^{(n)}(z) \in F_{\alpha}^{2}(\mathbb{C})$;
(2) $g(z) \in F_{\alpha}^{2}(\mathbb{C})$.

Proof.
(1) Suppose $g(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$. Then we have $\sum_{k=0}^{\infty} \frac{\left|a_{k}\right|^{2}(k+n)!}{\alpha^{k+n}}=C<+\infty$. Note that $g^{(n)}(z)=\sum_{k=0}^{\infty} \frac{(n+k)!}{k!} a_{n+k} z^{k}$, thus

$$
\begin{aligned}
\int_{\mathbb{C}}\left|\sum_{k=0}^{\infty} \frac{(n+k)!}{k!} a_{n+k} z^{k}\right|^{2} \frac{\alpha}{\pi} e^{-\alpha|z|^{2}} d A(z) & =\int_{0}^{+\infty} \sum_{k=0}^{\infty} \frac{[(n+k)!]^{2}}{(k!)^{2}}\left|a_{n+k}\right|^{2} \rho^{k} \alpha e^{-\alpha \rho} d \rho \\
& =\sum_{k=0}^{\infty} \frac{[(n+k)!]^{2}\left|a_{n+k}\right|^{2}}{k!\alpha^{k}}
\end{aligned}
$$

Applying the inequality

$$
\begin{equation*}
\frac{[(n+k)!]^{2}}{k!}<(2 n+k)! \tag{1}
\end{equation*}
$$

we obtain

$$
\begin{aligned}
\sum_{k=0}^{\infty} \frac{[(n+k)!]^{2}\left|a_{n+k}\right|^{2}}{k!\alpha^{k+n}} & <\sum_{k=0}^{\infty} \frac{(2 n+k)!\left|a_{n+k}\right|^{2}}{\alpha^{k+n}}=\sum_{k=n}^{\infty} \frac{(n+k)!\left|a_{k}\right|^{2}}{\alpha^{k}} \\
& <\sum_{k=0}^{\infty} \frac{(n+k)!\left|a_{k}\right|^{2}}{\alpha^{k}}=\alpha^{n} C
\end{aligned}
$$

This implies that $g^{(n)}(z) \in F_{\alpha}^{2}(\mathbb{C})$.
(2) Note that $\|g(z)\|^{2}=\sum_{k=0}^{\infty} \frac{k!\left|a_{k}\right|^{2}}{\alpha^{k}}<\alpha^{n} C$. This implies that $g(z) \in F_{\alpha}^{2}(\mathbb{C})$.

Lemma 2. Let $g(z) \in A_{n}^{2}(\mathbb{C})$ and $P: L^{2}\left(\mathbb{C}, d \lambda_{\alpha}\right) \rightarrow F_{\alpha}^{2}(\mathbb{C})$. Then $P\left(\bar{z}^{n} g(z)\right)=$ $\frac{1}{\alpha^{n}} g^{(n)}(z)$.

Proof. Suppose $g(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$. Then we have

$$
\begin{align*}
& P\left(\bar{z}^{n} g(z)\right) \\
= & \int_{\mathbb{C}} \bar{w}^{n} \sum_{k=0}^{\infty} a_{k} w^{k} e^{\alpha z \bar{w}} d \lambda \alpha(w)=\frac{\alpha}{\pi} \int_{\mathbb{C}} \bar{w}^{n} \sum_{k=0}^{\infty} a_{k} w^{k} \sum_{m=0}^{\infty} \frac{(\alpha z)^{m}}{m!} \bar{w}^{m} e^{-\alpha|w|^{2}} d A(w) \\
= & \frac{\alpha}{\pi} \int_{\mathbb{C}}\left(a_{n}|w|^{2 n}+a_{n+1} \frac{\alpha z}{1!}|w|^{2(n+1)}+a_{n+2} \frac{(\alpha z)^{2}}{2!}|w|^{2(n+2)}+\cdots\right) e^{-\alpha|w|^{2}} d A(w) \tag{2}\\
= & \frac{1}{\alpha^{n}} \int_{0}^{\infty} \sum_{k=0}^{\infty} \frac{z^{k}}{k!} a_{n+k} x^{n+k} e^{-x} d x=\frac{1}{\alpha^{n}} \sum_{k=0}^{\infty} \frac{(n+k)!}{k!} a_{n+k} z^{k}=\frac{1}{\alpha^{n}} g^{(n)}(z) .
\end{align*}
$$

For simpleness, we denote $H_{\bar{z}^{n}}$ by H_{n}. In [6, 9], Haslinger, Knirsch and Schneider proved in their paper that Hankel operator H_{n} fails to be compact on the Fock space. Now we prove that H_{n} is a bounded linear operator on $A_{n}^{2}(\mathbb{C})$.

Proposition 1. Let $H_{1}: A_{1}^{2}(\mathbb{C}) \rightarrow L^{2}\left(\mathbb{C}, d \lambda_{\alpha}\right)$. Then H_{1} is a bounded linear operator, and $\left\|H_{1}\right\|=\sqrt{\frac{1}{\alpha}}$.

Proof. For $g, h \in A_{1}^{2}(\mathbb{C}), a, b \in \mathbb{C}$, it is easy to show that

$$
H_{1}(a g+b h)(z)=a H_{1}(g)+b H_{1}(h) .
$$

Suppose that $g(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$. Then applying Lemma 2, we have

$$
\begin{aligned}
\left\|H_{1}(g)\right\|^{2} & =\left\langle H_{1}(g), H_{1}(g)\right\rangle=\langle\bar{z} g-P(\bar{z} g), \bar{z} g-P(\bar{z} g)\rangle \\
& =\langle\bar{z} g, \bar{z} g\rangle-\langle P(\bar{z} g), \bar{z} g\rangle-\langle\bar{z} g, P(\bar{z} g)\rangle+\langle P(\bar{z} g), P(\bar{z} g)\rangle \\
& =\langle\bar{z} g, \bar{z} g\rangle-\frac{1}{\alpha}\left\langle g^{\prime}(z), \bar{z} g\right\rangle-\frac{1}{\alpha}\left\langle\bar{z} g, g^{\prime}(z)\right\rangle+\frac{1}{\alpha^{2}}\left\langle g^{\prime}(z), g^{\prime}(z)\right\rangle \\
& =I_{1}-I_{2}-I_{3}+I_{4} . \\
I_{1}= & \int_{\mathbb{C}}|z|^{2} \sum_{k=0}^{\infty} a_{k} z^{k} \sum_{m=0}^{\infty} \bar{a}_{m} \bar{z}^{m} \frac{\alpha}{\pi} e^{-\alpha|z|^{2}} d A(z)=\alpha \int_{0}^{\infty} \sum_{k=0}^{\infty}\left|a_{k}\right|^{2} r^{k+1} e^{-\alpha r} d r \\
= & \int_{0}^{\infty} \sum_{k=0}^{\infty} \frac{\left|a_{k}\right|^{2}}{\alpha^{k+1} x^{k+1} e^{-x} d x=\sum_{k=0}^{\infty} \frac{\left|a_{k}\right|^{2}(k+1)!}{\alpha^{k+1}} .} \\
I_{2}= & \frac{1}{\alpha} \int_{\mathbb{C}} \sum_{k=0}^{\infty}(k+1) a_{k+1} z^{k} \sum_{m=0}^{\infty} \bar{a}_{m} \bar{z}^{m} z \frac{\alpha}{\pi} e^{-\alpha|z|^{2}} d A(z)=\int_{0}^{\infty} \sum_{k=1}^{\infty} k\left|a_{k}\right|^{2} r^{k} e^{-\alpha r} d r \\
= & \sum_{k=1}^{\infty} \frac{k\left|a_{k}\right|^{2} k!}{\alpha^{k+1}} . \\
I_{3}= & \bar{I}_{2}=\sum_{k=1}^{\infty} \frac{k\left|a_{k}\right|^{2} k!}{\alpha^{k+1}} . \\
I_{4}= & \frac{1}{\alpha^{2}} \int_{\mathbb{C}} \sum_{k=0}^{\infty}(k+1) a_{k+1} z^{k} \sum_{m=0}^{\infty}(m+1) \bar{a}_{m+1} \bar{z}^{m} z \frac{\alpha}{\pi} e^{-\alpha|z|^{2}} d A(z) \\
= & \frac{1}{\alpha} \int_{0}^{\infty} \sum_{k=1}^{\infty} k^{2}\left|a_{k}\right|^{2} r^{k-1} e^{-\alpha r} d r=\sum_{k=1}^{\infty} \frac{k^{2}\left|a_{k}\right|^{2}(k-1)!}{\alpha^{k+1}}=\sum_{k=1}^{\infty} \frac{k\left|a_{k}\right|^{2} k!}{\alpha^{k+1}} .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left\|H_{1}(g)\right\|^{2}=\sum_{k=0}^{\infty} \frac{\left|a_{k}\right|^{2}(k+1)!}{\alpha^{k+1}}-\sum_{k=1}^{\infty} \frac{k\left|a_{k}\right|^{2} k!}{\alpha^{k+1}}=\frac{1}{\alpha} \sum_{k=0}^{\infty} \frac{\left|a_{k}\right|^{2} k!}{\alpha^{k}} . \tag{3}
\end{equation*}
$$

Note that $\|g(z)\|^{2}=\sum_{k=0}^{\infty} \frac{k!}{\alpha^{k}}\left|a_{k}\right|^{2}$. So $\left\|H_{1}(g)\right\|^{2}=\frac{1}{\alpha}\|g\|^{2}$.
This implies that $\left\|H_{1}\right\|=\sqrt{\frac{1}{\alpha}}$.
Proposition 2. Let $H_{1}: A_{1}^{2}(\mathbb{C}) \rightarrow L^{2}\left(\mathbb{C}, d \lambda_{\alpha}\right)$. Then $\operatorname{ker} H_{1}=\{0\}$.

Proof. Note that

$$
H_{1}(g)=\bar{z} g-P(\bar{z} g)=\bar{z} g(z)-\frac{1}{\alpha} g^{\prime}(z)
$$

From $H_{1}(g)=0$, we obtain $g^{\prime}(z)=\alpha \bar{z} g(z)$. So $g(z)=c e^{\alpha|z|^{2}}$.
Observe that $g(z)$ is an entire function, applying the Cauchy-Riemann equation, we get $c=0$. Hence $\operatorname{ker} H_{1}=\{0\}$.

In order to estimate the norm of H_{n}, we need the following lemma.
LEMMA 3. Let $p(k, 1)=1$, and $p(k, n)=\prod_{j=1}^{n}(k+j)-\prod_{j=1}^{n}(k+j-n), n \geqslant 2$. Then

$$
p(k, n)=n!+\sum_{j=2}^{n} \frac{C_{n}^{j-1} n!}{(j-1)!} k(k-1) \cdots(k-j+2)
$$

where $C_{n}^{j-1}=\frac{n!}{(j-1)!(n-j+1)!}$.

Proof. We prove the lemma by mathematics induction.
Step 1 When $n=2$, it is easy to see the equality holds.
Step 2 Assume that the equality holds for $n=l$. That is,

$$
p(k, l)=\prod_{j=1}^{l}(k+j)-\prod_{j=1}^{l}(k+j-l)=l!+\sum_{j=2}^{l} \frac{C_{l}^{j-1} l!}{(j-1)!} k(k-1) \cdots(k-j+2) .
$$

When $n=l+1$, we have

$$
\begin{aligned}
& p(k, l+1) \\
= & \prod_{j=1}^{l+1}(k+j)-\prod_{j=1}^{l+1}(k+j-l-1) \\
= & (k+l+1) \prod_{j=1}^{l}(k+j)-(k+l+1) \prod_{j=1}^{l}(k+j-l) \\
& +(k+l+1) \prod_{j=1}^{l}(k+j-l)-\prod_{j=1}^{l+1}(k+j-l-1) \\
= & (k+l+1) p(k, l)+\prod_{j=1}^{l}(k+j-l)(2 l+1) \\
= & (k+l+1)\left[l!+\sum_{j=2}^{l} \frac{C_{l}^{j-1} l!}{(j-1)!} k(k-1) \cdots(k-j+2)\right]+\prod_{j=1}^{l}(k+j-l)(2 l+1) \\
= & (l+1)!+k l!+\sum_{j=2}^{l} \frac{C_{l}^{j-1} l!}{(j-1)!} k(k-1) \cdots(k-j+2)(k+l+1)+\prod_{i=1}^{l}(k+i-l)(2 l+1) .
\end{aligned}
$$

Note that $p(k, l+1)=(l+1)!+\sum_{j=2}^{l+1} \frac{C_{l+1}^{j-1}(l+1)!}{(j-1)!} k(k-1) \cdots(k-j+2)$.
We need only to show that

$$
\begin{align*}
& k l!+\sum_{j=2}^{l} \frac{C_{l}^{j-1} l!}{(j-1)!} k(k-1) \cdots(k-j+2)(k+l+1)+\prod_{i=1}^{l}(k+i-l)(2 l+1) \tag{4}\\
= & \sum_{j=2}^{l+1} \frac{C_{l+1}^{j-1}(l+1)!}{(j-1)!} k(k-1) \cdots(k-j+2) .
\end{align*}
$$

We rewrite the above equality as the following form

$$
\begin{align*}
& k l!+\sum_{j=2}^{l} \frac{C_{l}^{j-1} l!}{(j-1)!} k(k-1) \cdots(k-j+2)[(k-j+1)+(l+j)]+\prod_{i=1}^{l}(k+i-l)(2 l+1) \\
= & \sum_{j=2}^{l+1} \frac{C_{l+1}^{j-1}(l+1)!}{(j-1)!} k(k-1) \cdots(k-j+2) . \tag{5}
\end{align*}
$$

Now by comparing the coefficient of the form polynomial $k(k-1) \cdots(k-j+2)(j=$ $2, \cdots l+1)$ in the two sides of (5), we obtain the following facts.
When $j=2$, we have

$$
\begin{equation*}
l!+\frac{C_{l}^{1} l!}{1!}(l+2)=\frac{C_{l+1}^{1}(l+1)!}{1!} \tag{6}
\end{equation*}
$$

When $2<j<l$, we have

$$
\begin{equation*}
\frac{C_{l}^{j-1} l!}{(j-1)!}+\frac{C_{l}^{j} l!(l+j+1)}{j!}=\frac{C_{l+1}^{j}(l+1)!}{j!} \tag{7}
\end{equation*}
$$

When $j=l$, the coefficient of $k(k-1) \cdots(k-l+1)$ in the left hand side of (5) is $\frac{C_{l}^{l-1} l!}{(l-1)!}+(2 l+1)$. The coefficient of $k(k-1) \cdots(k-l+1)$ in the right hand side of (5) is $\frac{C_{l+1}^{l}(l+1)!}{l!}$ (when $j=l+1$). Simple observation shows that

$$
\begin{equation*}
\frac{C_{l}^{l-1} l!}{(l-1)!}+(2 l+1)=\frac{C_{l+1}^{l}(l+1)!}{l!} \tag{8}
\end{equation*}
$$

Therefore, the lemma is true, as desired.
In the following proposition, we give the norm characterization of $H_{n}(g)$.
PROPOSITION 3. Let $g(z)=\sum_{k=0}^{\infty} a_{k} z^{k} \in A_{n}^{2}(\mathbb{C})$. Then $\left\|H_{n}(g)\right\|^{2}=$ $\sum_{j=1}^{n} \frac{C_{n}^{j-1} n!}{(j-1)!\alpha^{n+j-1}}\left\|g^{(j-1)}(z)\right\|^{2}$, where $\left\|g^{(j-1)}(z)\right\|^{2}=\sum_{k=0}^{\infty} \frac{k!k(k-1) \cdots(k-j+2)}{\alpha^{k-j+1}}\left|a_{k}\right|^{2}$, $(j=2,3, \cdots, n)$.

Proof. Similar to Proposition 1 and applying Lemma 3, we have

$$
\begin{aligned}
\left\|H_{n}(g)\right\|^{2} & =\sum_{k=0}^{\infty} \frac{\left|a_{k}\right|^{2}(k+n)!}{\alpha^{k+n}}-\sum_{k=0}^{\infty} \frac{[(k+n)!]^{2}\left|a_{k+n}\right|^{2}}{k!\alpha^{k+2 n}} \\
& =\sum_{k=0}^{\infty} \frac{\left|a_{k}\right|^{2}(k+n)!}{\alpha^{k+n}}-\sum_{k=n}^{\infty} \frac{(k!)^{2}\left|a_{k}\right|^{2}}{(k-n)!\alpha^{k+n}} \\
& =\sum_{k=0}^{n-1} \frac{\left|a_{k}\right|^{2}(k+n)!}{\alpha^{k+n}}+\sum_{k=n}^{\infty} \frac{\left|a_{k}\right|^{2}}{\alpha^{k+n}}\left[(k+n)!-\frac{(k!)^{2}}{(k-n)!}\right] \\
& =\sum_{k=0}^{n-1} \frac{\left|a_{k}\right|^{2}(k+n)!}{\alpha^{k+n}}+\sum_{k=n}^{\infty} \frac{\left|a_{k}\right|^{2} k!}{\alpha^{k+n}} p(k, n)=\sum_{k=0}^{\infty} \frac{\left|a_{k}\right|^{2} k!}{\alpha^{k+n}} p(k, n) \\
& =\sum_{k=0}^{\infty} \frac{\left|a_{k}\right|^{2} k!}{\alpha^{k+n}}\left[n!+\sum_{j=2}^{n} \frac{C_{n}^{j-1} n!}{(j-1)!} k(k-1) \cdots(k-j+2)\right] \\
& =\sum_{k=0}^{\infty} \frac{\left|a_{k}\right|^{2} k!}{\alpha^{k+n}} n!+\sum_{k=0}^{\infty} \frac{\left|a_{k}\right|^{2} k!}{\alpha^{k+n}} \sum_{j=2}^{n} \frac{C_{n}^{j-1} n!}{(j-1)!} k(k-1) \cdots(k-j+2) \\
& =\frac{n!}{\alpha^{n}}\|g(z)\|^{2}+\sum_{j=2}^{n} \frac{C_{n}^{j-1} n!}{(j-1)!\alpha^{n+j-1}}\left\|g^{(j-1)}(z)\right\|^{2} \\
& =\sum_{j=1}^{n} \frac{C_{n}^{j-1} n!}{(j-1)!\alpha^{n+j-1}}\left\|g^{(j-1)}(z)\right\|^{2} \cdot
\end{aligned}
$$

Hence, we complete the proof of Proposition 3.
Now we give an upper bound of the operator H_{n}.
THEOREM 1. The norm of the operator H_{n} is less than or equal to $\sqrt{\frac{n!\left(2^{n}-1\right)}{\alpha^{n}}}$.
Proof. Applying (1), we obtain

$$
\begin{aligned}
\left\|g^{(n)}\right\|^{2} & =\sum_{k=0}^{\infty} \frac{[(n+k)!]^{2}\left|a_{n+k}\right|^{2}}{k!\alpha^{k}}<\sum_{k=0}^{\infty} \frac{(2 n+k)!\left|a_{n+k}\right|^{2}}{\alpha^{k}}=\alpha^{n} \sum_{k=0}^{\infty} \frac{(2 n+k)!\left|a_{n+k}\right|^{2}}{\alpha^{n+k}} \\
& =\alpha^{n} \sum_{l=n}^{\infty} \frac{(n+l)!\left|a_{l}\right|^{2}}{\alpha^{l}}<\alpha^{n} \sum_{l=0}^{\infty} \frac{(n+l)!\left|a_{l}\right|^{2}}{\alpha^{l}}=\alpha^{2 n}\left\|\bar{z}^{n} g\right\|^{2} \leqslant \alpha^{2 n}\left\|\bar{z}^{n}\right\|^{2}\|g\|^{2} \\
& =\alpha^{n} n!\|g\|^{2} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\left\|H_{n}(g)\right\|^{2} & =\sum_{j=1}^{n} \frac{C_{n}^{j-1} n!}{(j-1)!\alpha^{n+j-1}}\left\|g^{(j-1)}(z)\right\|^{2}<\sum_{j=1}^{n} \frac{C_{n}^{j-1} n!}{(j-1)!\alpha^{n+j-1}} \alpha^{j-1}(j-1)!\|g\|^{2} \\
& =\sum_{j=1}^{n} \frac{C_{n}^{j-1} n!}{\alpha^{n}}\|g\|^{2}<\frac{n!\left(2^{n}-1\right)}{\alpha^{n}}\|g\|^{2}
\end{aligned}
$$

Therefore, we have $\left\|H_{n}\right\| \leqslant \sqrt{\frac{n!\left(2^{n}-1\right)}{\alpha^{n}}}$.

3. Some properties of the operator P_{n}

For $f \in A_{n}^{2}(\mathbb{C})$, let $P_{n} f=P\left(\bar{z}^{n} f\right), n=1,2, \cdots$, and P is the Fock projection. Now we will consider the relationship of the concomitant operator P_{n} of $H_{\bar{z}^{n}}$ and the concomitant operator P_{1} of $H_{\bar{z}}$.

Proposition 4. If $f(z) \in A_{n}^{2}(\mathbb{C})$ for fixed $n \geqslant 1$, then $H_{n} f \in \operatorname{ker} P$.
Proof. By Lemma 1 and 2, we have

$$
\begin{equation*}
H_{n} f=\bar{z}^{n} f-P_{n} f=\bar{z}^{n} f-\frac{f^{(n)}(z)}{\alpha^{n}} \tag{9}
\end{equation*}
$$

Hence

$$
P H_{n} f=P\left(\bar{z}^{n} f\right)-\frac{f^{(n)}(z)}{\alpha^{n}}=0
$$

So $H_{n} f \in \operatorname{ker} P$.
Recall that for two bounded linear operators T_{1} and T_{2}, T_{1} is quasi-affine to T_{2}, if there exists an intertwining bounded operator X with kernel zero and dense range such that $T_{1} X=X T_{2}$ (see [11]).

Let $e_{k}(z)=\sqrt{\frac{\alpha^{k}}{k!}} z^{k}(k=0,1, \cdots)$ be the orthonormal basis of $F_{\alpha}^{2}(\mathbb{C})$. Let $S_{j}=$ $\overline{\operatorname{span}}\left\{e_{n k+j} \mid j=0,1, \cdots, n-1, k=0,1, \cdots\right\}$. Clearly, $S_{j}(j=0,1, \cdots, n-1)$ are the closed subspaces of F_{α}^{2}. And $F_{\alpha}^{2}=S_{0} \oplus S_{1} \oplus \cdots \oplus S_{n-1}$. Denote $L_{j}=\left.S_{j}\right|_{A_{n}^{2}(\mathbb{C})}$, Then we have $A_{n}^{2}(\mathbb{C})=L_{0} \oplus L_{1} \oplus \cdots \oplus L_{n-1}$. Define $X_{j}: A_{n}^{2}(\mathbb{C}) \rightarrow L_{j}$, such that $X_{j} e_{k}=$ $c_{k, j} e_{n k+j}$, where the coefficients $c_{k, j}$ are to be determined later. Denote $P_{n j}=\left.P_{n}\right|_{L_{j}}(j=$ $0,1, \cdots, n-1)$. Then we have the following theorem.

THEOREM 2. The operator $P_{n}(n \geqslant 2)$ is quasi-affine to $\bigoplus_{1}^{n} P_{1}$ on $A_{n}^{2}(\mathbb{C})$.
Proof. It is easy to show $P_{n j} X_{j} e_{0}=X_{j} P_{1} e_{0}=0$. When $k \geqslant 1$, we have

$$
\begin{aligned}
& P_{n j} X_{j} e_{k} \\
= & P_{n j} c_{k, j} e_{n k+j}=c_{k, j} \sqrt{\frac{\alpha^{n k+j}}{(n k+j)!}} P_{n j}\left(z^{n k+j}\right) \\
= & c_{k, j} \sqrt{\frac{\alpha^{n k+j}}{(n k+j)!}} \frac{(n k+j)(n k+j-1) \cdots(n(k-1)+j+1)}{\alpha^{n}} z^{n(k-1)+j} \\
= & c_{k, j} \sqrt{\frac{\alpha^{n k+j}}{(n k+j)!} \times \frac{(n(k-1)+j)!}{\alpha^{n(k-1)+j}} \frac{(n k+j)(n k+j-1) \cdots(n(k-1)+j+1)}{\alpha^{n}} e_{n(k-1)+j}} \\
= & c_{k, j} \sqrt{\frac{(n k+j)(n k+j-1) \cdots(n(k-1)+j+1)}{\alpha^{n}}} e_{n(k-1)+j},
\end{aligned}
$$

$$
\begin{aligned}
X_{j} P_{1} e_{k} & =X_{j} P_{1}\left(\sqrt{\frac{\alpha^{k}}{k!}} z^{k}\right)=\sqrt{\frac{\alpha^{k}}{k!}} X_{j}\left(k \frac{z^{k-1}}{\alpha}\right)=\sqrt{\frac{\alpha^{k}}{k!}} \frac{k}{\alpha} X_{j}\left(\sqrt{\frac{(k-1)!}{\alpha^{k-1}}} e_{k-1}\right) \\
& =\sqrt{\frac{k}{\alpha}} c_{k-1, j} e_{n(k-1)+j}
\end{aligned}
$$

From $P_{n j} X_{j} e_{k}=X_{j} P_{1} e_{k}$, we have

$$
\frac{c_{k, j}}{c_{k-1, j}}=\frac{\sqrt{\frac{k}{\alpha}}}{\sqrt{\frac{(n k+j)(n k+j-1) \cdots(n(k-1)+j+1)}{\alpha^{n}}}}=\sqrt{\frac{k \alpha^{n-1}}{(n k+j)(n k+j-1) \cdots(n(k-1)+j+1)}} .
$$

So, we obtain

$$
\begin{equation*}
c_{k, j}=\sqrt{\frac{\Gamma(k+1) \alpha^{k(n-1)} \Gamma(j+1)}{\Gamma(n k+j+1)}} \tag{10}
\end{equation*}
$$

Put

$$
\begin{equation*}
b_{k, j}=\frac{\Gamma(k+1) \alpha^{k(n-1)}}{\Gamma(n k+j+1)}=\frac{\alpha^{k(n-1)}}{(n k+j)(n k+j-1) \cdots(k+1)}, \tag{11}
\end{equation*}
$$

then $c_{k, j}=\sqrt{b_{k, j} \Gamma(j+1)}$.
In the following, we will analyze the limit of sequence $c_{k, j}$ as $k \rightarrow+\infty$.
Case1. When $0<\alpha<1$, we have $\lim _{k \rightarrow+\infty} c_{k, j}=0$.
Case2. When $\alpha=1$, it is easy to see that $\lim _{k \rightarrow+\infty} c_{k, j}=0$.
Case3. When $\alpha>1$, we will consider the following equality

$$
\begin{aligned}
-\ln b_{k, j} & =-k(n-1) \ln \alpha+[\ln (n k+j)+\ln (n k+j-1)+\cdots+\ln (k+1)]=A_{k}-B_{k} \\
& =B_{k}\left(\frac{A_{k}}{B_{k}}-1\right) .
\end{aligned}
$$

Note that B_{k} is a monotone increasing sequence, and $B_{k} \rightarrow+\infty$ as $k \rightarrow+\infty$. By Stolz's theorem, we have

$$
\begin{align*}
\lim _{k \rightarrow+\infty} \frac{A_{k}}{B_{k}} & =\lim _{k \rightarrow+\infty} \frac{\ln \frac{(n k+j)(n k+j-1) \cdots(k+1)}{(n k-n+j) \cdots k}}{(n-1) \ln \alpha} \\
& =\lim _{k \rightarrow+\infty} \frac{\ln \left(n+\frac{j}{k}\right)+\ln ((n k+j-1) \cdots(n k-n+j+1))}{(n-1) \ln \alpha}=+\infty \tag{12}
\end{align*}
$$

Hence, there is a positive integer k_{0}, such that when $k>k_{0}$, we have $\frac{A_{k}}{B_{k}}>2$. This implies that $\ln \frac{1}{b_{k, j}} \rightarrow+\infty$ as $k \rightarrow+\infty$. So $\lim _{k \rightarrow+\infty} c_{k, j}=0$.

Suppose that $f \in \operatorname{ker} X_{j}$, and $f=\sum_{k=0}^{\infty} d_{k} e_{k}, d_{k} \in \mathbb{C}$. Then from

$$
0=\left\langle X_{j} f, e_{n k+j}\right\rangle=\left\langle\sum_{k=0}^{\infty} d_{k} c_{k, j} e_{n k+j}, e_{n k+j}\right\rangle,
$$

we deduce that $d_{k}=0(k=0,1, \cdots)$. So $\operatorname{ker} X_{j}=\{0\}$.
Next, for $g \in \operatorname{ker} X_{j}^{*}$, and $g=\sum_{k=0}^{\infty} m_{k} e_{n k+j}, m_{k} \in \mathbb{C}$. From

$$
0=\left\langle e_{k}, X_{j}^{*} g\right\rangle=\left\langle c_{k, j} e_{n k+j}, \sum_{k=0}^{\infty} m_{k} e_{n k+j}\right\rangle
$$

we obtain $m_{k}=0(k=0,1, \cdots)$. So $\operatorname{ker} X_{j}^{*}=\left(\operatorname{Ran} X_{j}\right)^{\perp}=\{0\}$, i.e., $\overline{\operatorname{Ran} X_{j}}=L_{j}$. Hence $P_{n j}$ is quasi-affine to P_{1}.

Moreover, $\left.P_{n}\right|_{A_{n}^{2}}=P_{n 0} \oplus P_{n 1} \oplus \cdots \oplus P_{n n-1}$ is quasi-affine to $\bigoplus_{1}^{n} P_{1}$.

Acknowledgement. The authors are partially supported by the NNSF of China (11371119). The authors would like to express their sincere appreciation to the referee for his/her valuable suggestions and comments.

REFERENCES

[1] J. Arazy, S. Fisher and J. Peetre, Hankel operators on weighted Bergman spaces, Amer. J. of Math. 110, (1988), 989-1054.
[2] S. AXLER, The Bergman space, the Bloch spaces, and commutators of multiplication operators, Duke Math. J. 53, (1986), 315-332.
[3] F. F. Bonstall, Hankel operator on the Bergman spaces for the disc, J. London Math. Soc. (2) 33, (1986), 355-364.
[4] S. Fu and E. J. Straube, Compactness of the $\bar{\partial}$-Neumann problem on convex domains, J. Funct. Anal. 159, (1998), 629-641.
[5] F. Haslinger, The canonical solution operator to $\bar{\partial}$ restricted to Bergman spaces, Proc. Amer. Math. Soc. 129, (2001), 3321-3329.
[6] F. Haslinger, The canonical solution operator to $\bar{\delta}$ restricted to spaces of entire functions, Ann. Fac. Sci. Toulous Math. (1) 11, (2002), 57-70.
[7] F. HasLinger, Spectrum of the $\bar{\partial}$-Neumann Laplacian on the Fock space, J. Math. Anal. Appl. 402, (2013), 739-744.
[8] S. Janson, Hankel operators between weighted Bergman spaces, Ark. Mat. 26, (1988), 205-219.
[9] W. Knirsch and G. SChneider, Generalized Hankel operators and the generalized solution operator to $\bar{\delta}$ on the Fock space and on the Bergman space of the unit disc, Math. Nachr. 279, (2006), 1684-1694.
[10] R. Rochberg, Trace ideal criteria for Hankel operators and commutators, Indiana Univ. Math. J. 31, (1982), 913-925.
[11] M. Uchiyama, Curvatures and similarity of operators with holomorphic eigenvectors, Trans. Amer. Math. Soc. 319, (1990), 405-415.
[12] R. Wallstern, Hankel operators between weighted Bergman space in the ball, Ark. Math. 28, (1990), 183-192.
[13] K. H. Zhu, Hilbert-Schmidt Hankel operators on the Bergman space, Proc. Amer. Math. Soc. 109, (1990), 721-730.
[14] K. H. ZHU, Analysis on Fock spaces, GTM 263, Springer New York, 2012.
(Received October 30, 2019)
Yucheng Li
Department of Mathematics Hebei Normal University
Shijiazhuang, 050024, PR China
e-mail: liyucheng@hebtu.edu.cn
Yameng Li
Department of Mathematics
Hebei Normal University
Shijiazhuang, 050024, PR China
e-mail: m19933063560@163.com

[^0]: Mathematics subject classification (2010): 32A36, 47B35.
 Keywords and phrases: Fock space, Hankel operator, norm, quasi-affinity.

 * Corresponding author.

