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ON THE BOUNDEDNESS OF SUBSEQUENCES OF

VILENKIN–FEJÉR MEANS ON THE MARTINGALE HARDY SPACES

LARS-ERIK PERSSON, GEORGE TEPHNADZE AND GEORGI TUTBERIDZE

(Communicated by I. M. Spitkovsky)

Abstract. In this paper we characterize subsequences of Fejér means with respect to Vilenkin
systems, which are bounded from the Hardy space Hp to the Lebesgue space Lp, for all 0 <
p < 1/2. The result is in a sense sharp.

1. Introduction

In the one-dimensional case the weak (1,1)-type inequality for the maximal oper-
ator of Fejér means

σ∗ f := sup
n∈N

|σn f |

can be found in Schipp [12] for Walsh series and in Pál, Simon [10] for bounded
Vilenkin series. Here, as usual, the symbol σn denotes the Fejér mean with respect
to the Vilenkin system (and thus also called the Vilenkin-Fejér means, see Section 2).

Fujji [6] and Simon [14] verified that σ∗ is bounded from H1 to L1 . Weisz [23]
generalized this result and proved boundedness of σ∗ from the martingale space Hp

to the Lebesgue space Lp for p > 1/2. Simon [13] gave a counterexample, which
shows that boundedness does not hold for 0 < p < 1/2. A counterexample for p = 1/2
was given by Goginava [8] (see also [2] and [3]). Weisz [24] proved that the maximal
operator of the Fejér means σ∗ is bounded from the Hardy space H1/2 to the space
weak−L1/2 . The boundedness of weighted maximal operators are considered in [9],
[16] and [17].

Weisz [22] (see also [21]) also proved that the following theorem is true:

THEOREM W:(WEISZ). Let p > 0 . Then the maximal operator

σ∇,∗ f = sup
n∈N

|σMn f | (1)
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where M0 := 1, Mn+1 := mnMn (n ∈ N) and m := (m0,m1, . . .) be a sequences of the
positive integers not less than 2, which generate Vilenkin systems, is bounded from the
Hardy space Hp to the space Lp .

In [11] the result of Weisz was generalized and it was found the maximal subspace
S ⊂ N of positive numbers, for which the restricted maximal operator on this subspace
sup

n∈S⊂N

|σn f | of Fejér means is bounded from the Hardy space Hp to the space Lp for

all 0 < p � 1/2. The new theorem (Theorem 1) in this paper show in particular that
this result is in a sense sharp. In particular, for every natural number n = ∑∞

k=0 nkMk,
where nk ∈ Zmk (k ∈ N+) we define numbers

〈n〉 := min{ j ∈ N : n j �= 0}, |n| := max{ j ∈ N : n j �= 0}, ρ (n) = |n|− 〈n〉
and prove that

S = {n ∈ N : ρ (n) � c < ∞.}
Since ρ(Mn) = 0 for all n ∈ N we obtain that {Mn : n ∈ N} ⊂ S and that follows

i.e. that result of Weisz [22] (see also [21]) that restricted maximal operator (1) is
bounded from the Hardy space Hp to the space Lp.

The main aim of this paper is to generalize Theorem W and find the maximal
subspace of positive numbers, for which the restricted maximal operator of Fejér means
in this subspace is bounded from the Hardy space Hp to the space Lp for all 0 < p �
1/2. As applications, both some well-known and new results are pointed out.

This paper is organized as follows: In order not to disturb our discussions later on
some preliminaries (definitions, notations and lemmas) are presented in Section 2. The
main result (Theorem 1) and some of its consequences can be found in Section 3. The
detailed proof of Theorem 1 is given in Section 4.

2. Preliminaries

Denote by N+ the set of the positive integers, N := N+∪{0}. Let m := (m0,m1, . . .)
be a sequence of the positive integers not less than 2. Denote by Zmn := {0,1, . . . ,mn−
1} the additive group of integers modulo mn . Define the group Gm as the complete
direct product of the groups Zmn with the product of the discrete topologies of Zmn ‘s.
In this paper we discuss bounded Vilenkin groups, i.e. the case when supn∈N mn < ∞.

The direct product μ of the measures μn ({ j}) := 1/mn, ( j ∈ Zmn) is the Haar
measure on Gm with μ (Gm) = 1.

The elements of Gm are represented by sequences

x := (x0,x1, . . . ,xn, . . .) , (xn ∈ Zmn) .

It is easy to give a base for the neighbourhood of Gm :

I0 (x) := Gm, In(x) := {y ∈ Gm | y0 = x0, . . . ,yn−1 = xn−1} (x ∈ Gm, n ∈ N) .

Set In := In (0) , for n ∈ N+ and
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en := (0, . . . ,0,xn = 1,0, . . .) ∈ Gm (n ∈ N) .

Denote

Ik,l
N :=

{
IN(0, . . . ,0,xk �= 0,0, . . . ,0,xl �= 0,xl+1,..., xN−1 ), k < l < N,
IN(0, . . . ,0,xk �= 0,0, . . . ,0), l = N.

It is easy to show that

IN =

(
N−2⋃
i=0

N−1⋃
j=i+1

Ii, j
N

)⋃(N−1⋃
i=0

Ii,N
N

)
, n = 2,3, ... (2)

If we define the so-called generalized number system based on m in the following
way :

M0 := 1, Mn+1 := mnMn (n ∈ N),

then every n ∈ N can be uniquely expressed as n = ∑∞
k=0 nkMk, where nk ∈ Zmk (k ∈

N+) and only a finite number of nk‘s differ from zero. Let

〈n〉 := min{ j ∈ N : n j �= 0} and |n| := max{ j ∈ N : n j �= 0},

that is M|n| � n � M|n|+1. Set ρ (n) = |n|− 〈n〉 , for all n ∈ N.
Next, we introduce on Gm an orthonormal system, which is called the Vilenkin

system. At first, we define the complex-valued function rk (x) : Gm → C, the general-
ized Rademacher functions, by

rk (x) := exp(2π ixk/mk) ,
(
i2 = −1,x ∈ Gm, k ∈ N

)
.

Now, define the Vilenkin system ψ := (ψn : n ∈ N) on Gm as:

ψn(x) :=
∞

∏
k=0

rnk
k (x) (n ∈ N) .

Specifically, we call this system the Walsh-Paley system, when m ≡ 2.
The norms (or quasi-norms) of the spaces Lp(Gm) and weak−Lp (Gm) (0 < p < ∞)

are respectively defined by

‖ f‖p
p :=

∫
Gm

| f |p dμ , ‖ f‖p
weak−Lp

:= sup
λ>0

λ pμ ( f > λ ) < ∞.

The Vilenkin system is orthonormal and complete in L2 (Gm) (see [20]).
If f ∈ L1 (Gm) we can define Fourier coefficients, partial sums, Dirichlet kernels,

Fejér means, Fejér kernels with respect to the Vilenkin system in the usual manner:

f̂ (k) :=
∫

Gm

fψkdμ ( k ∈ N) ,
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Sn f : =
n−1

∑
k=0

f̂ (k)ψk, Dn :=
n−1

∑
k=0

ψk ( n ∈ N+ ) ,

σn f : =
1
n

n−1

∑
k=0

Sk f , Kn :=
1
n

n−1

∑
k=0

Dk ( n ∈ N+ ) .

Recall that (see e.g. [1])

DMn (x) =
{

Mn, if x ∈ In,
0, if x /∈ In,

(3)

and

DsnMn = DsnMn

sn−1

∑
k=0

ψkMn = DMn

sn−1

∑
k=0

rk
n, (4)

where n ∈ N and 1 � sn � mn−1.
The σ -algebra generated by the intervals {In (x) : x ∈ Gm} will be denoted by �n

(n ∈ N) . Denote by f =
(

f (n),n ∈ N

)
a martingale with respect to �n (n ∈ N) (for

details see e.g. [21]). The maximal function of a martingale f is defined by

f ∗ = sup
n∈N

∣∣∣ f (n)
∣∣∣ .

In the case f ∈ L1(Gm), the maximal functions are just also given by

f ∗ (x) = sup
n∈N

1
|In (x)|

∣∣∣∣∫
In(x)

f (u)μ (u)
∣∣∣∣ .

For 0 < p < ∞ the Hardy martingale spaces Hp (Gm) consist of all martingales f ,
for which

‖ f‖Hp
:= ‖ f ∗‖p < ∞.

If f ∈ L1(Gm), then it is easy to show that the sequence (SMn ( f ) : n ∈ N) is a

martingale. If f =
(

f (n),n ∈ N

)
is a martingale, then the Vilenkin-Fourier coefficients

must be defined in a slightly different manner:

f̂ (i) := lim
k→∞

∫
Gm

f (k) (x)ψ i (x)dμ (x) .

The Vilenkin-Fourier coefficients of f ∈ L1 (Gm) are the same as those of the
martingale (SMn f : n ∈ N) obtained from f .

A bounded measurable function a is said to be a p-atom if there exists an interval
I , such that ∫

I
adμ = 0, ‖a‖∞ � μ (I)−1/p , supp(a) ⊂ I.

For the proof of the main result (Theorem 1) we need the following Lemmas:
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LEMMA 1. (see e.g. [22]) A martingale f =
(

f (n),n ∈ N

)
is in Hp (0 < p � 1)

if and only if there exist a sequence (ak,k ∈ N) of p-atoms and a sequence (μk,k ∈ N)
of real numbers such that for every n ∈ N :

∞

∑
k=0

μkSMnak = f (n) (5)

and
∞

∑
k=0

|μk|p < ∞.

Moreover, ‖ f‖Hp
� inf(∑∞

k=0 |μk|p)1/p , where the infimum is taken over all decompo-
sition of f of the form (5).

LEMMA 2. (see e.g. [22]) Suppose that an operator T is σ -linear and for some
0 < p � 1 ∫

−
I

|Ta|p dμ � cp < ∞,

for every p-atom a, where I denotes the support of the atom. If T is bounded from
L∞ to L∞, then

‖T f‖p � cp ‖ f‖Hp
.

LEMMA 3. (see [7]) Let n > t, t,n ∈ N, x ∈ It\ It+1 . Then

KMn (x) =
{

0, if x− xtet /∈ In,
Mt

1−rt(x)
, if x− xtet ∈ In.

LEMMA 4. (see [17]) Let x ∈ Ii, j
N , i = 0, . . . ,N−1, j = i+1, . . . ,N . Then∫

IN
|Kn (x− t)|dμ (t) � cMiMj

M2
N

, for n � MN .

LEMMA 5. (see [11]) Let n ∈ N. Then

|Kn (x)| � c
n

|n|
∑

l=〈n〉
Ml

∣∣KMl

∣∣� c
|n|
∑

l=〈n〉

∣∣KMl

∣∣ (6)

and

|nKn| �
M2

〈n〉
2πλ

, x ∈ I〈n〉+1
(
e〈n〉−1 + e〈n〉

)
, (7)

where λ := supmn.
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3. The main result and applications

Our main result reads:

THEOREM 1. a) Let 0 < p < 1/2, f ∈Hp. Then there exists an absolute constant
cp , depending only on p, such that

∥∥σnk f
∥∥

Hp
�

cpM
1/p−2
|nk|

M1/p−2
〈nk〉

‖ f‖Hp
.

b) (sharpness) Let 0 < p < 1/2 and Φ(n) be any nondecreasing function, such
that

sup
k∈N

ρ (nk) = ∞, lim
k→∞

M1/p−2
|nk|

M1/p−2
〈nk〉 Φ(nk)

= ∞. (8)

Then there exists a martingale f ∈ Hp, such that

sup
k∈N

∥∥∥∥ σnk f

Φ(nk)

∥∥∥∥
weak−Lp

= ∞.

COROLLARY 1. Let 0 < p < 1/2, and f ∈ Hp. Then there exists an absolute
constant cp , depending only on p, such that∥∥σnk f

∥∥
Hp

� cp ‖ f‖Hp
, k ∈ N

if and only if
sup
k∈N

ρ (nk) < c < ∞.

As an application we also obtain the previous mentioned result by Weisz [21], [22]
(Theorem W).

COROLLARY 2. Let 0 < p < 1/2, f ∈Hp. Then there exists an absolute constant
cp , depending only on p, such that

‖σMn f‖Hp
� cp ‖ f‖Hp

, n ∈ N.

On the other hand, the following unexpected result is true:

COROLLARY 3. a) Let 0 < p < 1/2, f ∈ Hp. Then there exists an absolute con-
stant cp , depending only on p, such that

‖σMn+1 f‖Hp
� cpM

1/p−2
n ‖ f‖Hp

, n ∈ N.

b) Let 0 < p < 1/2 and Φ(n) be any nondecreasing function, such that

lim
k→∞

M1/p−2
k

Φ(k)
= ∞.
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Then there exists a martingale f ∈ Hp, such that

sup
k∈N

∥∥∥∥σMk+1 f

Φ(k)

∥∥∥∥
weak−Lp

= ∞.

REMARK 1. From Corollary 2 we obtain that σMn are bounded from Hp to Hp ,
but from Corollary 3 we conclude that σMn+1 are not bounded from Hp to Hp . The
main reason is that Fourier coefficients of martingales f ∈Hp are not uniformly bounded
(for details see e.g. [18]).

In the next corollary we state some estimates for the Walsh system only to clearly see
the difference of divergence rates for the various subsequences:

COROLLARY 4. a)Let 0 < p < 1/2, f ∈ Hp. Then there exists an absolute con-
stant cp , depending only on p, such that

‖σ2n+1 f‖Hp
� cp2

(1/p−2)n‖ f‖Hp
, n ∈ N (9)

and ∥∥σ2n+2[n/2] f
∥∥

Hp
� cp2

(1/p−2)n
2 ‖ f‖Hp

, n ∈ N, (10)

where [n/2] denotes an integer part of n/2 .

b) The rates 2(1/p−2)n and 2
(1/p−2)n

2 in inequalities (9) and (10) are sharp in the
same sense as in Theorem 1.

4. Proof of Theorem 1

Proof. a) Since

sup
n∈N

∫
Gm

|Kn (x)|dμ (x) � c < ∞, (11)

we obtain that
M1/p−2

〈nk〉
∣∣σnka(x)

∣∣
M1/p−2

|nk|

is bounded from L∞ to L∞. According to Lemma 2 we find that the proof of Theorem
1 will be complete, if we show that

∫
IN

∣∣∣∣∣∣
M1/p−2

〈nk〉 σnka(x)

M1/p−2
|nk|

∣∣∣∣∣∣
p

< c < ∞,

for every p -atom a, with support I and μ (I) = M−1
N . We may assume that I = IN . It is

easy to see that σnk (a) = 0 when nk � MN . Therefore, we can suppose that nk > MN .
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Since ‖a‖∞ � M1/p
N we find that

M1/p−2
〈nk〉

∣∣σnka(x)
∣∣

M1/p−2
|nk|

�
M1/p−2

〈nk〉
M1/p−2

|nk|

∫
IN
|a(t)| ∣∣Knk (x− t)

∣∣dμ (t) (12)

�
M1/p−2

〈nk〉 ‖a‖∞

M1/p−2
|nk|

∫
IN

∣∣Knk (x− t)
∣∣dμ (t) �

M1/p−2
〈nk〉 M1/p

N

M1/p−2
|nk|

∫
IN

∣∣Knk (x− t)
∣∣dμ (t)

� M1/p−2
〈nk〉 M2

|nk|
∫

IN

∣∣Knk (x− t)
∣∣dμ (t) .

Without loss the generality we may assume that i < j . Let x ∈ Ii, j
N and j < 〈nk〉 .

Then x− t ∈ Ii, j
N for t ∈ IN and, according to Lemma 3, we obtain that∣∣KMl (x− t)

∣∣= 0, for all 〈nk〉 � l � |nk| .

By applying (12) and (6) in Lemma 5, for x ∈ Ii, j
N , 0 � i < j < 〈nk〉 we get that

M1/p−2
〈nk〉

∣∣σnka(x)
∣∣

M1/p−2
|nk|

� M1/p−2
〈nk〉 M2

|nk|
|nk|
∑

l=〈nk〉

∫
IN

∣∣KMl (x− t)
∣∣dμ (t) = 0. (13)

Let x ∈ Ii, j
N , where 〈nk〉 � j � N. Then, in the view of Lemma 4, we have that∫

IN

∣∣Knk (x− t)
∣∣dμ (t) � cMiMj

M2
N

.

By using again (12) we find that

M1/p−2
〈nk〉

∣∣σnka(x)
∣∣

M1/p−2
|nk|

�
M1/p−2

〈nk〉 M1/p
N

M1/p−2
|nk|

∫
IN

∣∣Knk (x− t)
∣∣dμ (t) (14)

�
M1/p−2

〈nk〉 M1/p
N

M1/p−2
|nk|

MiMj

M2
N

� M1/p−2
〈nk〉 MiMj.

By combining (2) and (12)-(14) we get that

∫
IN

∣∣∣∣∣∣
M1/p−2

〈nk〉
∣∣σnka(x)

∣∣
M1/p−2

|nk|

∣∣∣∣∣∣
p

dμ

=
N−2

∑
i=0

N−1

∑
j=i+1

∫
Ii, jN

∣∣∣∣∣∣
M1/p−2

〈nk〉
∣∣σnka(x)

∣∣
M1/p−2

|nk|

∣∣∣∣∣∣
p

dμ +
N−1

∑
i=0

∫
Ik,NN

∣∣∣∣∣∣
M1/p−2

〈nk〉
∣∣σnka(x)

∣∣
M1/p−2

|nk|

∣∣∣∣∣∣
p

dμ

�
〈nk〉−1

∑
i=0

N−1

∑
j=〈nk〉

∫
Ii, jN

∣∣∣∣∣∣
M1/p−2

〈nk〉
∣∣σnka(x)

∣∣
M1/p−2

|nk|

∣∣∣∣∣∣
p

dμ +
N−2

∑
i=〈nk〉

N−1

∑
j=i+1

∫
Ii, jN

∣∣∣∣∣∣
M1/p−2

〈nk〉
∣∣σnka(x)

∣∣
M1/p−2

|nk|

∣∣∣∣∣∣
p

dμ
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+
N−1

∑
i=0

∫
Ii,NN

∣∣∣∣∣∣
M1/p−2

〈nk〉
∣∣σnka(x)

∣∣
M1/p−2

|nk|

∣∣∣∣∣∣
p

dμ

�
〈nk〉−1

∑
i=0

N−1

∑
j=〈nk〉

∫
Ii, jN

∣∣∣M1/p−2
〈nk〉 MiMj

∣∣∣p dμ +
N−2

∑
i=〈nk〉

N−1

∑
j=i+1

∫
Ii, jN

∣∣∣M1/p−2
〈nk〉 MiMj

∣∣∣p dμ

+
N−1

∑
i=0

∫
Ii,NN

∣∣∣M1/p−2
〈nk〉 MiMN

∣∣∣p dμ

� cpM
1−2p
〈nk〉

〈nk〉−1

∑
i=0

N−1

∑
j=〈nk〉

(MiMj)
p

Mj
+cpM

1−2p
〈nk〉

N−2

∑
i=〈nk〉

N−1

∑
j=i+1

(MiMj)
p

Mj
+cpM

1−2p
〈nk〉

N−1

∑
i=0

(MiMN)p

MN

� cpM
1−2p
〈nk〉

〈nk〉
∑
i=0

Mp
i

N−1

∑
j=〈nk〉+1

1

M1−p
j

+M1−2p
〈nk〉

N−2

∑
i=〈nk〉

Mp
i

N−1

∑
j=i+1

1

M1−p
j

+ cp

N−1

∑
i=0

Mp
i

Mp
N

� cpM
1−2p
〈nk〉 Mp

〈nk〉
1

M1−p
〈nk〉

+ cpM
1−2p
〈nk〉

N−2

∑
i=〈nk〉

1

M1−2p
i

+ cp � cp < ∞.

The proof of the a) part is complete.
b) Let {nk : k � 0} be a sequence of positive numbers, satisfying condition (8).

Then

sup
k∈N

M|nk|
M〈nk〉

= ∞. (15)

Under condition (15) there exists a sequence {αk : k � 0} ⊂ {nk : k � 0} such
that α0 � 3 and

∞

∑
k=0

M(1−2p)/2
〈αk〉 Φp/2 (αk)

M(1−2p)/2
|αk|

< c < ∞. (16)

Let

f (n) = ∑
{k; |αk|<n}

λkak,

where

λk =
λM(1/p−2)/2

〈αk〉 Φ1/2 (αk)

M(1/p−2)/2
|αk|

and

ak =
M1/p−1

|αk|
λ

(
DM|αk|+1

−DM|αk |
)

.

Here λ = supn∈N mn . By applying Lemma 1 we can conclude that f ∈ Hp.
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It is evident that

f̂ ( j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M1/2p

|αk| M(1/p−2)/2
〈αk〉 Φ1/2 (αk) ,

if j ∈ {M|αk|, ..., M|αk|+1−1
}

, k = 0,1,2...,
0 ,

if j /∈
∞⋃

k=0

{
M|αk|, ..., M|αk|+1−1

}
.

(17)

Moreover,

σαk
f

Φ(αk)
=

1
αkΦ(αk)

M|αk |
∑
j=1

S j f +
1

αkΦ(αk)

αk

∑
j=M|αk |+1

S j f := I + II.

Let M|αk| < j � αk. Then, by applying (17) we get that

S j f = SM|αk| f +M1/2p
|αk| M(1/p−2)/2

〈αk〉 Φ1/2 (αk)
(
Dj −DM|αk |

)
. (18)

By using (18) we can rewrite II as

II =
αk −M|αk|
αkΦ(αk)

SM|αk| f +
M1/2p

|αk| M(1/p−2)/2
〈αk〉

αkΦ1/2 (αk)

αk

∑
j=M|αk |

(
Dj −DM|αk |

)
:= II1 + II2.

Since (for details see e.g. [5] and [19])∥∥∥SM|αk | f
∥∥∥

weak−Lp
� cp‖ f‖Hp

we obtain that

‖II1‖p
weak−Lp

�
(αk −M|αk|

αkΦ(αk)

)p∥∥∥SM|αk | f
∥∥∥p

weak−Lp
�
∥∥∥SM|αk| f

∥∥∥p

weak−Lp
� cp ‖ f‖p

Hp
< ∞.

By using part a) of Theorem 1 (see also Corollary 2) we find that

‖I‖p
weak−Lp

=
(

M|αk|
αkΦ(αk)

)p∥∥∥σM|αk| f
∥∥∥p

weak−Lp
� cp ‖ f‖p

Hp
< ∞.

Let x ∈ I〈αk〉−1,〈αk〉
〈αk〉+1

. Under condition (8) we can conclude that 〈αk〉 �= |αk| and〈
αk −M|αk|

〉
= 〈αk〉 . Since

Dj+Mn = DMn + ψMnDj = DMn + rnDj, when j < Mn (19)

if we apply estimate (7) in Lemma 5 for II2 we obtain that

|II2| =
M1/2p

|αk| M(1/p−2)/2
〈αk〉

αkΦ1/2 (αk)

∣∣∣∣∣∣
αk−M|αk |

∑
j=1

(
Dj+M|αk| −DM|αk|

)∣∣∣∣∣∣
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=
M1/2p

|αk| M(1/p−2)/2
〈αk〉

αkΦ1/2 (αk)

∣∣∣∣∣∣ψM|αk |

αk−M|αk|
∑
j=1

Dj

∣∣∣∣∣∣
�

cpM
1/2p−1
|αk| M(1/p−2)/2

〈αk〉
Φ1/2 (αk)

(
αk −M|αk|

) ∣∣∣Kαk−M|αk|
∣∣∣� cpM

1/2p−1
|αk| M(1/p+2)/2

〈αk〉
Φ1/2 (αk)

.

It follows that

‖II2‖p
weak−Lp

� cp

⎛⎝M(1/p−2)/2
|αk| M(1/p+2)/2

〈αk〉
Φ1/2 (αk)

⎞⎠p

μ
{

x ∈ Gm : |IV2| � cpM
(1/p−2)/2
|αk| M(1/p+2)/2

〈αk〉
}

� cp

M1/2−p
|αk| M1/2+p

〈αk〉 μ
{

I〈αk〉−1,〈αk〉
〈αk〉+1

}
Φp/2 (αk)

�
cpM

1/2−p
|αk|

M1/2−p
〈αk〉 Φp/2 (αk)

.

Hence, if we apply (16) for large k ,∥∥σαk f
∥∥p

weak−Lp
� ‖II2‖p

weak−Lp
−‖II1‖p

weak−Lp
−‖I‖p

weak−Lp

� 1
2
‖II2‖p

weak−Lp
�

cpM
1/2−p
|αk|

2M1/2−p
〈αk〉 Φp/2 (αk)

→ ∞, as k → ∞.

The proof is complete.
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[10] J. PÁL AND P. SIMON,On a generalization of the concept of derivative, Acta Math. Acad. Sci. Hungar.
29 (1977), no. 1-2, 155–164.

[11] L.-E. PERSSON AND G. TEPHNADZE, A sharp boundedness result concerning some maximal opera-
tors of Vilenkin-Fejér means, Mediterr. J. Math., 13, 4 (2016) 1841–1853.

[12] F. SCHIPP, Certain rearrangements of series in the Walsh series, Mat. Zametki, 18 (1975), 193–201.
[13] P. SIMON, Cesáro summability with respect to two-parameter Walsh systems, Monatsh. Math., 131, 4

(2000), 321–334.
[14] P. SIMON, Investigations with respect to the Vilenkin system, Ann. Univ. Sci. Budapest. Eötvös Sect.

Math., 28 (1985), 87–101.
[15] B. SMITH, A strong convergence theorem for H1 (T ) , Lecture Notes in Math., 995, Springer, Berlin,

1994, 169–173.
[16] G. TEPHNADZE, On the maximal operator of Vilenkin-Fejér means, Turk. J. Math, 37, (2013), 308–

318.
[17] G. TEPHNADZE, On the maximal operators of Vilenkin-Fejér means on Hardy spaces, Math. Inequal.

Appl., 16, (2013), no. 2, 301–312.
[18] G. TEPHNADZE, On the Vilenkin-Fourier coefficients, Georgian Math. J., 20, 1 (2013), 169–177.
[19] G. TEPHNADZE,On the convergence of partial sums with respect to Vilenkin system on the martingale

Hardy spaces, J. Contemp. Math. Anal., 53, 5, (2018) 294–306.
[20] N. YA. VILENKIN,On a class of complete orthonormal systems, Izv. Akad. Nauk. U.S.S.R., Ser. Mat.,

11 (1947), 363–400.
[21] F. WEISZ, Martingale Hardy spaces and their applications in Fourier Analysis, Springer, Berlin-

Heideiberg-New York, 1994.
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