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Abstract. In this note, we first explain a minor error in the literature [3]. Secondly, we prove the
λ -weighted mixed arithmetic-geometric-harmonic-mean inequalities of A and B which are the
generalizations of the results already introduced in [3]. Finally, we extend our results to sums of
n (n � 2) sector matrices.

1. Introduction

For A∈Mn(C) , we write A � 0 if A is positive semidefinite (i.e., x∗Ax � 0 for all
x ∈ Cn ) and A > 0 if A is positive definite (i.e., x∗Ax > 0 for all nonzero x ∈ Cn ). For
two Hermitian matrices A and B of the same size, we denote A � B if A−B � 0. As is
well known, every matrix A ∈ Mn(C) can be decomposed as A = RA+ iIA , where the
Hermitian matrices RA = A+A∗

2 and IA = A−A∗
2i are called the real and imaginary parts

of A , respectively. This is called the Cartesian decomposition of A . The numerical
range of A ∈ Mn(C) is defined by

W (A) = {x∗Ax|x ∈ C
n,x∗x = 1}.

For α ∈ [0,π/2), let

Sα = {z ∈ C|Rz � 0, |Iz| � (Rz) tan(α)}

be a sector region on the complex plane. A matrix whose numerical ranges are con-
tained in a sector region Sα is called a sector matrix [5]. Recent research interest in
this class of matrices starts with a resolution of a problem from numerical analysis [1].
Some research results on sector matrices can be found in [1, 4, 5, 9]. Now we introduce
the main object in this note. A matrix A ∈ Mn(C) is called accretive if RA is positive
definite. If A,B ∈ Mn(C) are positive definite, then the geometric mean

A�B := A
1
2 (A− 1

2 BA− 1
2 )

1
2 A

1
2 ,
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is well studied, while the arithmetic mean is defined by

A∇B :=
A+B

2
,

and the harmonic mean is defined by

A!B :=
(

A−1 +B−1

2

)−1

.

If A,B are positive definite and λ ∈ (0,1) is a real number, then the following quantities

A∇λ B := (1−λ )A+ λB, (1)

A!λ B := ((1−λ )A−1 + λB−1)−1,

A�λ B := A
1
2 (A− 1

2 BA− 1
2 )λ A

1
2 , (2)

are known, in the literature, as the λ -weighted arithmetic, λ -weighted harmonic and
λ -weighted geometric means of A and B , respectively. If λ = 1

2 , they are simply de-
noted by A∇B , A!B and A�B , respectively. The following inequalities are well known
in the literature:

A!λ B � A�λ B � A∇λ B. (3)

Now, let A,B be sector matrices and λ ∈ (0,1) . It is easy to see that the set of all
sector matrices acting on C is a convex cone of Mn(C) . Further, A−1 and B−1 are also
sector matrices. Consequently, A∇λ B and A!λ B can be defined by the same formulas
as previously when A,B ∈ Mn(C) are two sector matrices. However, by virtue of the
presence of non-integer exponents for matrices in (2), the λ -weighted geometric mean
A�λ B for two sector matrices can not be defined by (2). Raı̈ssouli et al. [8] defined
the λ -weighted geometric mean A�λ B for two sector matrices A,B ∈ Mn(C) via the
following formula

A�λ B :=
sin(λ π)

π

∫ ∞

0
tλ−1(A−1 + tB−1)−1dt

=
sin(λ π)

π

∫ ∞

0
tλ−1A(B+ tA)−1Bdt.

(4)

When λ = 1
2 , Drury [2] defined the geometric mean for two sector matrices A,B ∈

Mn(C) via the formula

A�B :=
(

2
π

∫ ∞

0
(tA+ t−1B)−1 dt

t

)−1

. (5)

It is proved in [2] that A�B = B�A and A�B = (A−1�B−1)−1 for any sector matrices
A,B ∈ Mn(C) . It follows that (5) is equivalent to:

A�B =
2
π

∫ ∞

0
(tA−1 + t−1B−1)−1 dt

t
=

2
π

∫ ∞

0
A(tB+ t−1A)−1B

dt
t

.
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Mond and Pečarić (see [7, Theorem 2 and Theorem 3]) proved the following mixed
arithmetic-geometric-mean inequality and mixed harmonic-geometric-mean inequality.

THEOREM 1.1. (see [7, Theorem 2]) Let A and B be positive definite matrices.
The mixed arithmetic-geometric-mean inequality is valid, i.e.,

A∇(A�B) � A�(A∇B).

THEOREM 1.2. (see [7, Theorem 3]) Let A and B be positive definite matrices.
The mixed harmonic-geometric-mean inequality holds, i.e.,

A�(A!B) � A!(A�B).

Recently, J. Liu et al. [3] presented analogous inequalities for two sector matrices
A,B ∈ Mn(C) as follows.

THEOREM 1.3. (see [3, Theorem 1.2]) If A,B ∈ Mn(C) with W (A),W (B) ⊆ Sα ,
then

R[A∇(cos2(α)(A�B))] � R[A�(A∇B)], (6)

and

sec2(α)R[A!(sec2(α)(A�B))] � R[A�(A!B)]. (7)

However, a careful examination of the authors’ proof in [3, Theorem 1.2] actually re-
vealed (7) should be the following result

R[A�(A!B)] � sec2(α)R[A!(sec2(α)(A�B))]. (8)

In this paper, we first extend the results (6) and (8) to inequalities for weighted
mixed arithmetic-geometric-harmonic means of two sector matrices. After that, we
generalize our results to sums of n (n � 2) sector matrices.

2. Main results

In this section, we first prove mixed arithmetic-geometric-mean inequality with
λ -weighted and mixed harmonic-geometric-mean inequality with λ -weighted for two
sector matrices. To do this, we need the following several lemmas.

LEMMA 2.1. (see [5, Lemma 2.3 and Lemma 3.2]) If A ∈ Mn(C) with W (A) ⊆
Sα , then

R(A−1) � (RA)−1

� sec2(α)R(A−1).
(9)
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LEMMA 2.2. (see [8, Theorem 2.4]) If A,B ∈ Mn(C) with W (A),W (B) ⊆ Sα ,
then

RA�λ RB � R(A�λ B). (10)

LEMMA 2.3. Let A,B ∈ Mn(C) with W (A),W (B) ⊆ Sα . Then

RA!λRB � R(A!λ B)

� sec2(α)(RA!λ RB).
(11)

Proof. The first inequality is due to Raı̈ssouli et al. [8, Lemma 2.3]. Now, we
compute

R(A!λ B) = R(λA−1 +(1−λ )B−1)−1

�
[
R
(
λA−1 +(1−λ )B−1)]−1

(by (9))

= {λ [(RA−1)−1]−1 +(1−λ )[(RB−1)−1]−1}−1

= (RA−1)−1!λ (RB−1)−1

� (sec2(α)RA)!λ (sec2(α)RB) (by (9))

= sec2(α)(RA!λ RB).

Thus, the second inequality holds. �

LEMMA 2.4. Let A,B ∈ Mn(C) with W (A),W (B) ⊆ Sα for some α ∈ [0,π/2) .
Then

R(A�λ B) � sec2(α)R(A∇λ B), λ ∈ (0,1).

Proof. Compute

R(A�λ B) = R

[
sin(λ π)

π

∫ ∞

0
tλ−1(A−1 + tB−1)−1dt

]
(by (4))

=
sin(λ π)

π

∫ ∞

0
tλ−1R[(A−1 + tB−1)−1]dt

� sin(λ π)
π

∫ ∞

0
tλ−1[R(A−1 + tB−1)]−1dt (by (9))

=
sin(λ π)

π

∫ ∞

0
tλ−1[R(A−1)+ tR(B−1)]−1dt

= (R(A−1))−1�λ (R(B−1))−1

� sec2(α)RA�λ sec2(α)RB (by (9))
= sec2(α)(RA�λ RB)
� sec2(α)(RA∇λ RB) (by (3))
= sec2(α)R(A∇λ B),

which completes the proof. �
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LEMMA 2.5. Let A,B ∈ Mn(C) with W (A),W (B) ⊆ Sα for some α ∈ [0,π/2) .
Then

R(A!λ B) � sec2(α)R(A�λ B), λ ∈ (0,1).

Proof. Compute

R(A!λB) = R[(λA−1 +(1−λ )B−1)−1]
� [R(λA−1 +(1−λ )B−1)]−1 (by (9))
= [λR(A−1)+ (1−λ )R(B−1)]−1

= [R(A−1)∇λ R(B−1)]−1

� [R(A−1)�λ R(B−1)]−1 (by (3))
= [R(A−1)]−1�λ [R(B−1)]−1

� [sec2(α)R(A)]�λ [sec2(α)R(B)] (by (9))
= sec2(α)[R(A)�λ R(B)]
� sec2(α)R(A�λ B), (by (10))

as claimed. �

REMARK 2.6. Set α = 0 in Lemma 2.4 and Lemma 2.5, i.e., A and B are positive
semidefinite matrices. Then our result is the inequality (3).

With the above preparation, let us first present the generalizations of the inequali-
ties (6) and (8) in the next two theorems. The following result is a generalization of the
result (6).

THEOREM 2.7. Let A,B∈Mn(C) with W (A),W (B)⊆ Sα for some α ∈ [0,π/2) .
Then

RA∇λ (cos2(α)R(A�λ B)) � R[A�λ (A∇λ B)], λ ∈ (0,1). (12)

Proof. From the proof of Lemma 2.4, we know that,

R(A�λ B) � sec2(α)(RA�λ RB), λ ∈ (0,1). (13)

Since the function f (t) = tλ ,λ ∈ (0,1) is operator concave, by Jensen’s inequality we
have

λ f (C)+ (1−λ ) f (D) � f (λC+(1−λ )D).

Let C = I and D = (RA)−
1
2 RB(RA)−

1
2 . Then we have

λ I +(1−λ )[(RA)−
1
2 RB(RA)−

1
2 ]λ � [λ I +(1−λ )(RA)−

1
2 RB(RA)−

1
2 ]λ . (14)
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From (14), it follows that

λRA+(1−λ )
[
(RA)

1
2 [(RA)−

1
2 RB(RA)−

1
2 ]λ (RA)

1
2

]
� (RA)

1
2

[
(RA)−

1
2 [λRA+(1−λ )RB](RA)−

1
2

]λ
(RA)

1
2 ,

which is just

RA∇λ (RA�λ RB) � RA�λ (RA∇λ RB), λ ∈ (0,1). (15)

Now,

R[A�λ (A∇λ B)] � RA�λ R(A∇λ B) (by (10))
= RA�λ (RA∇λ RB)
� RA∇λ (RA�λ RB) (by (15))
� RA∇λ (cos2(α)R(A�λ B)), (by (13) and monotonicity)

which proves the result. �

REMARK 2.8. When λ = 1
2 , our result (12) reduces to (6).

The next theorem is another generalization of the inequality (8).

THEOREM 2.9. Let A,B∈Mn(C) with W (A),W (B)⊆ Sα for some α ∈ [0,π/2) .
Then

R[A�λ (A!λ B)] � sec2(α)R[A!λ (A�λ B)], λ ∈ (0,1). (16)

Proof. Taking the inverse of both sides in (15) and substituting RA for (RA)−1

and RB for (RB)−1 gives the following inequality:

RA�λ (RA!λ RB) � RA!λ (RA�λ RB), λ ∈ (0,1). (17)

Compute

R[A�λ (A!λ B)] = R
[
A�λ

(
λA−1 +(1−λ )B−1)−1

]
= R

[
sinλ π

π

∫ ∞

0
tλ−1(A−1 + t(λA−1 +(1−λ )B−1)

)−1
dt

]

=
sinλ π

π

∫ ∞

0
tλ−1R

[(
A−1 + t(λA−1 +(1−λ )B−1)

)−1
]
dt

� sinλ π
π

∫ ∞

0
tλ−1 [R(A−1 + t(λA−1 +(1−λ )B−1)]−1

dt

(by (9))

=
sinλ π

π

∫ ∞

0
tλ−1{R(A−1)+ tR[λA−1 +(1−λ )B−1]}−1dt
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= [R(A−1)]−1�λ
[
λR(A−1)+ (1−λ )R(B−1)

]−1

= [R(A−1)]−1�λ
[
(R(A−1))−1!λ (R(B−1))−1]

� sec2(α)RA�λ sec2(α)(RA!λ RB) (by (9) and monotonicity)

= sec2(α)[RA�λ (RA!λ RB)]

� sec2(α)[RA!λ (RA�λ RB)] (by (17))

� sec2(α)[RA!λ R(A�λ B)] (by (10))

� sec2(α)R[A!λ (A�λ B)], (by (11))

as required. �

REMARK 2.10. When λ = 1
2 , our result (16) is the inequality (8).

Secondly, we end this section with mixed arithmetic-geometric-mean inequality
with λ -weighted and mixed harmonic-geometric-mean inequality with λ -weighted for
sums of n (n � 2) sector matrices.

THEOREM 2.11. Let Ai and Bi be sector matrices. The mixed harmonic-geometric-
mean inequality with λ -weighted for the sum of Ai and Bi holds, i.e., for λ ∈ (0,1)

R

[(
n

∑
i=1

Ai

)
∇λ

((
n

∑
i=1

Ai

)
�λ

(
n

∑
i=1

Bi

))]

�sec2(α)R

[(
n

∑
i=1

Ai

)
�λ

((
n

∑
i=1

Ai

)
∇λ

(
n

∑
i=1

Bi

))]
.

(18)

Proof. By (1), it is straightforward to observe that
n

∑
i=1

Ai and
n

∑
i=1

Bi are also sector

matrices. Thus, the conclusion (18) follows immediately from Theorem 2.7. �

THEOREM 2.12. Let A and B be sector matrices. The mixed harmonic-geometric-
mean inequality with λ -weighted for the sum of Ai and Bi holds, i.e., for λ ∈ (0,1)

R

(
n

∑
i=1

Ai

)
�λ

[
R

(
n

∑
i=1

Ai

)
!λ R

(
n

∑
i=1

Bi

)]

�sec2(α)R

(
n

∑
i=1

Ai

)
!λ

[
R

(
n

∑
i=1

Ai

)
�λ R

(
n

∑
i=1

Bi

)]
.

Proof. This follows from Theorem 2.9 as in the proof of Theorem 2.11. �
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