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SELF–ADJOINT EXTENSIONS OF THE TWO–VALLEY

DIRAC OPERATOR WITH DISCONTINUOUS

INFINITE MASS BOUNDARY CONDITIONS

BIAGIO CASSANO AND VLADIMIR LOTOREICHIK ∗

Abstract. We consider the four-component two-valley Dirac operator on a wedge in R
2 with

infinite mass boundary conditions, which enjoy a flip at the vertex. We show that it has defi-
ciency indices (1,1) and we parametrize all its self-adjoint extensions, relying on the fact that
the underlying two-component Dirac operator is symmetric with deficiency indices (0,1) . The
respective defect element is computed explicitly. We observe that there exists no self-adjoint
extension, which can be decomposed into an orthogonal sum of two two-component operators.
In physics, this effect is called mixing the valleys.

1. Introduction

The dynamics of low-energy electrons in graphene is effectively described by a
Hamiltonian associated to the matrix differential expression

M =
(

D 0
0 D

)
,

where D is the two-component Dirac differential expression in two dimensions. Such
a Hamiltonian takes into account contributions from the two inequivalent Dirac points
(or valleys) of the first Brillouin zone associated to the underlying hexagonal lattice.
The respective components of a wavefunction describe the electronic density on each
of the two triangular sublattices that constitute the honeycomb lattice. In order to define
rigorously the operator associated to M , appropriate boundary conditions have to be
imposed, and its domain of self-adjointness has to be determined. In many applications
the two valleys are decoupled and the description is reduced to the study of an operator
associated to D only. However, interactions that mix the valleys may indeed occur in
graphene [20] and the effects produced by them are often appearing under the name
valleytronics; see [15] and the references therein. In this paper we consider a discon-
tinuous infinite mass boundary condition and, in order to get self-adjointness for the
operator associated to M , it is necessary to couple the two valleys.
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Following our program, we investigate the two-dimensional massless Dirac oper-
ator with discontinuous infinite mass boundary conditions on a wedge in the situation
when the boundary condition undergoes a flip at the vertex. This problem can be re-
garded as a counterpart of the analysis in [11, 18] for a similar problem without a flip.
Following the strategy of [11], in order to obtain the main result we rely on separation
of the variables and subsequent careful analysis of the one-dimensional fiber operators.
We would like to emphasize that the observed effect is essentially not caused by the
corner of the wedge, because it persists even if the flip happens on the half-plane. In
this respect it is reminiscent of a similar effect for the Robin Laplacian with the coeffi-
cient having a linear singularity at a boundary point [9, 12, 14]. We expect that relying
on the localisation technique given in [14], our results can be generalized for operators
on smooth planar domains and even on curvilinear polygons, having (finitely many)
flips of the boundary condition. The literature on Dirac operators with infinite mass
boundary conditions on domains is quite extensive; see e.g. [1, 2, 3, 5, 10, 17], the
review papers [4, 16], and the references therein.

To describe our main result we need to introduce some notations. In what follows,
we consider a wedge:

Sω :=
{
(rcosθ ,r sinθ ) ∈ R

2 : r > 0,θ ∈ Iω
}⊂ R

2, (1.1)

where Iω := (−ω ,ω) with ω ∈ (0,π) . The value 2ω can be viewed as the opening
angle of the wedge Sω . The opposite sides of the wedge Sω are denoted by

Γ±
ω :=

{
(rcosω ,±r sinω) ∈ R

2 : r > 0
}

.

Clearly, the choice ω = π
2 corresponds to the half-plane.

Recall that the 2×2 Hermitian Pauli matrices σ1,σ2,σ3 are given by

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
.

For i, j ∈ {1,2,3} , they satisfy the anti-commutation relation σ jσi + σiσ j = 2δi j ,
where δi j is the Kronecker symbol. For the sake of convenience, we define σ :=
(σ1,σ2) and for x = (x1,x2)� ∈ R2 we set

σ · x := x1σ1 + x2σ2 =
(

0 x1− ix2

x1 + ix2 0

)
.

Consider the following matrix differential expression

D := −i(σ ·∇) =
(

0 −i(∂1− i∂2)
−i(∂1 + i∂2) 0

)
.

The subject of our analysis is the Dirac operator Dω in the Hilbert space L2(Sω ;C2) ,
defined as follows:

Dωu := Du,

domDω :=
{

u =
(

u1

u2

)
∈ H1(Sω ;C2) :

u2|Γ+
ω

= −e+iωu1|Γ+
ω

u2|Γ−
ω

= −e−iωu1|Γ−
ω

}
.

(1.2)



SELF-ADJOINT EXTENSIONS OF THE TWO-VALLEY DIRAC OPERATOR 669

Denoting n := n(x) the outer unit normal at the point x ∈ ∂Sω \ {0} = Γ−
ω ∪Γ+

ω , an
explicit computation shows that the boundary conditions in (1.2) are equivalent to

u = ∓iσ3(σ ·n)u, on Γ±
ω . (1.3)

We remark that the standard realization of the Dirac operator on a wedge with infinite
mass boundary conditions prescribes that

u = −iσ3(σ ·n)u, on ∂Sω ,

while in (1.3) there is a flip between the boundary conditions imposed on the opposite
sides Γ±

ω of the wedge. Equivalently, in order to get standard infinite mass boundary
conditions one should replace the second condition u2|Γ−

ω
= −e−iωu1|Γ−

ω
in (1.2) by

u2|Γ−
ω

= e−iωu1|Γ−
ω

.
We show in Proposition 2.1 that the operator Dω is symmetric. Our first main

result concerns the deficiency indices and subspaces of Dω .

THEOREM 1.1. Let the symmetric operator Dω be as in (1.2). Then the following
properties hold:

(i) Dω has deficiency indices (0,1) .1

(ii) ker(D∗
ω + i) = span{u�} and the defect element is given in polar coordinates by

u�(r,θ ) =
1

2
√

ω
e−r
√

r

(
e−

iθ
2

−e
iθ
2

)
. (1.4)

In order to prove Theorem 1.1, we take the advantage of the reformulation in polar
coordinates: we decompose the operator Dω into an orthogonal sum of infinitely many
one-dimensional self-adjoint Dirac operators on the half-line and a momentum-type
operator on the half-line, which has deficiency indices (0,1) and whose defect element
can be explicitly computed by solving an elementary first-order ODE.

The full four-component two-valley Dirac operator on a planar domain with in-
finite mass boundary conditions can be viewed as an orthogonal sum of two two-
component (one-valley) Dirac operators with infinite mass boundary conditions, in
which the unit normals are chosen to point outwards and inwards, respectively. As
previously mentioned, the analysis reduces to the one-valley two-component Dirac op-
erator unless there is an additional “off-diagonal” interaction, which mixes the valleys.

In our setting, the two-component Dirac operator associated with the first valley is
precisely given by Dω , while the one associated with the second valley{

u = (u1,u2)� ∈ H1(Sω ;C2) : u2|Γ±
ω

= e±iωu1|Γ±
ω

}
	 u 
→ Du

1For S ⊂ S∗ we adopt the convention n+(S) := dimker(S∗ − i) and n−(S) := dimker(S∗ + i) . The
deficiency indices of S are given by (n+(S),n−(S)) .
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is unitarily equivalent to −Dω via the Pauli matrix σ3 . Hence, the two-valley Dirac
operator is unitarily equivalent to

Mω := Dω ⊕ (−Dω). (1.5)

Clearly, the operator Mω is symmetric in L2(Sω ;C4) .
Our second main result concerns the characterisation of the self-adjoint extensions

for Mω . In our model, mixing the valleys naturally enters as a necessity to define a
self-adjoint Hamiltonian through the coupling constant α∈ T , which parametrizes the
extension. Moreover, this mixing is inevitable, since there is no self-adjoint extension of
Mω , which can be represented as an orthogonal sum of two Hamiltonians with respect
to the decomposition L2(Sω ;C4) = L2(Sω ;C2)⊕ L2(Sω ;C2) . This mathematical
observation still awaits a thorough physical interpretation.

THEOREM 1.2. Let the symmetric operator Dω be as in (1.2) and let u� be as
in (1.4). Then the two-valley Dirac operator Mω = Dω ⊕(−Dω) has deficiency indices
(1,1) and all its self-adjoint extensions are given by

Mα ,ω :=
(

Du1 + iu�

−Du2− iαu�

)
,

domMα ,ω :=
{(

u1

u2

)
+
(

u�

αu�

)
: u1,u2 ∈ domDω

}
,

where α ∈ T := {z ∈ C : |z| = 1} is an extension parameter.

The proof of Theorem 1.2 rests upon Theorem 1.1 and classical von Neumann exten-
sions theory; cf [19, §X.1].

REMARK 1. It is not yet clear if there is a way to single out a distinguished self-
adjoint extension of Mω . In this respect, the analysis of the case without a flip is
different: the two-dimensional Dirac operator is essentially self-adjoint whenever 0 <
ω � π/2 and for π/2< ω < π it has a unique extension such that its domain is included

in H
1
2 (Sω ;C2) ; cf. [11] for the infinite mass boundary condition and [18] for more

general quantum-dot boundary conditions. In our case, Theorem 1.2 shows that the
regularity of the operator domain can not be a criterion for selection, because it is
impossible to single out an extension requiring that its domain is included in a Sobolev
space Hs(Sω ;C4) , for some specific s > 0. Indeed, in our setting for any 0 < ω < π
all the extensions have a function in the domain that has a singularity ∼ |x|− 1

2 at the
origin. An analogous phenomenon was observed in [6, Rem. 1.10] and [7, Rem. 1.11]
for Dirac operators with critical Coulomb-type spherically symmetric perturbations.

Organisation of the paper

We prove in Section 2 that the operator Dω is symmetric and obtain its equiv-
alent representation in polar coordinates. Then, we decompose the operator Dω into
orthogonal sum of one-dimensional fiber operators in Section 3. Finally, Theorems 1.1
and 1.2 are proven in Section 4.
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2. Preliminary analysis of Dω

2.1. Symmetry

In order to prove symmetry of Dω we employ integration by parts. Thanks to the
specific choice of the boundary condition, the boundary term vanishes.

We denote by (·, ·)Sω the inner product in L2(Sω ;C2) . Note that all the inner
products in the present paper are linear in the first entry.

PROPOSITION 2.1. The operator Dω is densely defined and symmetric in the
Hilbert space L2(Sω ;C2) .

Proof. The operator is densely defined in L2(Sω ;C2) , because C∞
0 (Sω ;C2) ⊂

domDω is dense in L2(Sω ;C2) . Since Sω is the epigraph of a globally Lipschitz
function, it is straightforward to derive from [13, Thm. 3.34 and 3.38] that the Green’s
identity∫

Sω
(−iσ ·∇)u · vdx−

∫
Sω

u · (−iσ ·∇)vdx = −i
∫

Γ+
ω∪Γ−

ω
((σ ·n)u) · vds

holds for all u,v ∈H1(Sω ;C2) ; cf. [18, Lem. 1.4 (i)] for the same formula on bounded
piecewise-C1 domains. Hence, for any u,v ∈ domDω we have that

(Dωu,v)Sω − (u,Dωv)Sω = −i
∫

Γ+
ω∪Γ−

ω
((σ ·n)u) · vds (2.1)

Thanks to the boundary conditions (1.3), we have that∫
Γ+

ω∪Γ−
ω
((σ ·n)u) · vds =

∫
Γ+

ω
(σ ·n)(−iσ3(σ ·n))u · (−iσ3(σ ·n))vds

+
∫

Γ−
ω
(σ ·n)(iσ3(σ ·n))u · (iσ3(σ ·n))vds.

Since ±iσ3(σ ·n) are symmetric C2×2 matrices, we have that∫
Γ+

ω∪Γ−
ω
((σ ·n)u) · vds =−

∫
Γ+

ω∪Γ−
ω

σ3(σ ·n)(σ ·n)σ3(σ ·n)u · vds

=−
∫

Γ+
ω∪Γ−

ω
((σ ·n)u) · vds,

where in the last equality we have used the fact that (σ ·n)2 = σ2
3 = I2 . We conclude

that the right hand side in (2.1) vanishes, and consequently that Dω is symmetric.

2.2. Representation in polar coordinates

Let us introduce polar coordinates (r,θ ) on Sω . They are related to the Cartesian
coordinates x = (x1,x2) via the identities

x(r,θ ) =
(

x1(r,θ )
x2(r,θ )

)
, where x1 = x1(r,θ ) = rcosθ , x2 = x2(r,θ ) = r sinθ ,
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for all r > 0 and θ ∈ Iω = (−ω ,ω) . Further, we consider the moving frame (erad,eang)
associated with the polar coordinates

erad(θ ) =
dx
dr

=
(

cosθ
sinθ

)
and eang(θ ) =

derad

dθ
=
(−sinθ

cosθ

)
.

The Hilbert space L2
cyl(Sω ;C2) := L2(R+×Iω ,C2;rdrdθ ) can be viewed as the tensor

product L2
r (R+)⊗L2(Iω ;C2) , where the weighted L2 -space L2

r (R+) is defined as

L2
r (R+) =

{
ψ : R+ → C :

∫
R+

|ψ |2rdr < ∞
}

.

Let us consider the unitary transform

V : L2(Sω ;C2) → L2
cyl(Sω ;C2), (Vv)(r,θ ) = u

(
rcosθ ,r sinθ

)
,

and introduce the cylindrical Sobolev space by

H1
cyl(Sω ;C2) := V

(
H1(Sω ;C2)

)
=
{

v : v,∂rv,r
−1(∂θ v) ∈ L2

cyl(Sω ;C2)
}

.

We consider the operator acting in the Hilbert space L2
cyl(Sω ;C2) and defined as

D̃ω := VDωV−1, domD̃ω := V
(
domDω

)
. (2.2)

Now, let us compute the action of D̃ω on a function v ∈ domD̃ω . First, notice that
there exists a unique u∈ domDω such that v = Vu and the partial derivatives of u with
respect to the Cartesian variables (x1,x2) can be expressed through those of v with
respect to polar variables (r,θ ) via the standard relations (for x = x(r,θ ))

(∂1u)(x) = cosθ (∂rv)(r,θ )− sinθ
(∂θ v)(r,θ )

r
,

(∂2u)(x) = sinθ (∂rv)(r,θ )+ cosθ
(∂θ v)(r,θ )

r
.

Using the latter formulæ we can express the action of the differential expression D =
−i(σ ·∇) in polar coordinates as follows (for x = x(r,θ ))

(Du)(x) = −i

(
∂1u2(x)− i∂2u2(x)
∂1u1(x)+ i∂2u1(x)

)
= −i

(
e−iθ (∂rv2)(r,θ )− ie−iθ r−1(∂θ v2)(r,θ )
eiθ (∂rv1)(r,θ )+ ieiθ r−1(∂θ v1)(r,θ )

)
.

Note that a basic computation yields

σ · erad = cosθσ1 + sinθσ2 =
(

0 e−iθ

eiθ 0

)
. (2.3)

Hence, the operator D̃ω acts as

D̃ωv = −i(σ · erad)

(
∂rv+

v
2r

− (−iσ3∂θ + 1
2 )v

r

)
,

domD̃ω =
{
v ∈ H1

cyl(Sω ;C2) : v2(·,±ω) = −e±iωv1(·,±ω)
}
.

(2.4)
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3. Orthogonal decomposition

Now, we introduce an auxiliary spin-orbit-type operator in the Hilbert space
(L2(Iω ;C2),(·, ·)Iω ) as follows

Jω φ = −iσ3φ ′ +
φ
2

=

(
−iφ ′

1 + φ1
2

+iφ ′
2 + φ2

2

)
,

domJω =
{

φ = (φ1,φ2) ∈ H1(Iω ;C2) : φ2(±ω) = −e±iωφ1(±ω)
}
.

(3.1)

Let us investigate the spectral properties of Jω .

PROPOSITION 3.1. Let the operator Jω be as in (3.1). Then the following hold:

(i) Jω is self-adjoint and has a compact resolvent.

(ii) σ(Jω) = {λk}k∈Z
=
{ πk

2ω
}

k∈Z
and Fk := ker

(
Jω −λk

)
= span{φk} , where

φk(θ ) =
1

2
√

ω

(
e+i(λk− 1

2 )θ

(−1)k+1e−i(λk− 1
2 )θ

)
; (3.2)

moreover, {φk}k∈Z is an orthonormal basis of L2(Iω ;C2) .

(iii) (σ · erad)φk = (−1)k+1φ−k for all k ∈ Z .

Proof. (i) The operator Jω − 1
2 can be viewed as a momentum operator on a graph

with two edges of length 2ω , in which the vectors φout := {φ1(−ω),φ2(ω)} and φ in :=
{φ1(ω),φ2(−ω)} are connected as φout = Uφ in via the unitary matrix

U =
(

0 −eiω

−eiω 0

)
.

Hence, Jω − 1
2 is self-adjoint by [8, Prop. 4.1] and has a compact resolvent by [8,

Thm. 5.1]. Adding a constant 1
2 has no impact on these properties and hence the claim

follows.

(ii) Let φ = (φ1,φ2)� ∈ domJω and λ ∈ R be such that Jωφ = λ φ . The eigenvalue
equation on φ reads as follows

−iφ ′
1 +

φ1

2
= λ φ1,

+iφ ′
2 +

φ2

2
= λ φ2.

The generic solution of the above system of differential equations is given by{
φ1(θ ) = a1e+i(λ− 1

2 )θ ,

φ2(θ ) = a2e−i(λ− 1
2 )θ ,

a1,a2 ∈ C.
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Hence, the boundary conditions yield{
a1e+iωe+i(λ− 1

2 )ω +a2e−i(λ− 1
2 )ω = 0,

a1e−iωe−i(λ− 1
2 )ω +a2e+i(λ− 1

2 )ω = 0,

that can be simplified as {
a1e+i(λ+ 1

2 )ω +a2e−i(λ− 1
2 )ω = 0,

a1e−i(λ+ 1
2 )ω +a2e+i(λ− 1

2 )ω = 0.

This system has a non-trivial solution if the corresponding determinant vanishes, that is

Δ = e+i(λ+ 1
2 )ωe+i(λ− 1

2 )ω − e−i(λ− 1
2 )ωe−i(λ+ 1

2 )ω = e+2iλ ω − e−2iλ ω = 2isin(2λ ω),

and consequently the eigenvalues are given by

λk =
πk
2ω

, k ∈ Z.

The corresponding eigenvectors can be recovered with the aid of the formula

a1e
+i( πk

2 + ω
2 ) +a2e

−i( πk
2 −ω

2 ) = 0

which leads to a1eiπk +a2 = 0. The choice

a1 =
1

2
√

ω
, a2 =

(−1)k+1

2
√

ω

yields the orthonormal basis in (3.2).

(iii) Using (2.3) we obtain

(σ · erad)φk =
1

2
√

ω

(
0 e−iθ

eiθ 0

)(
e+i(λk− 1

2 )θ

(−1)k+1e−i(λk− 1
2 )θ

)

=
1

2
√

ω

(
(−1)k+1e−i(λk+ 1

2 )θ

ei(λk+ 1
2 )θ

)

=
1

2
√

ω
(−1)k+1

(
ei(λ−k− 1

2 )θ

(−1)k+1e−i(λ−k− 1
2 )θ

)
= (−1)k+1φ−k. �

Further, we employ the orthogonal decomposition

L2
cyl(Sω ;C2)� L2

r (R+)⊗L2(Iω ;C2) = ⊕k∈N0Ek,

where E0 = L2
r (R)⊗F0 and Ek = L2

r (R)⊗ (Fk ⊕F−k) for k ∈ N . In the following
proposition we show that Ek are reducing subspaces for D̃ω . The analysis of D̃ω boils
down to the study of its restrictions to these subspaces. For the sake of convenience,
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we introduce the unitary transforms W0 : E0 → L2(R+) and Wk : Ek → L2(R+;C2) for
k ∈ N as

(W0u)(r) :=
√

r
(
u(r, ·),φ0

)
Iω

, (Wku)(r) :=
√

r

(
(u(r, ·),φk)Iω

i(u(r, ·),φ−k)Iω

)
.

PROPOSITION 3.2. For any k ∈ N0 ,

dku := D̃ωu, domdk := domD̃ω ∩Ek,

is a well-defined operator in the Hilbert space Ek .
The operator d0 is unitarily equivalent via W0 to the operator d0 in the Hilbert

space L2(R+) defined as

d0ψ := iψ ′, domd0 := H1
0 (R+). (3.3)

For any k ∈ N , the operator dk is unitarily equivalent via Wk to the operator dk

in the Hilbert space L2(R+) defined as

dk := (−1)k+1
(

0 − d
dr − πk

2ωr
d
dr − πk

2ωr 0

)
, domdk := H1

0 (R+;C2). (3.4)

In particular, the decomposition

Dω �
⊕
k∈N0

dk

holds and the deficiency indices of Dω can be computed as n±(Dω ) = ∑k∈N0
n±(dk) .

Proof. Step 1: k = 0. Pick a function u ∈ domD̃ω ∩E0 . By definition, u writes
as

u(r,θ ) =
ψ0(r)√

r
φ0(θ ),

with some ψ0 : R+ → C . Next, we observe that u ∈ H1
cyl(Sω ;C2) is equivalent to

u,∂ru, ∂θ u
r ∈ L2

r (R+) , which is, in its turn, equivalent to ψ0,
(

ψ0√
r

)′ √
r, ψ0

r ∈ L2(R+) .
Now, we aim at showing the following equivalence

u ∈ H1
cyl(Sω ;C2) ⇐⇒ ψ0 ∈ H1

0 (R+). (3.5)

First, we obtain that

ψ ′
0 =

(
ψ0√

r

)′ √
r +

1
2

ψ0

r
∈ L2(R+).

Hence, u ∈ H1
cyl(Sω ;C2) implies ψ0 ∈ H1(R+) . Moreover, thanks e.g. to [6, Prop.

2.2 (i)] (with a = 0 settled there) we infer that there exists p ∈ C such that

lim
r→0+

|ψ0(r)−p|r−1/2 = 0,
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and, according to [6, Prop. 2.4 (i)] (for a = 0), we obtain that ψ0−p
r ∈ L2(R+) . Since

ψ0
r ∈ L2(R+) , we get that p = 0. Hence, by the Sobolev trace theorem we obtain that

ψ0 ∈ H1
0 (R+) . The reverse implication in (3.5) immediately follows from the one-

dimensional Hardy inequality; see e.g. [6, Prop. 2.4 (i)].
Applying the differential expression obtained in (2.4) to u , we get

(D̃ωu)(r,θ ) = −i(σ · erad)φ0(θ )
(

∂r

(
ψ0(r)√

r

)
+

ψ0(r)
2r3/2

)
= i

ψ ′
0(r)√

r
φ0(θ ). (3.6)

Step 2: k ∈ N . Pick a function u ∈ domD̃ω ∩Ek . By definition, u writes as

u(r,θ ) =
ψ+k(r)√

r
φk(θ )− i

ψ−k(r)√
r

φ−k(θ ),

with some ψ±k : R+ → C . Observe that

(φ ′
k,φ

′
−k)Iω = −((iσ3)2φ ′

k,φ
′
−k)Iω = (−iσ3φ ′

k,−iσ3φ ′
−k)Iω

=
(

λk − 1
2

)(
λ−k − 1

2

)
(φk,φ−k)Iω = 0.

(3.7)

Again, u ∈ H1
cyl(Sω ;C2) is equivalent to u,∂ru, ∂θ u

r ∈ L2
r (R+) . Taking into account

orthogonality (3.7), u ∈ H1
cyl(Sω ;C2) is equivalent to ψ±k,

(
ψ±k√

r

)′ √
r, ψ±k

r ∈ L2(R+)

and as in the case k = 0 we end up with equivalence between u ∈ H1
cyl(Sω ;C2) and

ψ±k ∈ H1
0 (R+) . Applying the differential expression obtained in (2.4), we get

D̃ωu = − i(σ · erad)√
r

[
φk

(
∂rψk − λkψk

r

)
− iφ−k

(
∂rψ−k − λ−kψ−k

r

)]
=

(−1)k+1
√

r

[
−iφ−k

(
∂rψk − λkψk

r

)
+ φk

(
−∂rψ−k − λkψ−k

r

)]
.

(3.8)

Step 3: Conclusion of the proof. The analysis in Steps 1 and 2 yields that the inclusion

D̃ω

(
domD̃ω ∩Ek

)
⊂ Ek holds for all k ∈ N0 . Hence, the operators dk are symmetric

for all k ∈ N0 . Relying on formulae (3.6) and (3.8) we find that

WkdkW
−1
k = dk, ∀k ∈ N0. �

4. Proofs of the main results

With all the preparations above the proofs of the main results are rather compact.

Proof of Theorem 1.1. For all k ∈ N the operators dk are self-adjoint thanks to [6,
Thm. 1.1 (i) and Prop. 3.1 (i)], since for all k ∈ N we have γ :=

∣∣ kπ
2ω
∣∣> 1

2 .
By a direct computation it is elementary to observe that

d∗
0 = iψ ′, domd∗

0 = H1(R+).
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Hence,
ker(d∗

0 − i) = {0} and ker(d∗
0 + i) = span{e−r}.

The deficiency indices of d0 are given by (0,1) and the corresponding defect element
is ψ�(r) = e−r . Hence, by Proposition 3.2 the operators D̃ω and Dω have deficiency
indices (0,1) as well and the defect element of Dω is given in polar coordinates by

u�(r,θ ) =
(
W−1

0 ψ�

)
(r,θ ) =

e−r
√

r
φ0(θ ) =

1
2
√

ω
e−r
√

r

(
e−

iθ
2

−e
iθ
2

)
. �

Proof of Theorem 1.2. Since the operator Dω has deficiency indices (0,1) , the
operator −Dω has deficiency indices (1,0) , respectively, and moreover ker(D∗

ω + i) =
ker((−Dω)∗ − i) = span{u�} . Therefore, the deficiency indices of the operator Mω =
Dω ⊕ (−Dω) are (1,1) and its defect subspaces are given by

ker(M∗
ω − i) = span

{(
0
u�

)}
and ker(M∗

ω + i) = span

{(
u�

0

)}
.

Hence, by [19, Thm. X.2] all the self-adjoint extensions of Mω are parametrized by
α ∈ T as follows

Mα ,ω :=
(

Du1 + iu�

−Du2− iαu�

)
, domMα ,ω :=

{(
u1

u2

)
+
(

u�

αu�

)
: u1,u2 ∈ domDω

}
,

by which the proof is concluded. �
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Università degli Studi di Bari
via Edoardo Orabona 4, 70125, Bari, Italy

e-mail: biagio.cassano@uniba.it

Vladimir Lotoreichik
Department of Theoretical Physics

Nuclear Physics Institute, Czech Academy of Sciences
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