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HARMONIC HARDY SPACE AND THEIR OPERATORS

XUANHAO DING, YUESHI QIN AND YUANQI SANG ∗

(Communicated by S. McCullough)

Abstract. Let H2 be the Hardy space on the unit disk. For inner functions u and v , the harmonic
Hardy space H2

u,v is defined by H2
u,v = uH2 ⊕ vzH2 . Assume one of u and v is a nonconstant,

then H2
u,v is a proper closed subspace of L2(∂D) . We can define the Toeplitz operator on the

H2
u,v by T̂f x = Q f x for x ∈ H2

u,v , where Q is the orthogonal projection from L2(∂D) onto
H2

u,v . We studied some algebraic properties of the Toeplitz operator on H2
u,v and obtained some

interesting results that are different from the Toeplitz operators in the classical function space.

1. Harmonic Hardy spaces

Toeplitz operators on classical Hardy space H2 on the open unit disk were widely
studied such as their algebraic properties and the spectral theory. In particular on the
shift-invariant subspaces in H2 that are identified as uH2 for some inner function u by
Beurling theorem and its associated model space K2

u := H2 � uH2 , it has been under
investigation for more than 50 years. Many progress in this direction have been made.

In this paper, we are interested in Toeplitz operators on the newly-defined har-
monic Hardy space, which is related to the model space and Hardy space. Some inter-
esting results which is different from the classic case are obtained.

In order to state our results, we first introduce the notations and definitions. Let
D = {ξ ∈C : |ξ |< 1} be the unit disk in the complex plane C and ∂D be its boundary.
The Hardy space H2 is the Hilbert space consisting of analytic functions in D that are
also square-integrable on the boundary ∂D .

DEFINITION 1.1. Let u and v be inner functions, that at least one of them is not
a constant, we define the harmonic Hardy space H2

u,v by

H2
u,v = uH2⊕ v(H2)⊥ = uH2⊕ vzH2. (1.1)

H2
u,v is a Hilbert space of harmonic funcitons with the inner product

〈F,G〉 =
∫

∂D

F(z)G(z)dm(z).
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It is easy to check that H2
u,v is a proper closed subspace of L2(∂D) and {uzm, v zn :

m,n ∈ Z,m � 0,n � 1} is an orthonormal basis of H2
u,v . For z ∈ D ,

Rz(w) = u(z)u(w)Kz(w)+ v(z)zv(w)wKz(w)

is the reproducing kernel of H2
u,v , where Kz(= 1

1−wz ) is Szegö kernel.

The study of H2
u,v is motivated by D.Sarason’s result. Recall that for each noncon-

stant inner function u , the model space is defined as K2
u := H2�uH2 , and for f ∈ L2 ,

the truncated Toeplitz operator on K2
u with symbol f is the operator Au

f densely defined
by

Au
f x = Pu( f x), for x ∈ K2

u .

where Pu is the orthogonal projection from L2(∂D) to K2
u . Such subspaces are useful

for modeling a large class of contraction operators [16, 15], which have attracted a lot
of attention in recent years. D.Sarason [15, Theorem 3.1] showed that the truncated
Toeplitz operator Au

f = 0 if and only if f ∈ H2
u,u = uH2⊕ u[H2]⊥. Later, J. Jurasik and

B.Łanucha [13] proved that asymmetric truncated Toeplitz operator Av,u
f (K2

v → K2
u ) is

a zero operator if and only if f ∈ H2
u,v = uH2⊕ v[H2]⊥. We should state that

(H2
u,v)

⊥ = K2
u ⊕ zK2

v (1.2)

is also a Hilbert space of harmonic functions. Especially, (H2
u,1)

⊥ = K2
u is the model

space. In fact, K2
u ⊆ H2 ⊆ H2

1,u ⊆ L2 .

Now we can define Toeplitz operators on H2
u,v . Let P be the orthogonal projection

from L2(∂D) onto H2 and P− = I−P be the orthogonal projection from L2(∂D) onto
(H2)⊥ . Denote Mu and Mu be the multiplication operators on L2(∂D) induced by u
and u. Then direct calculation shows that

Q = Qu,v := MuPMu +MvP−Mv (1.3)

is the orthogonal projection form L2(∂D) onto H2
u,v.

DEFINITION 1.2. For f in L2(∂D),x ∈ H2
u,v, the harmonic Toeplitz operator T̂f

with the symbol f is densely defined on H2
u,v , given by

T̂f x = Q( f x) =
∫

∂D

f (ξ )x(ξ )Rzdm(ξ ).

T̂f is an integral operator.

Here we mainly study some algebraic and spectral properties of the harmonic
Toeplitz operators. We show that as on a harmonic function space with an asymmetric
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structure, T̂f is differ in many ways from Toeplitz operators on Hardy space [9], har-
monic Bergman space [4, 5] and the harmonic Dirichlet space[17], while shares some
properties as same.

The paper is organised as following. Section 2 is the preliminary that will be used.
In section 3 and section 4, we study fundamental properties of harmonic Toeplitz opera-
tors and dual harmonic Toeplitz operators. Boundedness and compactness of harmonic
Toeplitz operators are similar to Toeplitz operator on Hardy space, but there exist the
essential spectrum of a harmonic Toeplitz operators is unconnected. In section 5, we
characterize zero product, semi-commutator of harmonic Toeplitz operators. In section
6, we discuss the finite rank perturbutions of semi-commutator of harmonic Toeplitz
operators.

2. Preliminary

For f in L2(∂D), the standard Toeplitz operator with symbol f is the operator Tf

on H2 defined by

Tf x = P( f x), for x ∈ H2.

The dual Toeplitz operator S f , on the orthogonal complement of H2 would be defined
as follow:

S f y = (I−P)( f y), for y ∈ [H2]⊥.

Define operator V on L2(∂D) by

V f (w) = wf (w).

It is easy to check that V is anti-unitary, and also satisfies the following equations

V = V−1, VP = P−V, VH2
u,v = H2

v,u (2.1)

Tf and S f is Anti-unitary equivalent [12]. That is

VTf = S fV. (2.2)

The Hankel operator Hf with symbol f are defined by

Hf x = (I−P)( f x), for x ∈ H2,

and H∗
f are defined by

H∗
f y = P( f y), for y ∈ [H2]⊥.

Write Mf for the multiplication operator defined on L2 by Mf φ = fφ . If Mf is ex-
pressed as an operator matrix with respect to the decomposition L2 = H2 ⊕ zH2, the
result is of the form

Mf =
(

Tf H∗
f

Hf S f

)
.
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Since Mf Mg = Mfg, we have

Tfg = Tf Tg +H∗
f
Hg; (2.3)

Hfg = Hf Tg +S f Hg; (2.4)

H∗
f g = Tf H

∗
g +H∗

f
Sg; (2.5)

S fg = S f Sg +Hf H
∗
g . (2.6)

The Mf is expressed as an operator matrix with respect to the decomposition L2 =
H2

u,v⊕ [H2
u,v]⊥, the result is of the form

Mf =

(
T̂f Ĥ∗

f

Ĥ f Ŝ f

)
.

where Ĥf be called harmonic Hankel operator is defined by

Ĥ f x = (I−Q)( f x), for x ∈ H2
u,v.

Moreover, Ĥ∗
f y = Q f y for y ∈ [H2

u,v]
⊥ and Ŝ f define dual harmonic Toeplitz operator

by

Ŝ f x = (I−Q)( f x), for x ∈ [H2
u,v]

⊥.

In particular, the dual harmonic Toeplitz operator Ŝ f on the [H2
u,1]

⊥ is the trun-

cated Toeplitz operator Af on the K2
u .

Since Mf Mg = Mfg, we have

T̂f g− T̂f T̂g = Ĥ∗
f Ĥg, (2.7)

Ŝ f g− Ŝ f Ŝg = Ĥf Ĥ
∗
g , (2.8)

Ĥf g − Ŝ f Ĥg = Ĥf T̂g. (2.9)

3. Fundamental properties of harmonic Toeplitz operators

It is known that Tf is bounded if and only if f is in L∞(∂D) , in which case
‖Tf ‖= ‖ f‖∞ . The only compact Toeplitz operator is zero. These still hold for harmonic
Toeplitz operators.

THEOREM 3.1. Let f ∈ L∞(∂D).

1. Let φ ∈ L2(∂D), then T̂φ is bounded on H2
u,v if and only if φ ∈ L∞(∂D) . If T̂φ

is bounded, then ‖T̂φ‖ = ‖φ‖∞;

2. T̂f is compact on H2
u,v if and only if f = 0 a.e. on ∂D;
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3. R( f )⊆ σ(T̂f ) . Where σ(T ) denotes the spectrum of a bounded linear operator
T on a Hilbert space H, R( f ) is the essential range of f .

Proof. (1) kz =
√

1−|z|2
(1−wz) is the normalized reproducing kernel for H2 . We have

‖T̂f ‖ � |〈T̂f ukz,ukz
〉|

= |〈 f ukz,ukz
〉|

= |〈 fkz,kz
〉| = | f (z)|.

Hence,
‖T̂f ‖ � ‖ f‖∞.

Furthermore,

‖T̂f x‖ � ‖Qf x‖ � ‖ f‖∞‖x‖.
(2) Assume T̂f is compact, then for any {xn} ⊆ H2

u,v and {xn} is weakly convergent to

zero, then ‖T̂f xn‖ −→ 0 as n −→ ∞ . If u is a non-constant inner function, let xn = uyn

and yn ∈ H2 . It is easy to see that {xn} weakly convergent to zero on uH2 if and only
if {yn} weakly converges to zero on H2 . Note that ‖Tf yn‖ = ‖MuPMu f xn‖ � ‖T̂f xn‖ .
Thus T̂f is compact imply that Tf is compact, by [9, 7.15], we have f = 0.

(3) According to [9, corollary 4.24], where σ(Mf ) = R( f ), which that f is in-
vertible in L∞ equivalent to Mf is an invertible operator on L2 . If T̂f is invertible, then
there exists ε > 0 such that ‖T̂f x‖� ε‖x‖ for x∈H2

u,v . Thus for each integer k,y ∈H2

and z ∈ ∂D , we have

‖Mf z
ky‖ = ‖ f zky‖ = ‖ f uy‖ � ‖Qfuy‖ = ‖T̂f uy‖ � ε‖uy‖ = ε‖zky‖.

Since {zky : y∈H2,k takes all integers} is a dense subset of L2 , it follows that ‖Mf x‖�
ε‖x‖ for x in L2 . Similarly, ‖Mf x‖ � ε‖x‖ , since T̂f = T̂ ∗

f is also invertible and thus

Mf is invertible by [9, Corollary 4.9 ]. Since T̂f −λ = T̂f−λ for λ ∈ C . The proof is
completed. �

The following theorem is unlike classical Toeplitz operator Tf .

THEOREM 3.2. Assume that u and v are both finite Blaschke products, for f ∈
L∞ , then

σe(T̂f ) = σe(Mf ) = R( f ).

where σe(T ) denotes the essential spectrum of a bounded linear operator T on a
Hilbert space H.

Proof. Since u and v are finite Blaschke products, the dimension of [H2
u,v]⊥ =

K2
u ⊕ zK2

v is finite. On L2 = H2
u,v⊕ [H2

u,v]
⊥ ,

Mf =

(
T̂f Ĥ∗

f

Ĥ f Ŝ f

)
,
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Ĥ∗
f
,Ĥf and Ŝ f are finite rank operators. σe(Mf ) = σe(T̂f ).

By [1, Theorem 2.1.4], σ(Mf ) = R( f ). Since σe(Mf ) ⊂ σ(Mf ). We only need
to prove that if Mf is a Fredholm operator then Mf is invertible on L2(∂D) . In fact,
assume Mf is a Fredholm operator, then dimKer{Mf }< ∞ . Easy to see that if g|E = 0
with mE > 0, then dimKer{Mg} = ∞ . Thus f �= 0 a.e. on ∂D and Ker{Mf } = {0} .
Also Mf has closed range, follows Mf is bounded below. Similarly, M∗

f = Mf is also
bounded below. So Mf is invertible. �

In fact,

I−Q = P−MuPMu +P−−MvP−Mv

= P−MuPMu +Mv(P−MvPMv)Mv

Since (H2
u,v)

⊥ = K2
u ⊕ zK2

v , P−MuPMu and Mv(P−MvPMv)Mv is the orthogonal

projection form L2(∂D) onto K2
u and zK2

v respectively. In addition, K2
v = H2 ∩ vzH2,

hence zK2
v = vK2

v .

THEOREM 3.3. Let f ∈ L∞(∂D). Ŝ f = 0 if and only if f ∈ H2
uv,uv.

Proof. For x ∈ K2
u , we have

Ŝ f x ={P−MuPMu +Mv(P−MvPMv)Mv} f x

=(P−MuPMu) f x+Mv(P−MvPMv)Mv f x

=Au
f x+MvA

u,v
v f x.

For y ∈ K2
v , we have

Ŝ f vy ={P−MuPMu +Mv(P−MvPMv)Mv} f vy

=(P−MuPMu) f vy+Mv(P−MvPMv)Mv f vy

=Av,u
v f y+MvA

v
f y.

Hence,

Ŝ f

(
x
vy

)
= Ŝ f

(
I 0
0 Mv

)(
x
y

)
=
(

I 0
0 Mv

)(
Au

f Av,u
v f

Au,v
v f Av

f

)(
x
y

)
,

and (
I 0
0 Mv

)
Ŝ f

(
I 0
0 Mv

)
=
(

Au
f Av,u

v f
Au,v

v f Av
f

)
,

where Mv is a unitary operatormaps K2
v to vK2

v . Thus Ŝ f = 0 if and only if Au
f ,A

v,u
v f ,A

u,v
v f

and Av
f are all zero operator.

By [15, Theorem 3.1] and [13, Theorem 2.1], we have
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1. Au
f = 0 if and only if f ∈ uH2⊕uzH2 ;

2. Av
f = 0 if and only if f ∈ vH2⊕ vzH2 ;

3. Av,u
v f = 0 if and only if f ∈ uvH2⊕ zH2 ;

4. Au,v
v f = 0 if and only if f ∈ H2⊕uvzH2 .

Since uvH2 ⊂ uH2 ⊂ H2 and uvH2 ⊂ vH2 ⊂ H2, Ŝ f = 0 if and only if f ∈ uvH2 ⊕
uvzH2 = H2

uv,uv. �

4. Examples and Questions

The harmonic Toeplitz operator is a new type of Toeplitz operator with many prop-
erties that are completely different from the classical Toeplitz operator.

EXAMPLE 4.1. Let u and v be finite Blaschke products, f is a characteristic
function of set E ⊆ ∂D (0 < mE < 1) , so σe(T̂f ) = R( f ) = {0,1} by Theorem 3.2,
and σe(T̂f ) disconnected. For classic Toeplitz operators, if f ∈ L∞, then σe(Tf ) is
connected (see [9, Theorem.7.45]).

EXAMPLE 4.2. On the classical Hardy space, by Coburn’s Theorem [9, Propo-
sition.7.24], if f is a function in L∞(∂D) not almost everywhere zero, then either
kerTf = {0} or kerT ∗

f = {0}. On H2
u,v, there exists a nonzero function f in L∞, such

that ker T̂f �= {0} and ker T̂ ∗
f �= {0}. Let f = u, and take h ∈ K2

u (= kerTu), we have

T̂u v z h = [MuPMu +MvP−Mv]uv z h

= MuPv z h +MvP−uzh

= 0+MvVPVuzh

= MvVPuh

= MvVTuh = 0.

and

T̂ ∗
u uh = T̂uuh = [MuPMu +MvP−Mv]uuh

= MuTuh+MvP−vh = 0.

EXAMPLE 4.3. If u and v are finite Blaschke products, (H2
u,v)

⊥ = K2
u ⊕ zK2

v is a

finite dimensional space, Ĥ∗
f

has finite rank. By (2.7), T̂f g− T̂f T̂g has finite rank. Since

Theorem 3.1(2), T̂f T̂g has finite rank if and only if f g = 0. Thus T̂f T̂g is a finite rank
operator, can’t implies that either f or g is a zero function.
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On classical Hardy space, zero product question for Toeplitz operators is very interest-
ing. Naturally, we have following question.

QUESTION 4.4. Assume f ,g ∈ L∞ and T̂f T̂g = 0, whether f or g is a zero func-
tion?

EXAMPLE 4.5. By famous Brown-Halmos Theorem [3, Theorem 8], if f or g is
analytic, then Tf Tg = Tfg . But the result does not hold for harmonic Toeplitz operators.
Assume u = vθ , θ is an inner function and θ (0) = 0. ψ = uv,ϕ ∈ zH2 ∩H∞ , ψ and
ϕ both are analytic, but

T̂ϕ T̂ψ z v = T̂ϕQψ z v = T̂ϕQzu

= T̂ϕ [MuPMu +MvP−Mv]zu

= T̂ϕ [uPz + vP−vzu]

= T̂ϕ [0+0] = 0

and

T̂ψϕ z v = Qψϕ z v = Quvϕ z v = Quϕ z = Qvϕθ z

= MuPMuvϕθ z +MvP−Mvvϕθ z .

Note that θ z ∈ H2,MvP−Mvvϕθ z = 0,

T̂ψϕ z v = MuPMuvϕθ z = uzϕ �= 0.

Hence
T̂ϕ T̂ψ �= T̂ψϕ .

Naturally, we can ask the following question.

QUESTION 4.6. For which functions f and g , we have T̂f T̂g = T̂f g ?

EXAMPLE 4.7. It is known that I −TzTz = 1⊗ 1 on Hardy space. On harmonic
Hardy space, an easy computation gives

I− T̂z T̂z =(1−|u(0)v(0)|2)(z v ⊗ z v),

I− T̂zT̂z =(1−|u(0)v(0)|2)(u⊗u).

In addition, we are concerned with the following question.

QUESTION 4.8. For which functions f and g , T̂f T̂g − T̂f g is a finite rank opera-
tor?
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5. The product of harmonic Toeplitz operators

LEMMA 5.1. Let f1, f2, · · ·, fn belong to L∞(∂D) , such that ∏n
i=1 T̂fi − T̂h is com-

pact, then ∏n
i=1 fi = h a.e on ∂D .

Proof. First, we will prove the following formula by induction.

lim
r→1−

〈 n

∏
i=1

T̂fiukrξ ,ukrξ

〉
=

n

∏
i=1

fi(ξ ) (5.1)

for almost all ξ ∈ ∂D, where kz(w) = (1−|z|2) 1
2

(1−wz) is the normalized Hardy reproducing
kernel. For k = 1, we have

lim
r→1−

〈T̂f1ukrξ ,ukrξ 〉 = lim
r→1−

〈 f1ukrξ ,ukrξ 〉
= lim

r→1−
〈 f1krξ ,krξ 〉

= lim
r→1−

∫
∂D

f1(ζ )|krξ |2dm(ζ )

= f1(ξ )

for almost all ξ ∈ ∂D. Assume the result true up to n−1. Observe that

〈T̂f1 · · · T̂fn−1 T̂fnukrξ ,ukrξ 〉 =〈T̂f1 · · · T̂fn−1 [MuPMu +MvP−Mv] fnukrξ ,ukrξ 〉
=〈T̂f1 · · · T̂fn−1MvP−Mv fnukrξ ,ukrξ 〉

+ 〈T̂f1 · · · T̂fn−1MuPMu fnukrξ ,ukrξ 〉
=〈T̂f1 · · · T̂fn−1MvHfnvukrξ ,ukrξ 〉

+ 〈T̂f1 · · · T̂fn−1uP fnkrξ ,ukrξ 〉.
Also

|〈T̂f1 · · · T̂fn−1MvHfnvukrξ ,ukrξ 〉| � ‖T̂f1 · · · T̂fn−1‖‖Hfnvukrξ ‖.
By [10, (B5)], we have ‖Hfnvukrξ ‖→ 0 radially. Hence

lim
r→1−

|〈T̂f1 · · · T̂fn−1MvHfnvukrξ ,ukrξ 〉| = 0.

On the other hand,

〈T̂f1 · · · T̂fn−1uP fnkrξ ,ukrξ 〉 =〈T̂f1 · · · T̂fn−1uP fn+krξ ,ukrξ 〉
+ 〈T̂f1 · · · T̂fn−1uP fn−krξ ,ukrξ 〉

=〈T̂f1 · · · T̂fn−1 fn+ukrξ ,ukrξ 〉
+ fn−(rξ )〈T̂f1 · · · T̂fn−1uPkrξ ,ukrξ 〉
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where fn+ = P fn , fn− = P− fn , by induction hypothesis, (5.1) holds. For every f =
uh+ vg ∈ H2

u,v,h ∈ H2,g ∈ zH2, we have

〈ukrξ ,uh+ vg〉 = 〈ukrξ ,uh〉
= 〈krξ ,h〉.

Since krξ converges weakly to zero as r → 1−, ukrξ converges weakly to zero as
r → 1−, Recall that compact operators map weakly convergent sequences to norm-
convergent sequences. Note that the Cauchy-Schwarz inequality yields

|〈(
n

∏
i=1

T̂fi − T̂h)ukrξ ,ukrξ 〉| � ‖(
n

∏
i=1

T̂fi − T̂h)ukrξ ‖.

Hence ∏n
i=1 fi = h a.e on ∂D . �

LEMMA 5.2. [8, Lemma 3.5] Let θ be a noncostant inner function. On the
Hardy space H2 , for f ,g ∈ L∞(∂D) , if Tf Tg = Tθ f Tθg , then either f or g is analytic
on D .

THEOREM 5.3. Let f and g are non-constant functions in L∞(∂D) . Assume
T̂f T̂g = T̂f g, then one and only one of the following possibilities occurs:

1. both f and g are analytic;

2. both f and g are co-analytic.

Proof. Assume T̂f T̂g = T̂f g, for every x ∈ H2
u,v, we have T̂f T̂gx = T̂f gx. Take x =

uh,h ∈ H2,

MuPMu f T̂guh = MuPMu f [MuPMu +MvP−Mv]guh

= MuP fPgh+MuPMu fMvP−Mvguh

= MuP fPgh+MuPu f v(I−P)gvuh

= MuP fPgh+MuPu f vgvuh−MuPu f vPgvuh

= MuTf Tgh+MuP f gh−MuTuv f Tvugh,

(5.2)

and

MuPMu f T̂guh = MuP f gh. (5.3)

Thus,

Tf Tg = Tf vuTgvu. (5.4)
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If x = vh,h ∈ zH2, we have

MvP−Mv f T̂g vh = MvP−Mv f [MuPMu +MvP−Mv]gvh

= MvP−Mv fMuPMugvh +MvP−Mv fMvP−Mvgvh

= MvP−vu fPvugh +MvP− f P−gh

= MvHvu f H
∗
vugh +MvS f Sgh,

(5.5)

and

MvP−Mv f gv h = MvP− f gh = MvS fgh. (5.6)

That means,

Hvu f H
∗
vug +S f Sg = S fg;

V (Hvu f H
∗
vug +S f Sg)V = VSfgV ;

H∗
vu f Hvug +Tf Tg = Tf g;

Tvu f vug −Tvu f Tvug +Tf Tg = Tf g.

Hence

Tvu f Tvug = Tf Tg. (5.7)

By using the Lemma 5.2 to Tf Tg = Tf vuTgvu and Tvu f Tvug = Tf Tg, we have eithor
both f and g are analytic or both f and g are co-analytic. �

Now, we can affirmatively answer Question 4.4.

COROLLARY 5.4. Assume f ,g ∈ L∞ , if T̂f T̂g = 0 , then either f or g is a zero
function.

Proof. If T̂f T̂g = 0, then f g = 0 a.e.on ∂D by Lemma 5.1. If one of f and g is
constant, obviously either f or g is zero. If f and g aren’t constant, then f and g are
both analytic, or f and g are both co-analytic, this implies that either f or g is zero
function. �

COROLLARY 5.5. For f ∈ L∞ , then T̂f is a isometry if and only if f is unimod-
ular constant.

Proof. Assume T̂f is a isometry, then T̂ ∗
f T̂f = T̂f T̂f = I = T̂1 . Thus f and f b are

both analytic by Theorem 5.3. Hence f is a constant and | f |2 = f f = 1. �

COROLLARY 5.6. For f ∈ L∞ , if T̂f is a multiplication operators on H2
u,v , then

f is a constant.
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Proof. Assume T̂f is a multiplication operators on H2
u,v , then T̂f T̂f = T̂f f . It

follows that f and f are both analytic by Theorem 5.3. Hence f is a constant. �
In order to answer Question 4.6, assume u and v are nonzero functions. We only

need to consider the case that f and g both are analytic.

LEMMA 5.7. If f ,g ∈ H∞, the following statements are equivalent.

1. T̂gT̂f = T̂f g ;

2. T̂f T̂g = T̂f g ;

3. H∗
f
HvuH

∗
g = 0 : [H2]⊥ → H2.

Proof. Since T̂ ∗
f = T̂f , it is clear that (1) is equivalent to (2). Assume f ,g ∈ H∞ ,

then
(T̂f T̂g − T̂f g)|vzH2 = 0.

Thus
[MuPMu f T̂g −MuPMu f g]v y = 0

for every y ∈ (H2)⊥ . Multiplying both sides of the above equation by Mu , we have,

Pu f [MuPMug+MvP−Mvg]v y −Puv f gy

= P fPuvgy +Puv fP−gy−Puv f gy = 0.

This implies that
Tf H

∗
uvg +H∗

uv f
Sg = H∗

uv f g

on [H2]⊥ . By equation (2.5), H∗
uv f

Sg = H∗
uv f g

−Tuv f H∗
g . Thus we obtain that

Tf H
∗
uvg −Tuv f H

∗
g = [Tf Tuv −Tuv f ]H∗

g = −H∗
f
HuvH

∗
g = 0,

The second equality follows from that Hfg = Hf Tg and TgH
∗
f = H∗

f g when g ∈ H∞ .
On the other hand, if H∗

f
HuvH∗

g = −[Tf H∗
uvg −Tuvf H∗

g ] = 0, then

MuPMu(T̂f T̂g− T̂f g)|vzH2 = 0.

Since f and g are both analytic, we have

[MvP−Mv f T̂g −MvP−Mv f g]|
vzH2 = Mv [S f Sg−S fg]|zH2 = 0

where S f and Sg are dual Toeplitz operators on [H2]⊥ . Thus

[T̂f T̂g − T̂f g]|vzH2 = 0.

Similarly,
[T̂f T̂g− T̂f g]|uH2 = 0.

Hence T̂f T̂g − T̂f g = 0. Thus (2) equivalent to (3). �
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LEMMA 5.8. [8, Lemma 4.6] Let ϕ and ψ be nonconstant functions in H∞,
and θ is a nonconstant inner function. Then H∗

ψHθ H∗
ϕ is zero if and only if ϕ(θ −

λ ),ψ(θ −λ ) and ϕψ(θ −λ ) are in H2 for some constant λ .

Sum up Theorem 5.3, Lemma 5.7 and Lemma 5.8, we give an answer to Question 4.6.

THEOREM 5.9. Let f ,g ∈ L∞(∂D). Then T̂f T̂g = T̂f g if and only if one of the
following cases holds:

1. f ,g, f (vu−λ ), g(vu−λ ) and f g(vu−λ ) all belong to H2 for some constant
λ .

2. f , g, f (vu−λ ),g(vu−λ ) and f g(vu−λ ) all belong to H2 for some constant
λ .

3. either f or g is constant.

This result is different from classical Hardy Toeplitz operator theory.

EXAMPLE 5.10. Assume u and v are inner functions and u isn’t constant. Let
f = u and g = v , take λ = 0, then f ,g, f (uv−λ ), g(uv−λ ) and f g(uv−λ ) all are
belong to H2 , hence T̂f T̂g = T̂f g by Theorem 5.9. This result is different from harmonic
Bergman Toeplitz operator theory[4].

COROLLARY 5.11. Assume f ,g ∈ L∞ . If T̂f T̂g = T̂f g , then T̂f T̂g = T̂gT̂f .

Proof. If T̂f T̂g = T̂f g , Then T̂gT̂f = T̂f g by Theorem 5.9. Hence T̂f T̂g = T̂gT̂f . �

6. The finite rank perturbutions

For convenience, we use

A = B mod (F)

to denote that the operator A−B has finite rank.

THEOREM 6.1. Let f ,g ∈ L∞(∂D). Then T̂f T̂g = T̂f g mod (F) if and only if the
following conditions all holds

1. Tf Tg = Tvu f Tgvu mod (F);

2. Hvu f Tg = Hf Tvug mod (F);

3. Tf H∗
uvg = Tuv f H∗

g mod (F);

4. Hvu f H∗
uvg = Hf H∗

g mod (F).
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Proof. T̂f T̂g− T̂f g has finite rank if and only if

(T̂f T̂g − T̂f g)|uH2 = 0 mod (F)

and

(T̂f T̂g − T̂f g)|v[H2]⊥ = 0 mod (F).

Note that {T̂f T̂g − T̂f g}|uH2 = 0 mod (F) if and only if set {Pu f T̂gx−Pu f gx :
x ∈ uH2} and {P−v f T̂gx−P−v f gx : x ∈ uH2} all have finite dimension. An easy cal-
culation gives

{Pu f T̂gx−Pu f gx : x ∈ uH2}
={Pu f [uPugx+ v(I−P)vgx]−Pu f gx : x ∈ uH2}
={P fPugx−PuvfPvgx : x ∈ uH2}
={P fPgy−PuvfPuvgy : y ∈ H2}
=range{TfTg−Tuv f Tuvg}

and

{P−v f T̂gx−P−v f gx : x ∈ uH2}
={P−v f [uPugx+ v(I−P)vgx]−P−v f gx : x ∈ uH2}
={P−uv fPugx−P− f Pvgx : x ∈ uH2}
={P−uv fPgy−P− f Puvgy : y ∈ H2}
=range{Huv fTg −Hf Tuvg}.

Thus {T̂f T̂g − T̂f g}|uH2 = 0 mod (F) if and only if both (Tf Tg −Tuv f Tuvg) and
(Huv f Tg −Hf Tuvg) are finite rank operators. Thus (1) and (2) hold.

Similarly, we have {T̂f T̂g− T̂f g}|v[H2]⊥ = 0 mod (F) if and only if both {Pu f T̂gx−
Pu f gx : x∈ v[H2]⊥} and {P−v f T̂gx−P−v f gx : x∈ v[H2]⊥} are finite dimension. Easy
calculations give

{Pu f T̂gx−Pu f gx : x ∈ v [H2]⊥}
={Pu f [uPugx+ v(I−P)vgx]−Pu f gx : x ∈ v [H2]⊥}
={P fPugx−PuvfPvgx : x ∈ v[H2]⊥}
={P fPuvgy−Puv fPgy : y ∈ [H2]⊥}
=range{Tf H

∗
uvg −Tuv f H

∗
g}



HARMONIC HARDY SPACE AND THEIR OPERATORS 851

and

{P−v f T̂gx−P−v f gx : x ∈ v[H2]⊥}
={P−v f [uPugx+ v(I−P)vgx]−P−v f gx : x ∈ v[H2]⊥}
={P−uv fPugx−P− f Pvgx : x ∈ v [H2]⊥}
={P−uv fPuvgy−P− f Pgx : y ∈ [H2]⊥}
=range{Huv fH

∗
uvg −Hf H

∗
g}.

Hence (T̂f T̂g− T̂f g)|v[H2]⊥ = 0 mod (F) is equivalent to (Tf H∗
uvg−Tuv f H∗

g ) and (Huv f H∗
uvg

−Hf H∗
g ) are both finite rank operators. That is, (3) and (4) hold, which completes the

proof. �

LEMMA 6.2. Let f ,g ∈ L∞(∂D). Then Tf Tg = Tvu f Tgvu mod (F) if and only if
one of the following conditions holds:

1. There exist nonzero analytic polynomials A(z),B(z) such that A(z) f (z) ∈ H∞ or
B(z)g(z) ∈ H∞ ;

2. there exist nonzero analytic polynomials A1(z),A2(z),B1(z) and B2(z) with A1B1

= A2B2 such that

{A1 +A2vu} f ∈ H∞,{B1 +B2vu}g ∈ H∞.

Proof. By Kronecker’s theorem [14, Corollary 3.3.], for φ ∈ L∞ , the Hankel op-
erator Hφ has finite rank if and only if there is a analytic polynomials A(z) such that
Aφ ∈ H∞ . Since Axler-Chang-Sarason theorem [2], for φ ,ψ ∈ L∞ , H∗

φ Hψ has finite
rank if and only if the operators Hφ or Hψ does. Since Huvg = HgTuv , Hg is a finite
rank operator implies that Huvg is also finite rank operator. The condtions (1) and (2)
follow from [7, Theorem 3.4]. �

LEMMA 6.3. Let f ,g ∈ L∞(∂D). Then Hvu f H∗
uvg = Hf H∗

g mod (F) if and only if
one of the following conditions holds:

1. There exist nonzero analytic polynomials A(z) and B(z) such that A(z) f (z)∈H∞

or B(z)g(z) ∈ H∞ ;

2. there exist nonzero analytic polynomials A1(z),A2(z),B1(z) and B2(z) with A1B1

= A2B2 such that

{A1 +A2vu} f ∈ H∞,{B1 +B2vu}g ∈ H∞.

Proof. Since

Hvu f H
∗
uvg −Hf H

∗
g = V (H∗

vu f Huvg −H∗
f Hg)V
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and
H∗

vu f Huvg −H∗
f Hg = Tf Tg −Tuv f Tuvg,

Hvu f H
∗
uvg −Hf H

∗
g = 0 mod (F)

if and only if

Tf Tg −Tuv f Tuvg = 0 mod (F).

The result follows from Lemma 6.2. �

LEMMA 6.4. Let f ,g ∈ L∞(∂D). Then Hvu f Tg = Hf Tvug mod (F) if and only if
one of the following conditions holds:

1. At least one of P− f ,P−uv f ,P−g and P−uvg is a rational function all of whose
poles are in D .

2. There exist nonzero analytic polynomials A1(z),A2(z),B1(z) , B2(z) and q(z)
such that

(A1 +A2uv) f ∈ H∞,(B1 +B2vu)g ∈ H∞.

and q(B1 +B2uv) f g ∈ H∞ with A1B1 +A2B2 = 0 on ∂D .

Proof. By Kronecker’s theorem [14, Corollary 3.3.], at least one of Hf ,Huv f ,Hg

and Huvg has finite rank if and only if at least one of P− f ,P−uv f ,P−g and P−uvg is
a rational function all of whose poles are in D . By [6, Theorem 4.2], if none of Hf ,
Huv f ,Hg and Huvg has finite rank, then

Hvu f Tg = Hf Tvug mod (F)

if and only if there exist nonzero analytic polynomials A1(z),A2(z),B1(z) , B2(z) such
that

(A1 +A2uv) f ∈ H∞,(B1 +B2vu)g ∈ H∞.

with A1B1 +A2B2 = 0 on ∂D and HA2(B1+B2uv) f g has finite rank.

HA2(B1+B2uv) f g = H(B1+B2uv) f gTA2

has finite rank if and only if
H(B1+B2uv) f g

has finite rank if and only if there is none zero analytic polynomial q(z) such that
q(B1 +B2uv) f g ∈ H∞ . �

LEMMA 6.5. Let f ,g ∈ L∞(∂D). Then Tf H∗
uvg −Tuv f H∗

g = 0 mod (F) if and only
if one of the following conditions holds:
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1. At least one of P− f ,P−uv f ,P−g and P−uvg is a rational function all of whose
poles are in D .

2. there exist nonzero analytic polynomials A1(z),A2(z),B1(z) , B2(z) and q(z) such
that

(A1 +A2uv)g ∈ H∞,(B1 +B2vu) f ∈ H∞.

and q(B1 +B2uv) f g ∈ H∞ with A1B1 +A2B2 = 0 on ∂D.

Proof. Since Tf H∗
uvg −Tuv f H∗

g = 0 mod (F) if and only if (Tf H∗
uvg −Tuv f H∗

g )∗ =
HuvgTf −HgTuv f = 0 mod (F), the result follows from Lemma 6.4. �

Combining Theorem 6.1, Lemma 6.2, Lemma 6.3, Lemma 6.4 and Lemma 6.5.
we obtain the following theorem.

THEOREM 6.6. Let f ,g ∈ L∞(∂D). Then T̂f T̂g = T̂f g mod (F) if and only if the
following conditions all holds

1. The condition (1) or (2) holds in Lemma 6.2;

2. The condition (1) or (2) holds in Lemma 6.3;

3. The condition (1) or (2) holds in Lemma 6.4;

4. The condition (1) or (2) holds in Lemma 6.5.

COROLLARY 6.7. Let u,v be inner functions, and f ,g∈ L∞(∂D). If one of u and
v is not a finite Blaschke product, then T̂f T̂g has finite rank if and only if one of f and
g is zero function.

Proof. Assume one of u and v is not a finite Blaschke product, then uv is not a
finite Blaschke product. If T̂f T̂g has finite rank, then f g = 0 (Lemma 5.1) and Tf Tg =
Tvu f Tgvu mod (F)(Theorem 6.1).

By Lemma 5.2, if Tf Tg − Tvu f Tgvu = 0, thus either f or g is analytic. Since
f g = 0, one of f and g is zero function.

If Tf Tg−Tvu f Tgvu is a nonzero finite rank operator, Since

Tf Tg −Tvu f Tgvu = H∗
uv f

Huvg−H∗
f
Hg,

we need to consider two cases: the case H∗
uv f

Huvg and H∗
f
Hg both are finite rank oper-

ators, the case H∗
uv f

Huvg and H∗
f
Hg both are not finite rank operators.

In the previous case, Hf or Hg is finite rank operator by Axler-Chang-Sarason
theorem in [2]. By Kronecker’s theorem [14, Corollary 3.3.], there is a nonzero an-
alytic polynomial A(z) such that A(z) f (z) ∈ H∞ or A(z)g(z) ∈ H∞ . Since f g = 0,

(A(z) f (z))g(z) = 0 or (A(z)g(z)) f (z) = 0 a.e on ∂D , one of f and g is zero function.
In the latter case, By [7, Theorem 3.4], there exist nonzero analytic polynomi-

als Ai(z),Bi(z), i = 1,2 with A1(z)B1(z) = A2(z)B2(z) , such that A1uv f + A2 f ∈ H∞
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and B1uvg + B2g ∈ H∞ . If there is a set E ⊆ ∂D such that 0 < mE < 1, f |E = 0
and f |∂D−E �= 0, then A1(z)u(z)v(z)+A2(z) = 0. Thus uv = −A2

A1
is a rational inner

function.
Note that rational inner functionmust be finite Blaschke product. In fact, if rational

function b(z)
a(z) is a inner function, then b(z)

a(z) have the form

b(z)
a(z)

= c0B(z)Q(z),

where c0 is a constant with |c0| = 1, B(z) is finite Blaschke Product, and polynomial
Q(z) = c1(z−λ1) · · ·(z−λk) with |λ j|� 1. By Theory[11, page.72], Q(z) is a singular
inner function. Let Q(z) be the singular function determined by measure μ on ∂D ,
and let E ⊂ ∂D be the closed support of μ , then |Q(z)| dose not extend continuously
from D to any point of E . But |Q(z)| is continuously on C . Hence polynomial is
impossible singular inner function. Thus Q(z) is a constant. It follows that uv is a
finite Blaschke product. This leads to a contradiction. �
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