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C –SYMMETRIC SECOND ORDER DIFFERENTIAL OPERATORS

HORST BEHNCKE AND DON HINTON

(Communicated by F. Gesztesy)

Abstract. We consider a C -Symmetric second order linear differential operator on a half interval
or the real line. We determine the spectrum and construct the resolvent and m -function. In
addition we analyze the resolvent and m -function near their poles. Under the conditions of
Theorem 2.2 we prove the essential spectrum is empty, and the operator has a compact resolvent.
Integral conditions on the operator coefficients are given in Theorem 3.4 for the operator to be
Hilbert-Schmidt. These conditions are new even in the selfadjoint case. This analysis is based
on asymptotic integration. A central role is played by the Titchmarsh-Weyl m -function which is
defined by square integrable functions and not by a nesting circle analysis.

1. Introduction

Second order linear differential equations with complex valued potential term, and
more generally complex symmetric operators have many applications. There has been
considerable research in recent years in this area including complex symmetric matrices
which are the most basic of complex symmetric operators. We refer the reader to the
survey article by Garcia, Prodan, and Putinar [17] for applications and recent results.

Here we consider the singular second order operator

L[y] =
1
w

[−(py′)′ +qy
]
, a � x < ∞ or−∞ < x < ∞, (1.1)

where w > 0 is real and p = p1 + ip2 �= 0, q = q1 + iq2 �= 0 are complex valued. Further
in section 2 we will assume sectorial conditions on the function q/p.

The classical Sturm-Liouville equation with real coefficients is certainly one of the
most studied differential equation. Thousands of scientific papers contrast with fewer
than a hundred or so for the complex version. This is not surprising as the spectral the-
orem and Sturm’s results are no more available, and in fact new phenomena arise in the
complex setting like higher order and non-simple poles or strange spectral behavior. For
this reason we restrict ourselves to C -symmetric operators, which for Sturm-Liouville
operators is hardly a restriction.

In 1957 Sims [36] extended part of the Titchmarsh-Weyl program to complex
Sturm-Liouville operators by constructing the m-function. This was further developed
by Brown, McCormack, Evans, and Plum [10], and later extended to non-selfadjoint
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Hamiltonian systems by Brown, Evans, and Plum [11] also by Muzzolini [31]. Their
construction is based on the Weyl disc method, which not only requires numerical range
conditions but also an auxiliary matrix U2n. The role of this auxiliary matrix remains
obscure, even in the Sturm-Liouville case. For selfadjoint operators there are essentially
two ways to construct the m-matrix. The Weyl disc method and the square integrabil-
ity technique. This latter method was used by these authors [8, 9] in conjunction with
asymptotic integration. For higher order operators this approach has to be supplemented
by numerical range conditions. For second order operators even these are not needed in
all cases, though a dichotomy condition is necessary for asymptotic integration. With
the knowledge of the asymptotics of the eigenfunctions the resolvent can be constructed
with the aid of the m-function. Otherwise the role of the m-function remains obscure.
It is somewhat related to the resolvent, but spectral properties cannot be inferred from
the imaginary part of m anymore.

In this paper primarily compact or even Hilbert-Schmidt resolvents arise, and we
give criteria on the coefficients of L so that the resolvent is Hilbert-Schmidt or even in
the Schatten class Cp. In the non-selfadjoint case the resolvent may have poles of order
greater than one, which correspond to poles of the m-function of the same order and
also to the algebraic multiplicity of the eigenvalue. However in section 8 we consider
a complex version of the classical Wigner-von Neumann potential [37] which fails to
have an eigenvalue embedded in the essential spectrum.

Our objective is to develop a spectral theory for (1.1) in the case where the spec-
trum is discrete, but that the numerical range may cover the entire complex plane. The
results here extend some of those of Behncke and Hinton [8] where the numerical range
was contained in a half plane. But missing under the hypotheses here will be the Dirich-
let condition for members of the domain of the maximal operator. The method of analy-
sis in this paper is by asymptotic integration which was not used in [8]. While covering
in some sense a larger class of operators the method does require greater smoothness of
the coefficients. A Green’s function will be constructed with the aid of the Titchmarsh-
Weyl function. This leads to a representation of the resolvent operator. Under further
conditions it will be proved that the resolvent operator is Hilbert-Schmidt. The Hilbert-
Schmidt condition gives a new criterion even in the self-adjoint case. The analysis here
includes some self-adjoint operators as well as the C -symmetric ones. We will define
an m-function without the aid of a nesting circle analysis.

Even if the notation is largely standard, a few remarks on this are needed. We study
the operator (1.1). It will act in the weighted Hilbert space L 2

w [a,∞) or in L 2
w(−∞,∞) .

The norm and inner product will be denoted by ‖ · ‖, 〈·, ·〉 , respectively.
We now give some definitions and quote some basic results. With the conditions w

is continuous and 1/p, q are locally Lebesgue integrable, the differential expression L
determines a maximal operator T and an unclosed minimal operator T ′

0 defined by the
action of L on the domains, respectively, for the case [a,∞) , with similar definitions
for (−∞,∞) ,

D(T ) = {y ∈ L 2
w [a,∞) : y, py′ ∈ ACloc and L[y] ∈ L 2

w [a,∞)}
and

D(T ′
0) = {y ∈ D(T ) : y has compact support in (a,∞)}
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where ACloc means locally absolutely continuous. The operator T is closed and T ′
0 has

a closure T0 and both are densely defined. For a discussion of these properties we refer
to the paper of Knowles [27].

The formal adjoint of L is given by

L+[y] =
1
w

[
(−py′)′ + qy

]
, (1.2)

and we define the maximal operator T+ and minimal operator T+
0 for L+ analogous

to those for L . We have the adjoint relations Goldberg [20, p. 130] or Kauffman, Read,
and Zettl [25, p. 14].

T ∗
0 = T+, T = T+∗

0 , T0 = T+∗, T ∗ = T+
0 .

Recall that the numerical range N(K)of a linear operator K acting in a Hilbert
space with inner product 〈·, ·〉 is defined by

N(K) = {〈K f , f 〉 : f ∈ D(K),‖ f‖ = 1}.
In certain cases studied here, the numerical range of T0 is not all of C, and in this case
one can say more about the structure of C -symmetric extensions of T0. However in the
general case studied here the numerical range of T0 may be C.

For z /∈ N(T0), we have from Kato [24, p. 268] that T0 − z has a closed range,
nullity T0− z = 0, and the defect of T0− z is constant on each connected component of

N(T0)
C
. Under the hypotheses of Theorem 2.2 we will be able to show that T0 − z has

a closed range for all z ∈ C. From the fact that T0 − z has a closed range, we also have
that T − z, T+

0 − z , T+− z all have a closed range Goldberg [20, p. 130] or Kauffman,
Read, and Zettl [25, p. 15].

Until section 7, we now only consider the case [a,∞). Define

s = dim (D(T )/D(T0)). (1.3)

Then s � 2 since one can construct compactly supported independent functions y1, y2

in D(T )/D(T0) with initial values y1(a) = 1, (py1)′(a) = 0, y2(a) = 0, (py2)′(a) = 1.
Further it follows that when T0− z has a closed range, Kauffman, Read, and Zettl [25,
p. 16], that

s = nul (T − z)+ nul (T+− z). (1.4)

In section 2 we will prove in Theorem 2.2 that for all z ∈ C,

nul (T − z) = 1, nul (T+− z) = 1, (1.5)

and in Theorem 3.2 that T0− z has a closed range for all z ∈ C . Under these conditions
one has s = 2.

For a closed, densely defined operator S on a Hilbert space, the regularity field,
Π(S), is defined by

Π(S) = {z ∈ C : ‖(S− z)(x)‖ � kz‖x‖, x ∈ D(S), for some kz > 0.}
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The resolvent set ρ(S) of S is the set of all z in Π(S) such that the range of S−z is H.
The spectrum σ(S) of S is the complement of ρ(S). The set σ(S) is the union three
sets: the eigenvalues of S, σp(S) , the residual spectrum σr(S) which is the set of values
of z /∈ σp(S) for which the range of S− z is closed but �= H (a C -selfadjoint operator
has no residual spectrum), and finally, the essential spectrum of S , σess(S) which is
the set of z such that the range of S− z is not closed. Glazman [18, p. 9] proves
that this is equivalent (when there are no eigenvalues of infinite geometric multiplicity)
to there being a singular sequence for z , i.e., a bounded noncompact sequence { fn}
such that (S− z)( fn) → 0 as n → ∞. In general then, σ(S) = σp(S)∪σr(S)∪σess(S)
and σ(S) = σp(S)∪σess(S) if S is a C -selfadjoint operator. Let N (S), respectively,
R(S) , denote the nullspace and the range of S . Then we have the well known relations,
Kato [24, p. 267], T ∗

0 − z = T+ − z , T+∗
0 − z = T − z and

N (T ∗
0 − z) = (R(T0− z))⊥, N (T+∗

0 − z) = (R(T+
0 − z))⊥.

From these we get in Theorem 2.2, for all z ∈ C,

def (T0− z) := dim (R(T0 − z))⊥ = 1, and also def (T+
0 − z) = 1. (1.6)

Knowles [27] has shown that for operators T with Π(T0) �= /0 and def T0 =
dim R(T )⊥ = 1, then all maximal C -symmetric, i.e., C -selfadjoint, extensions T1

of T0 are given by T1(y) = T (y) on

D(T1) = {y ∈ D(T ) : γ1y(a)+ γ2(py′)(a) = 0, |γ1|+ |γ2| �= 0}.
The form of C -symmetry in [27] is conjugation and that is the form we use. More
general types can be found in [17]. If p, q, γ1, γ2 are real, then these maximal C -
symmetric extensions T1 of T0 are selfadjoint.

The following description, which is adapted from the selfadjoint case, is more
convenient. Let α ∈ C, and restrict T to

D(Tα) = {y ∈ D(T ) : (cosα)y(a)+ (sinα)(py′)(a) = 0}. (1.7)

Then the domain of D(Tα) is a one dimensional extension of D(T0) . In Theorem 3.2
below conditions are given for z ∈ C,Tα − z to have a closed range. In Theorem 3.3
conditions are given for z ∈ C,Tα − z to have a compact resolvent which ensures that
the resolvent set of Tα is nonempty.

The domain D(T ∗
α ) is given by

D(T ∗
α ) = {y ∈ D(T+) : (cosα)y(a)+ (sinα)(py′)(a) = 0}.

since cosα = cosα,sinα = sinα. If we define the conjugation operator J by J (y)=
y for y∈L 2

w [a,∞) , then we see that J is one to one from D(Tα) onto D(T ∗
α ). It also

follows from the results of Knowles [27] that Tα is J selfadjoint, i.e., Tα = J T ∗
α J ,

and that nul (T − z) = nul (T+− z).
We will sometimes need an additional hypothesis to avoid a degenerate case. It is:

H : For no α ∈C does there exist an eigenvalue of Tα of infinite algebraic multiplicity.
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We prove in section 6 that the set of such endpoints a for which H fails for
some α is a set of isolated points, and further that if an eigenvalue of infinite algebraic
multiplicity occurs for one boundary condition then it occurs for no other at the same
endpoint. We know of no example of a second order Sturm-Liouville C -symmetric
operator with an eigenvalue of infinite algebraic multiplicity. It is obvious that H is
satisfied for all operators with a compact resolvent, as they are studied in this paper.
Likewise it holds for all operators T , for which N(T ) �= C as they have been studied in
[8, 10, 11]. Finally H holds for all operators T [y] =−y′′+qy with Im q semibounded.
This follows from Sim’s theory or N(T ) �= C . So it is not surprising that we know of
no nontrivial example for this case. We conjecture that such a degenerate case does not
occur for operators on the half line.

REMARK 1.1. Under this hypothesis, and since we prove Tα − z is a Fredholm
operator for all z ∈ C , it follows that all z ∈C , z∈ ρ(Tα) or z is an isolated eigenvalue
of Tα , see Locker [28, p. 56]. Eigenvalues of infinite algebraic multiplicity do occur in
boundary value problems, one such given by Locker [28, p. 85], is

L[y] = −y′′, y′(−1)+ y′(1) = 0, y(−1)− y(1) = 0,

in which case every z ∈ C is an eigenvalue. See also the example in Coddington and
Levinson [13, p. 300].

By the criterion in Knowles [27], the boundary value problem on [a,b] ,

L[y] = −y′′, A

[
y(a)
y′(a)

]
+B

[
y(b)
y′(b)

]
=
[
0
0

]
, rank [A,B] = 2, (1.8)

with complex matrices

A =
(

α11 α12

α21 α22

)
B =

(
α13 α14

α23 α24

)
,

is C -symmetric iff

det A = det B ⇔ AJAT = BJBT , J =
(

0 −1
1 0

)
.

The problem (1.8) is selfadjoint iff AJA∗ = BJB∗ , see problem 1 [13, p. 297]. The
problem of Locker above is not C -symmetric.

The spectral theory of C -symmetric operators is far more complicated than that
of their real brethren. There are operators where the m-function has a higher order
pole,e.g., see Example 5.2, Also there are examples for which the operator has an empty
spectrum, e.g., see the example in [13, p. 300]. We prove in Example 1.1 this can also
occur with a C -symmetric case of (1.8) (but in only two cases), and we also prove no
C -symmetric problem of (1.8) can have an eigenvalue of infinite algebraic multiplicity.
By translation and scaling we can take [a,b] = [0,1].
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EXAMPLE 1.1. By the criterion of [13, p. 302], the BVP (1.8) has eigenvalues
the zeros of an entire function so that eigenvalues of infinite algebraic multiplicity do
not occur unless

A24 = 0, A13 = 0, A23 = A14 (1.9)

where

Ajk = det

(
α1 j α1k

α2 j α2k

)
.

Suppose now (1.8) is C -symmetric and (1.9) holds. First consider the case det
A �= 0. Since we may multiply the boundary conditions by A−1 to obtain equivalent
boundary conditions, we may assume A = I. With A = I, we have

A24 = −α14 = 0, A13 = α23 = 0, A23 = A14 ⇔ α13 = −α24.

Let c = α13. Then the boundary conditions of (1.8) are

y(0) = −cy(1), y′(0) = cy′(1) (1.10)

which is C -symmetric iff c2 =−1 or c =±i . We now show these boundary conditions
have no eigenvalues. For z = 0, the general solution of −y′′ = 0 is y(x) = c0 +c1x and
substitution into (1.10) implies c0 = c1 = 0. For z = s2 �= 0, the general solution of
−y′′ = zy is y(x) = c1 exp(isx)+ c2 exp(−isx) . One may set c1 = 1 and a simple com-
putation shows that (1.10) is incompatible with c =±i. Thus with boundary conditions
(1.10) there are no eigenvalues. If T1 is the C -symmetric operator defined by L[y] =
−y′′ and (1.10), then (T1− z)−1 is compact for all z ∈ C as is seen from computing the
Green’s function. Hence σ(T1) = /0, and σ((T1 − z)−1) = σess((T1 − z)−1) = {−z} as
the range of (T1 − z)−1 = D(T1) is not closed.

Secondly, let det A = 0. Then rank A = rank B = 1 for otherwise rank [A,B] < 2.
Now an elementary study of all cases shows that in this case there are no C -symmetric
boundary conditions satisfying (1.9).

An example of a singular half line operator has been given by McLeod [30] on
L 2[0,∞) which has σp(Tα) = /0 for all α . The equation is

−y′′ −2ie2(1+i)xy = zy.

McLeod proves the solutions of this equation can be expressed in terms of Bessel func-
tions and no nontrivial solution is in L 2[0,∞) . A less artificial example is the Airy
equation of example 7.1. Both Sims and McLeod have shown that L 2 solutions exist
if Im q is semibounded. So the Airy equation is about the simplest operator, that shows
the limits of Sim’s theorem, one can think of.

2. Asymptotic solutions

In this section we derive conditions for the asymptotic solutions of (1.1). There
are quite a number of results on the asymptotics of Sturm-Liouville equations. For us
the most convenient is Corollary 2.2.1 of Eastham below [15, p. 58] for the equation

− (py′)′ +qy = 0 (2.1)
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which has to be adapted to spectral problems.

THEOREM 2.1. Suppose the complex valued functions p and q are nowhere zero
and have absolutely continuous first derivatives on [a,∞). Assume the following hold:

(pq)′/pq = o((q/p)1/2) (x → ∞), (2.2)

[p−1/2q−3/2(pq)′]′, p−3/2q−5/2((pq)′)2 ∈ L [a,∞), (2.3)

re(q/p)1/2 has one sign in [a,∞). (2.4)

Then (2.1) has solutions y1 and y2 such that as x → ∞ ,

y1(x) = (pq)−1/4(x)[1+o(1)]exp

(
−
∫ x

a
(q/p)1/2 dt

)
, (2.5)

(py′1)(x) = −(pq)1/4(x)[1+o(1)]exp

(
−
∫ x

a
(q/p)1/2 dt

)
, (2.6)

with similar formulae for y2 deleting the minus signs.

We want to apply Theorem 2.1 to the equation

L[y] =
1
w

[−(py′)′ +qy] = zy, (2.7)

where the hypotheses are independent of z.

THEOREM 2.2. Suppose w(x) > 0 and the complex valued functions p and q
are nowhere zero and w, p, q have absolutely continuous first derivatives on [a,∞).
Assume the following hold:

p′/p, q′/q, w′/w = o((q/p)1/2) (x → ∞), (2.8)

p−1/2q−5/2(pq)′q′, p−3/2q−3/2(pq)′p′ ∈ L [a,∞), (2.9)

w/q = o(1), (w/q)′ = O((pq)′/pq) (x → ∞), (2.10)

(pq)′′p−1/2q−3/2, p1/2q−1/2(w/q)′′ ∈ L [a,∞), (2.11)

for some δ > 0, −π + δ � arg (q/p) � π − δ . (2.12)

Then (2.7) has solutions y1 and y2 such that as x → ∞ , with q̃ = q− zw,

y1(x) = (pq)−1/4(x)[1+o(1)]exp

(
−
∫ x

a
(q̃/p)1/2 dt

)
, (2.13)

(py′1)(x) = −(pq)1/4(x)[1+o(1)]exp

(
−
∫ x

a
(q̃/p)1/2 dt

)
, (2.14)

with similar formulae for y2 deleting the minus signs. Further y1 ∈ L 2
w [a,∞) and

y2 /∈ L 2
w [a,∞).
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REMARK 2.3. Note that p, q will also satisfy the hypotheses of Theorem 2.2
when p, q do. Hence under these conditions for all z ∈ C , dim N (T − z) = dim
N (T+ − z) = 1. We will sometimes use (q̃/p)1/2 = (q/p)1/2[1+ o(1)] in the above
asymptotic formulae.

Proof. We will first show the conditions (2.8), (2.9), (2.11) (first part), and (2.12),
of Theorem 2.2 imply the conditions of Theorem 2.1. First note that

(2.8) ⇒ (pq)′/(pq) = o((q/p)1/2),

(2.9) ⇒ p−3/2q−5/2((pq)′)2 ∈ L [a,∞),

(2.9), (2.11) ⇒ [p−1/2q−3/2(pq)′]′ ∈ L [a,∞).

Clearly, (2.4) follows from (2.12).
Let q̃ = q− zw = q[1 + o(1)]. We now proceed to prove that conditions (2.8),

(2.9), (2.11) (first part), and (2.12), of Theorem 2.2 hold with q replaced by q̃. This is
where we need additional conditions on w . Adding w to q will imply that all necessary
inequalities hold asymptotically. So it may be necessary to restrict the interval [a,∞).
The results of (2.5), (2.6), however remain valid. This means that (2.8), (2.12) hold
for some 0 < δ ′ < δ on some [a′,∞) . Without loss of generality we take this to be δ
on [a,∞) and assume also |w/q| � 1/2sin(δ/2) . A calculation shows that the second
condition of (2.10) implies (2.8) holds for q̃.

We now consider (2.9).

p−1/2q̃−5/2(pq̃)′q̃′ = p−1/2q−5/2
(
1− zw

q

)−5/2
(2.15)

×
[
(pq)′

(
1− zw

q

)
− zpq

(w
q

)′][
q′
(
1− zw

q

)
− zq

(w
q

)′]
.

Using (2.10), we have

p−1/2q̃−5/2(pq̃)′q̃′ = p−1/2q−5/2O((pq)′)[O(q′)+O((pq)′/p)] ∈ L [a,∞).

The expression for p−1/2q̃−5/2(pq̃)′p′ is similar, but simpler. Thus (2.9) holds for q̃.
Finally we must prove the first part of (2.11) holds for q̃.

A calculation gives that

(pq̃)′′ = (pq)′′p−1/2q−3/2
(
1− zw

q

)−1/2

+2z(pq)′p−1/2q−3/2
(
1− zw

q

)−3/2
(w/q)′ + zp1/2q−1/2

(
1− zw

q

)−1/2
(w/q)′′.

(2.16)

The first term of (2.16) ∈ L [a,∞) by (2.11), the second term of (2.16) ∈ L [a,∞) by
(2.9), and the last term of (2.16) ∈ L [a,∞) by (2.11).
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We now show y1 ∈ L 2
w [a,∞). We will use below and later that (2.8) gives

p(x)
p(s)

= exp

(∫ x

s

p′(t)
p(t)

dt

)
= exp

(∫ x

s
o

(
q(t)
p(t)

)1/2

dt

)
, s � x, (2.17)

with similar expressions for q, w .
If we write q/p = ρeiφ , ρ = |q/p|,−π +δ � φ � π−δ , then (q/p)1/2 = ρ1/2eiφ/2 .

Thus

y1(x) = q(x)−1/2
[

q(x)
p(x)

]1/4

[1+o(1)]exp

(
−
∫ x

a
(q/p)1/2[1+o(1)]dt

)

and using ∣∣∣∣exp

(
−2i

∫ x

a
ρ(t)1/2 sin(φ(t)/2)dt

)∣∣∣∣= 1,

we have, with cos(φ(t)/2) � cos((π − δ )/2) = sin(δ/2),

w(x)|y1(x)|2 =
∣∣∣∣w(x)
q(x)

∣∣∣∣ρ(x)1/2[1+o(1)]exp

(
−2
∫ x

a
ρ(t)1/2[cos(φ(t)/2)+o(1)]

)
dt

�
∣∣∣∣w(x)
q(x)

∣∣∣∣ρ(x)1/2[1+o(1)]exp

(
−2
∫ x

a
ρ(t)1/2[sin(δ/2)+o(1)]

)
dt.

(2.18)

Since w/q → 0 as x → ∞ and

∫ ∞

a
ρ(x)1/2 exp

(
−2
∫ x

a
ρ(t)1/2 sin(δ/2)dt

)
dx =

1
2sin(δ/2)

< ∞, (2.19)

we have y1 ∈ L 2
w [a,∞).

A similar analysis shows that |q|1/2y1 ∈L2([a,∞)) and using asymptotically py′ =
(pq)1/2y1, we also obtain |p|1/2y′1 ∈ L2([a,∞)) . Thus y1 satisfies a Dirichlet condi-
tion. Multiplying (2.7) by wy1 and integrating by parts gives

(py′1y1)(a)+
∫ ∞

a
[p|y′1|2 +q|y1|2]dt = z

∫ ∞

a
w|y1|2 dt. (2.20)

To prove y2 /∈ L 2
w [a,∞), we first show

∫ ∞
a ρ1/2 dt = ∞. From ρ2 = qq/pp, dif-

ferentation, and using (2.8), it follows that ρ ′/ρ3/2 = o(1). Thus ρ ′(t)/ρ3/2(t) � −1
on some [t0,∞), and an integration yields, for t � t0,

2ρ−1/2(t0)+ t− t0 � 2ρ−1/2(t)

from which
∫ ∞
a ρ1/2 dt = ∞ follows.

Following a similar argument, and using (2.17) for q, w,

w(x)
w(a)

,
q(x)
q(a)

= exp

(∫ x

a
o

(
q(t)
p(t)

)1/2

dt

)
⇒ w(x)

q(x)
= exp

(∫ x

a
o

(
q(t)
p(t)

)1/2

dt

)
,
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as in (2.18), we arrive at

w(x)|y2(x)|2 = ρ(x)1/2[1+o(1)]exp

(
2
∫ x

a
ρ(t)1/2[cos(φ(t)/2)+o(1)]

)
dt

� ρ(x)1/2[1+o(1)]

which gives y2 /∈ L 2
w [a,∞) since

∫ ∞
a ρ1/2 dt = ∞ . �

EXAMPLE 2.1. Let p(x)= xα , w(x)= xβ , q(x)= c1xδ1 + . . .+ckxδk on [a,∞), a >
0, where α, β , δi are real, ci ∈ C with c1 /∈ (−∞,0], and δ1 > δ2 > .. . > δk. Further
suppose δ1 > β and α − δ1 < 2. Then all conditions of Theorem 2.2 are satisfied.

REMARK 2.4. Equation (2.20) can be used for partial location of eigenvalues.
Note an eigenfunction must be a multiple of y1 as y2 /∈ L 2

w [a,∞). For example, if p
is real and the boundary condition is y(a) = h(py′)(a), h real , and z = z1 + iz2 is an
eigenvalue, then taking imaginary parts of (2.20) with q = q1 + iq2 gives∫ ∞

a
q2|y1|2 dx = z2

∫ ∞

a
w|y1|2 dx. (2.21)

Thus if q2 � d, (q2 � d ), it then follows that z2 � d (z2 � d).

The standard form of (1.2) for p = w = 1 can achieved by the Kummer Liouville
transformation. In this case the conditions of Theorem 2.1 and Theorem 2.2 are some-
what simpler. The Kummer Liouville transformation is based on the transformation

y(x) = μ(x)u(t), μ(x) > 0, t = f (x), γ := f ′(x) > 0.

Details may be found in Ahlbrandt, Hinton, and Lewis [2] or in Behncke and Hinton
[3]. In this case we have, with

′ = d/dx, · = d/dt, t = f (x) =
∫ x

a
(w/p)1/2 ds, μ = 1/(pw)1/4,

that
−(py′)′ +qy = zwy, ⇔−ü+Q(t)u = zu,

where
Q(t) =

μ
γ

[
−(pμ ′)′ +qμ

]
= −μ

γ
(pμ ′)′ +

q
w

,

since μ2w = γ = (w/p)1/2. Note that the term (μ/γ)(pμ ′)′ will under general condi-
tions be small with respect to q/w. However imposing the conditions of Theorem 2.2
on the transformed equations makes for rather complicated hypotheses. In Example
2.1, γ(x) = x(β−α)/2 and μ(x) = x−(α+β )/4.

Asymptotic tools can also be used to cover the case where essential spectrum
arises. As an example consider a special case [9],

L[y] = −(py′)′ +qy, 1/p = p0 + p1 + p2, q = q0 +q1 +q2, (2.22)
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where p0 �= 0, q0 are constants, p1, q1 → 0 as x → ∞ , and p2, q2 are integrable on
[a,∞) , then the operator T has an essential spectrum contained in the algebraic curve

Σ := {z ∈ C : z = p0λ 2 +q0 for some real λ}.
Further, by using singular sequences, it can be shown that all z ∈ Σ belong to the
essential spectrum of T. The conditions on p, q above in (2.22) are too weak to obtain
asymptotic solutions of L[y] = −(py′)′ + qy = zy as one generally must require the
Levinson dichotomy condition. However they are sufficient to obtain an exponential
dichotomy, c.f., Ju and Wiggins [23].

These results on asymptotic integration can be extended to a situation where the
operators satisfy less smoothness but rather combination of smoothness and decay. For
this one decomposes the coefficient q as q = q1 + q2 + . . . + qm so that qk becomes
integrable at the k -th diagonalization. For the simple equation −y′′ + qy = zy, this is
particularly easy to follow [6, 9].

3. The operator R

In this section we assume the conditions of Theorem 2.2. General results for
Sturm-Liouville operators imply the Wronskian W (y1,y2) to be independent of x .
Hence evaluating W (y1,y2) , with y1, y2 given by Theorem 2.2, shows that

W (y1,y2) = y1(x)(py′2)(x)− y2(x)(py′1)(x) = 2.

With this we can define an operator R = R(z) on L 2
w [a,∞) by

(R f )(x) =
∫ x

a

1
2
y1(x)y2(s)w(s) f (s)ds+

∫ ∞

x

1
2
y2(x)y1(s)w(s) f (s)ds. (3.1)

As is to be expected from the selfadjoint case R will turn out to be the resolvent of
L[y] = (1/w)[−(py′)′ − qy] . For this reason denote the kernel of the first summand
of (3.1) by K+ and that of the second by K−. Since y1 ∈ L 2

w [a,∞), it is clear that
R f is defined. Let y(x) = (R f )(x). Then a calculation shows that −(py′)′ + qy =
zwy+wf . The following special case of a theorem of Okikiolu [32, p. 190] will prove
the boundedness of R .

THEOREM 3.1. Let the measures on X , Y ⊆ [a,∞) be defined by mX(x) =w(x)dx,
mY (y) = w(y)dy, and let K(x,y) be a measurable function on [a,∞)× [a,∞) such that∫

X
|K(x,y)|dmX (x) � M2

1 ,a.e., y;
∫
Y
|K(x,y)|dmY (y) � M2

2 ,a.e., x

for some constants M1, M2 . Let T be the integral operator defined on L 2
w(X) by

T ( f )(y) =
∫

X
K(x,y) f (x)dmX (x).

Then T is a bounded operator from L 2
w(X) to L 2

w(Y ) with ‖T‖ � M1M2.
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To apply Theorem 3.1, we must obtain bounds on the functions K±(x,s). From
Theorem 2.2 we have

2K+(x,s)
= y1(x)y2(s)

= (pq)−1/4(x)(pq)−1/4(s)[1+o(1)]exp

(
−
∫ x

s
(q̃/p)1/2 dt

)

=
1

q(x)

[
p(x)
p(s)

] 1
4
[
q(x)
q(s)

] 3
4
[

q(s)
p(s)

] 1
2

[1+o(1)]exp

(
−
∫ x

s
(q/p)1/2[1+o(1)]dt

)

=
1

q(x)

[
q(s)
p(s)

] 1
2

[1+o(1)]exp

(
−
∫ x

s
(q/p)1/2[1+o(1)]dt

)
(3.2)

where we have used (2.17) in the last equation. Thus with q/p = ρeiφ ,

|2K+(x,s)|

=
1

|q(x)|ρ(s)
1
2 [1+o(1)]exp

(
−
∫ x

s
ρ(t)1/2[cos(φ(t)/2)+o(1)]dt

)

� 1
|q(x)|ρ(s)

1
2 [1+o(1)]exp

(
−
∫ x

s
ρ(t)1/2[sin(δ/2)+o(1)]dt

)
.

(3.3)

For later purposes, we have that a similar analysis shows, using for r � 1,

|2K+(x,s)|r =|q(x)|(−r−1)/2|p(x)|(−r+1)/2

∣∣∣∣ p(x)
p(s)

∣∣∣∣
r−2
4
∣∣∣∣q(x)
q(s)

∣∣∣∣
r+2
4

×
∣∣∣∣q(s)
p(s)

∣∣∣∣
1
2

[1+o(1)]exp

(
−r
∫ x

s
(q/p)1/2[1+o(1)]dt

)

so that as in (3.3),

|2K+(x,s)|r

� |p(x)| 1−r
2 |q(x)| −r−1

2 ρ(s)
1
2 [1+o(1)]exp

(
−r
∫ x

s
ρ(t)1/2[sin(δ/2)+o(1)]dt

)
.

(3.4)

Since the properties we are proving are independent of the endpoint a , it is suf-
ficient to assume that the o(1) in the integral of (3.3) satisfies o(1) � (1/2)sin(δ/2).
Hence, using (2.17) for w , there is a constant C so that∫ x

a
|K+(x,s)|w(s)ds � w(x)

2|q(x)|
∫ x

a
ρ(s)1/2[1+o(1)]exp

(
−
∫ x

s

1
2

ρ(t)1/2 sin(δ/2)dt

)
ds

� C
w(x)
|q(x)| .

(3.5)
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Here we have also used (2.19). Analogously, for r � 1,

∫ x

a
|K+(x,s)|rw(s)ds � Cw(x)|p(x)| 1−r

2 |q(x)| −r−1
2 . (3.6)

A similar argument proves that

∫ ∞

x
|K−(x,s)|rw(s)ds � Cw(x)|p(x)| 1−r

2 |q(x)| −r−1
2 ; (3.7)

hence ∫ ∞

a
|K(x,s)|rw(s)ds � Cw(x)|p(x)| 1−r

2 |q(x)| −r−1
2 . (3.8)

For use in Theorem 3.4, we note that a similar argument proves that

∫ ∞

a
|K(x,s)|rw(s)r/2 ds � Cw(x)r/2|p(x)| 1−r

2 |q(x)| −r−1
2 . (3.9)

We may now apply Theorem 3.1 to (3.8) using K(x,s) = K(s,x), X = Y = [a,∞),
r = 1, with

M1 = C sup
y∈Y

w(y)
|q(y)| , M2 = C sup

x∈X

w(x)
|q(x)| . (3.10)

The suprema above are finite since w(x)/q(x) → 0 as x → ∞.

Thus R( f ) ∈ L 2
w [a,∞) and R is bounded by Theorem 3.1; further y = R( f ) ∈

D(T ).
Since for the maximal operator T , (T −z)R( f ) = f for all f ∈L 2

w [a,∞) , we have
that T − z has the closed range L 2

w [a,∞) . This proves

THEOREM 3.2. Under the hypotheses of Theorem 2.2 T0 − z has a closed range
for all z ∈ C , and the maximal operator T, Tα , and minimal operator T0 satisfy

σess(T ) = σess(T0) = σess(Tα ) = /0, Π(T0) = C, σ(Tα) = σp(Tα).

The second condition Π(T0) = C follows by the closed graph theorem since T0 −
z, z ∈ C, has a closed range, is closed, and is one-to-one. The condition σ(Tα ) =
σp(Tα) follows since Tα is C -selfadjoint and σess(Tα ) = /0.

THEOREM 3.3. Under the hypotheses of Theorem 2.2 the operator R has the
properties:

(i) R is compact.
(ii) R−1 + z is an extension of T0 .
(iii) R−1 + z is C -symmetric and its domain is given by:

{y ∈ D(T ) : y(a)y′2(a,z)− y′(a)y2(a,z) = 0}.
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Proof.
(i) To show R is compact, let the integral operators Rb and R̃b be defined by the

kernels χ[a,b](x)K(x,s) and χ[b,∞)(x)K(x,s) , i. e.,

(Rb f )(x) =
∫ ∞

a
χ[a,b](x)K(x,s)w(s) f (s)ds, (3.11)

and similarly for R̃b . Applying Theorem 3.1 to R̃b and using (3.9) and (3.10) with
r = 1, Y = [b,∞), and X = [a,∞) , it follows that R̃b has an arbitrary small norm if b is
sufficiently large. Thus R is compact if Rb is compact as it is the limit in operator norm
of compact operators. To see that Rb is compact we employ a similar decomposition
writing Rb = Rb1 +Rb2 where

(Rb1 f )(x) =
∫ b′

a
χ[a,b](x)K(x,s)w(s) f (s)ds,

(Rb2 f )(x) =
∫ ∞

b′
χ[a,b](x)K(x,s)w(s) f (s)ds.

Now Rb1 is compact since its kernel is continuous on the compact set [a,b]×
[a,b′]. Repeating the argument above shows that Rb2 has arbitrary small norm if b′ is
sufficiently large; thus Rb is compact.

(ii) Let y ∈D(T0) and f = (T0− z)y, ỹ = R( f ). Then y ∈D(T0)⇒ y(a) = y′(a) =
0. Further (3.1) and using

∫ ∞
a wy1 f = 〈 f , y1〉 gives

ỹ(a) =
1
2
y2(a,z)〈 f , y1〉, (pỹ′)(a) =

1
2
(py′2)(a,z)〈 f , y1〉. (3.12)

From (1.6) R(T0 − z)⊥ = N (T ∗
0 − z) = N (T+ − z) and N (T+ − z) is spanned by

y1 , we have 〈 f , y1〉 = 0, and that ỹ(a) = ỹ′(a) = 0. Thus ŷ := y− ỹ satisfies ŷ(a) =
ŷ′(a) = 0, and (T − z)(ŷ) = f − f = 0, and hence ŷ is the zero function by uniqueness
of solutions of initial value problems. This implies R−1(y)+ zy = f + zy = T0(y).

Finally, for part (iii), let y ∈ domain R−1. Then from (3.12), with y = ỹ ,

y(a)(py′2)(a,z)− (py′)(a)y2(a,z) = 0. (3.13)

Now let y ∈ D(T ) so that (3.13) holds. Let f = (T − z)(y), ỹ = R( f ), ŷ = ỹ− y. Then
(T − z)(ŷ) = f − f = 0; hence ŷ = c1y1 since ŷ ∈ L 2

w [a,∞). Thus

0 = ŷ(a)(py′2)(a,z)− (pŷ′)(a)y2(a,z) = c1[y1(a,z)(py′2)(a,z)− (py′1)(a,z)y2(a,z)]

which implies c1 = 0 since the Wronskian [y1(a,z)(py′2)(a,z)−(py′1)(a,z)y2(a,z)] = 2
is constant. Hence ŷ = 0 and ỹ = y. �

For the next theorem recall that a compact kernel operator such as R is a Hilbert-
Schmidt operator if its kernel K satisfies∫ ∞

a

∫ ∞

a
w(s)w(x)|K(x,s)|2 dsdx < ∞. (3.14)
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in which case (3.14) is an upper bound for ‖R‖2.
Also a compact operator A defined on a Hilbert space belongs to the Schatten class

Ct for 1 � t < ∞ provided that ∑∞
1 μ(A)t < ∞ where μ(A) are the t-numbers of A , i.e.,

eigenvalues of the compact operator (AA∗)1/2. C∞ is the class of compact operators,
and C1 is the trace class operators. Note that Ck ⊆ Ct if k � t. The norm of a class Ct

operator A is given by

‖A‖t =

(
∞

∑
1

μ(A)t
)1/t

.

THEOREM 3.4. Under the hypotheses of Theorem 2.2 the operator R is a Schat-
ten class Ct operator, t � 2, if

∫ ∞

a
w(x)2|p(x)|−1/2|q(x)|−3/2 dx =

∫ ∞

a

∣∣∣∣w(x)
q(x)

∣∣∣∣
2 ∣∣∣∣ q(x)

p(x)

∣∣∣∣
1/2

dx < ∞. (3.15)

in which case for some constant Ct , then the Schatten norm of R satisfies,

‖R‖t
t � Ct

∫ ∞

a
w(x)t |p(x)|−1/2|q(x)|−t+1/2 dx = Ct

∫ ∞

a

∣∣∣∣w(x)
q(x)

∣∣∣∣
t ∣∣∣∣ q(x)

p(x)

∣∣∣∣
1/2

dx. (3.16)

Proof. From (3.8) with r = 2, we have∫ ∞

a
w(s)|K(x,s)|2 ds � Cw(x)|p(x)|−1/2|q(x)|−3/2,

and hence∫ ∞

a

∫ ∞

a
w(s)w(x)|K(x,s)|2 dsdx � C

∫ ∞

a
w(x)2|p(x)|−1/2|q(x)|−3/2 dx < ∞

which proves R is Hilbert-Schmidt from (3.14).
To establish (3.16) for t > 2, we employ Theorem 1 of Russo [35]. In his theorem

we use the fact that K(x,s) = K(s,x). Define the kernel k(x,s) by

k(x,s) = w(x)1/2K(x,s)w(s)1/2,

and the operator R̃ : L 2([a,∞)) → L 2([a,∞)) by

(R̃g)(x) =
∫ ∞

a
k(x,s)g(s)ds.

Note that (3.15) implies k ∈ L 2([a,∞))×L 2([a,∞)) so that Russo’s theorem applies.
Russo’s theorem gives that the Schatten class Ct norm of R̃ satisfies (using k(x,s)=

k(s,x))

‖R‖t � ‖k‖v,t :=

(∫ ∞

a

(∫ ∞

a
|k(x,s)|v ds

) t
v

dx

) 1
t

,
1
t

+
1
v

= 1. (3.17)
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From (3.9) with r = v , we have

(∫ ∞

a
|K(x,s)|vw(s)v/2 ds

) t
v

�
(
Cw(x)v/2|p(x)|(1−v)/2|q(x)|−(1+t)/2

) t
v

= Ct/vw(x)t/2|p(x)|−1/2|q(x)|−t+1/2.

Thus

∫ ∞

a

(∫ ∞

a
|k(x,s)|vds

) t
v

dx =
∫ ∞

a

(∫ ∞

a
w(x)v/2|K(x,s)|vw(s)v/2 ds

) t
v

dx

�
∫ ∞

a
Ct/vw(x)t |p(x)|−1/2|q(x)|−t+1/2dx

(3.18)

which will yield (3.16) by (3.17) after we verify ‖R‖t = ‖R̃‖t . To see this let M :
L 2

w([a,∞)) → L 2([a,∞)) be defined by M(y) = w1/2y. Then M−1(g) = g/w1/2 ,
and ‖M(y)‖L 2([a,∞)) = ‖y‖L 2

w([a,∞)) . Thus M is isomorphic from L 2
w([a,∞)) onto

L 2([a,∞)) . Since R̃ = MRM−1, it follows that R̃ and R are unitarily equivalent and
‖R‖t = ‖R̃‖t . �

COROLLARY 3.1. Under the hypotheses of Theorem 2.2 and hypothesis (H), the
operator Tα has a compact resolvent. Further Tα has a Hilbert-Schmidt resolvent if
(3.15) holds.

Proof. First we note by the first resolvent formula that if an operator has a com-
pact (Hilbert-Schmidt) resolvent for one z0 in its resolvent set, then it has a com-
pact (Hilbert-Schmidt) resolvent for all z0 in its resolvent set. By Remark 1.1 we
know Tα and R−1 + z have nonempty resolvent sets; further ρ(Tα)∩ρ(R−1 + z) �= /0
since the eigenvalues are isolated and both have empty essential spectrum. Let z0 ∈
ρ(Tα)∩ρ(R−1 + z). By a theorem of Kato [24, p. 188], the difference (Tα − z0)−1 −
(R−1 + z− z0)−1 is a finite rank operator. Since a finite rank operator is both compact
and Hilbert-Schmidt, the conclusion follows. �

EXAMPLE 3.1. Let p, w, q be as in Example 2.1. Then condition (3.15) is equiv-
alent to

∫ ∞

a
x2β−α/2−3δ1/2 dx < ∞ ⇔ 2β − α

2
−3

δ1

2
< −1 ⇔ 2

3
<

α
3

+ δ1− 4β
3

.

This agrees with the pointwise criterion of Example 2 of [8, p. 21] when q = c1xδ1 .
(Note q̃(x) there should be q̃(x)/w(x) in agreement with [8, p. 20].) Theorem 3.4 also
applies to self-adjoint problems and gives a new criterion for the self-adjoint boundary
value problem to be Hilbert-Schmidt.
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4. The Titchmarsh-Weyl function and resolvent operator for Tα

Here we define the Titchmarsh-Weyl function mα(z) and construct the resolvent
formula for Tα as in [8] By section 3 we know ρ(Tα) �= /0, and Tα has a compact resol-
vent. Define for all z ∈ C, the basis of solutions of L[y] = zy by the initial conditions[

θα φα
pθ ′

α pφ ′
α

]
(a,z) =

[
cosα sinα
sinα −cosα

]
. (4.1)

Then φα (·,z) satisfies the boundary condition for Tα ,

cosα y(a)+ sinα (py′)(a) = 0, (4.2)

while θα does not. For z∈ρ(Tα), let ψα(·,z) = c1θα(·,z)+c2φα(·,z) be the L 2
w [a,∞)

solution of L[y] = zy normalized as follows. We have c1 �= 0 since φα (·,z) /∈ L 2
w [a,∞)

as z ∈ ρ(Tα) . Thus take c1 = 1. Then c2 is uniquely determined and we define it as
mα .

Thus mα is defined on ρ(Tα) , and

ψα(·,z) = θα (·,z)+mα(z)φα (·,z) ∈ L 2
w [a,∞).

For β �= α, there is a simple relation between mα and mβ . We have ψα = constant×
ψβ since there is only one independent L 2

w [a,∞) solution of L[y] = zy. Using the initial
values of the solutions θα , φα , for α, β , the following equation can be derived.

mβ =
sin(β −α)+mα cos(β −α)
cos(β −α)−mα sin(β −α)

. (4.3)

Define a Green’s function Hα(x,y,z) , for z ∈ ρ(Tα), by:

Hα(x,y,z) =

{
−φα(x,z)ψα (y,z), a � x � y,

−ψα(x,z)φα (y,z), a � y < x.
(4.4)

Define (Rα(z) f )(x) on L 2
w [a,∞) by

(Rα(z) f )(x) =
∫ ∞

a
Hα(x,y,z)w(y) f (y)dy

=
∫ x

a
−ψα(x,z)φα (y,z)w(y) f (y)dy

+
∫ ∞

x
−φα(x,z)ψα (y,z)w(y) f (y)dy. (4.5)

We will prove that Rα(z) is the resolvent of Tα , i.e., Rα(z) = (Tα − z)−1 . It is clear
that Rα(z) is defined since ψα(·,z), f ∈ L 2

w [a,∞). Straightforward calculations show
that Rα(z) f satisfies the boundary condition (4.2) and the equation

L[Rα(z) f ] = z[Rα(z) f ]+ f .
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To complete the proof we need to show Rα(z) f ∈ L 2
w [a,∞). Let

fN = f
∣∣
[a,N], yN = Rα(z) fN , y = Rα(z) f .

For x � N,

y(x)− yN(x) = −φα(x,z)
∫ ∞

N
ψα(y,z)w(y) f (y)dy,

and using ψα(·,z), f ∈ L 2
w [a,∞), we see that yN → y uniformly on compact intervals.

For x � N,

yN(x) = −ψα(x,z)
∫ N

a
φα(y,z)w(y) f (y)dy ∈ L 2

w [a,∞).

Thus yN ∈ D(Tα) and yN = (Tα − z)−1 fN . Now fN → f in L 2
w [a,∞) as N → ∞ , and

since (Tα − z)−1 is continuous as z ∈ ρ(Tα) , we conclude that yN = (Tα − z)−1 fN →
(Tα − z)−1 f in L 2

w [a,∞) as N → ∞ . But also yN → y uniformly on compact sets;
hence y = (Tα − z)−1 f and y ∈ L 2

w [a,∞) . This proves

THEOREM 4.1. Assume (4.1) and the hypotheses of Theorem 2.2. Then the resol-
vent operator for Tα is given by (4.5) where Hα is given by (4.4).

REMARK 4.2. For the conjugate operator T ∗
α , using θα (x,z) = θα(x, z) and

φα(x,z) = φα(x, z), it follows that m+
α (z) = mα(z) where m+

α is the Titchmarsh-Weyl
function for T ∗

α .

The first part of the proof of the next theorem follows that of Theorem 10 of [8].
Also equations (4.6)-(4.7) hold in greater generality, e.g., see Remling [34].

THEOREM 4.3. Assume the hypotheses of Theorem 4.1. Then the function mα is
meromorphic on C , and its poles are the eigenvalues of Tα .

Proof. The proof of [8] shows that for z, z0 ∈ ρ(Tα),

mα(z)−mα(z0) = (z0 − z)
∫ ∞

a
wψα(·,z)ψα (·,z0)dx, (4.6)

and mα is differentiable at z0 with (ṁα = dmα/dz)

ṁα(z0) = −
∫ ∞

a
wψ2

α(·,z0)dx. (4.7)

The proof of this is omitted. It follows that mα is analytic on ρ(Tα).
Now let z0 ∈ C be arbitrary. Since φα satisfies the α boundary condition, and the

eigenspace is one dimensional, we have that z0 is an eigenvalue of Tα if and only if
φα(·,z0) ∈ L 2

w [a,∞).
Since mα is analytic on ρ(Tα), the only possible singular points of mα are the

eigenvalues of Tα . By the connection formula (4.3) we can choose a boundary condi-
tion β = α +π/2. Now let z0 be an eigenvalue of Tα . Then z0 is not an eigenvalue of
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Tβ since the L 2
w [a,∞) solution space of L[y] = z0y is one dimensional, and an eigen-

function cannot satisfy two independent boundary conditions. By the first part of this
proof, mβ is analytic at z0. Since the eigenvalues of Tα are isolated, see Remark 1.1,
and β = α + π/2 we have in a deleted neighborhood of z0, using (4.1) and (4.3),

mβ = −1/mα , φα = −θβ , θα = φβ , ψα = −mαψβ . (4.8)

Thus either mα = −1/mβ has a pole z0 (if mβ (z0) = 0) or removable singularity
at z0 (if mβ (z0) �= 0).

Suppose mα has a removable singularity at the eigenvalue z0 of Tα . Then φα =
−θβ and ψβ = θβ + mβ (z0)φβ are two linearly independent L 2

w [a,∞) solutions of
(T − z0)(y) = 0, contrary to there being only one such solution. Therefore mα has a
pole at z0. �

REMARK 4.4. Note that the analyticity of mα on ρ(Tα) does not use hypothesis
(H).

5. The Titchmarsh-Weyl function at an eigenvalue

In this section we give a representation of mα at a pole. For an operator with
compact resolvent, the eigenvalues are isolated, and they are poles of the resolvent. It is
an open problem which potentials give arise to simple poles, respectively, higher order
poles.

Let y(·,z) be a solution of (1.1) with nontrivial initial conditions y(a,z), (py′)(a,z)
independent of z . We use the notation : ·= d/dz, y[n] = dny/dzn. Then −(pẏ′)′+qẏ =
zwẏ+wy, ẏ(a,z) = (pẏ′)(a,z) = 0, and in general the following holds.

PROPOSITION 5.1. Let z ∈ C . Then for every positive integer n,

y[n](a,z) = p(y[n])′(a,z) = 0,

and
(a) (L− z)(y[n]) = ny[n−1], (b) (L− z)n(y[n]) = n!y. (5.1)

Proof. The zero initial conditions hold since y[n](a,z), p(y[n])′(a,z) are indepen-
dent of z . Clearly both equations of (5.1) hold for n = 1. If (L− z)(y[n]) = ny[n−1],
then applying d/dz,

L(y[n+1]) =
d
dz

(zy[n])+ny[n] = zy[n+1] + (n+1)y[n]

which establishes (5.1) (a) by induction. If (L− z)n(y[n]) = n!y, then applying d/dz,

−n(L− z)n−1(y[n])+ (L− z)n(y[n+1]) = n!y[1].

Applying (L− z) to both sides of this equation and using (5.1) (a) gives

−n(L− z)n(y[n])+ (L− z)n+1(y[n+1]) = n!(L− z)(y[1]) = n!y,
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which simplifies to (5.1) after the substitution (L− z)n(y[n]) = n!y which is the induc-
tion hypothesis. �

THEOREM 5.1. For each integer m � 0, the functions {y[n]}m
n=0 are linearly in-

dependent.

Proof. Suppose not and let m be the smallest integer so that y[m+1] is a linear
combination of {y[n]}m

n=0 , say,

y[m+1] = c0y+ c1ẏ+ . . .+ cmy[m].

Applying the operator L− z to this equation gives from (5.1),

L(y[m+1])− zy[m+1] = (m+1)y[m] = c0 ·0+ c1y
[1] + . . .+ cmmy[m−1].

This implies that y[m] is a linear combination of {y[n]}m−1
n=0 which is contradiction. �

THEOREM 5.2. Let z ∈ ρ(Tβ ) and define hβ by

hβ (x,z) = Rβ (z)(ψβ (·,z))(x) =
∫ ∞

a
Hβ (x.t.z)w(t)ψβ (t,z)dt. (5.2)

Then hβ = ψ [1]
β or ψ [1]

β = (Tβ − z)−1(ψβ ).

Proof. From (4.5) one has

h′β (x,z) = −
∫ x

a
w(t)ψ ′

β (x,z)φβ (t,z)ψβ (t,z)dt −
∫ ∞

x
w(t)φ ′

β (x,z)ψ2
β (t,z)dt. (5.3)

From equations (4.1), (4.7), (5.2), and (5.3), we obtain

hβ (a,z) = (sinβ )ṁ(z), h′β (a,z) = −(cosβ )ṁ(z).

The relation hβ = (Tβ − z)−1(ψβ ) also implies

−(ph′β )′ −qhβ = zwhβ +wψβ .

From ψβ = θβ +mβ φβ , we obtain

ψ̇β (x,z) = θ̇β (x,z)+ ṁβ (z)φβ (x,z)+mβ (z)φ̇β (x,z)

and
ψ̇ ′

β (x,z) = θ̇ ′
β (x,z)+ ṁβ (z)φ ′

β (x,z)+mβ (z)φ̇ ′
β (x,z).

The initial conditions of θβ , θ ′
β , φβ , φ ′

β are independent of z which implies

θ̇β (a,z) = θ̇ ′
β (a,z) = φ̇β (a,z) = φ̇β (a,z) = 0

so that

ψ̇β (a,z) = φ(a,z)ṁ(z) = (sinβ )ṁ(z), ψ̇ ′
β (a,z) = φ ′

β (a.z)ṁ(z) = −(cosβ )ṁ(z).

Since hβ , ψ̇ satisfy the same nonhomogeneous equation with the same initial values,
we have hβ = ψ̇ by uniqueness of initial value problems. �
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REMARK 5.3. Let z ∈ ρ(Tβ ) . Combining Proposition 5.1 and Theorem 5.2 then

yields for every positive integer n, ψ [n]
β ∈ L 2

w [a,∞), and

ψ [n]
β = n(Tβ − z)−1(ψ [n−1]

β ), ψ [n]
β = n!(Tβ − z)−n(ψβ ). (5.4)

Recall the algebraic multiplicity ν(z0) of an eigenvalue z0 of the operator Tα is
the smallest positive integer k so that N ((Tα − z0)k) = N ((Tα − z0)k+1) .

THEOREM 5.4. Suppose z0 is an isolated eigenvalue of Tα of algebraic multi-
plicity ν(z0) . Then ν(z0) is the order of the pole of mα(z) at z0. Further the func-

tions φα(·,z0),φ
[i]
α (·,z0), i = 1, . . . ,ν(z0)− 1 form a Jordan basis of the generalized

eigenspace for z0.

Proof. From (4.8) we see that the order of the pole of mα(z) at z0 is the same
as the multiplicity of the zero of mβ (z) at z0, β = α + π/2, which we define to be n.
Also from (4.8), θβ = −φα . Then

mβ (z0) = ṁβ (z0) = . . . = m[n−1]
β (z0) = 0, m[n]

β (z0) �= 0. (5.5)

From (5.5) and ψβ (x.z) = θβ (x,z)+ mβ (z)φβ (x,z), and θβ = −φα , it follows from
(4.8) that

ψ [i]
β (x,z) =−φ [i]

α (x,z), i = 0, . . . ,n−1, ψ [n]
β (x,z) = −θ [n]

β (x,z)+m[n](z)φβ (x,z). (5.6)

Now φβ (·,z0) /∈L 2
w [a,∞) since φβ (·,z0) = θα(·,z0) and φα (·,z0) are linearly indepen-

dent and there is only one linearly independent L 2
w [a,∞) solution of L[y] = z0y. Hence

(5.6) implies θ [n]
β (·,z0) /∈ L 2

w [a,∞) as m[n](z0) �= 0 and ψ [n]
β (·,z0) ∈ L 2

w [a,∞) . Thus

by Remark 5.3 and (5.6), φ [i]
α (·,z0) ∈D(Tα) for i = 0, . . . ,n−1. Further by Proposition

5.1, for s = 0, . . . ,n−1, k � s,

(Tα − z0)s+1(φ [k]
α ) = (Tα − z0)s−k+1(Tα − z0)k(φ [k]

α ) = (Tα − z0)s−k+1(k!φα ) = 0,

and (s � 1) ,
(Tα − z0)s(φ [s]

α ) = s!φ [s−1]
α �= 0.

This gives with proper set containment,

N ((Tα − z0)) ⊂ N ((Tα − z0)2) ⊂ . . . ⊂ N ((Tα − z0)n)

since for s = 0, . . . ,n−1,

φα ,φ [1]
α , . . . ,φ [s]

α ∈ N ((Tα − z0)s+1), φ [s]
α /∈ N ((Tα − z0)s).

Therefore ν(z0) � n for Tα .
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Suppose now ν(z0) > n , and without loss of generality, we can take ν(z0) = n+1.
Thus there is a function y∈D(Tα) so that (Tα −z0)n+1(y)= 0 and u := (Tα −z0)n(y) �=
0. Then (Tα − z0)u = 0 and hence u = constant×φα since dim N (Tα − z0) = 1. For
simplicity take u = φα = −θβ .

We now prove by induction that for j = 0, . . . ,n−1,

(Tα − z0)n− j(y) ∈ span {φα , . . . ,φ [ j]
α }, with the coefficient of φ [ j]

α �= 0. (5.7)

For j = 0, this is established above. Suppose for some j � 0, that

(Tα − z0)n− j(y) = c0φα + . . .+ c jφ
[ j]
α , c j �= 0. (5.8)

Then by Proposition 5.1, with di = ci/i,

(Tα − z0)[(Tα − z0)n− j−1(y)−
j

∑
i=0

diφ
[i+1]
α ] =

j

∑
i=0

ciφ
[i]
α −

j

∑
i=0

idiφ
[i]
α = 0

since di = ci/i. Thus

(Tα − z0)n− j−1(y)−
j

∑
i=0

diφ
[i+1]
α = constant ×φα

which implies

(Tα − z0)n− j−1(y) ∈ span {φα , . . . ,φ [ j+1]
α } coefficient of φ [ j+1]

α �= 0.

For j = n−1 (5.7) gives

(Tα − z0)(y) =
n−1

∑
i=0

aiφ
[i]
α . (5.9)

Hence as y ∈ D(Tα),

(L− z0)[y−
n−1

∑
i=0

(ai/i)φ [i+1]
α ] = (Tα − z0)(y)−

n−1

∑
i=0

(ai/i)iφ [i]
α = 0

by (5.9). Thus

y−
n−1

∑
i=0

(ai/i)φ [i+1]
α = aθα +bφα (5.10)

for some constants a and b . Now y, φα satisfy the α boundary conditions, φ [i+1]
α , i =

0, . . . ,n− 1, satisfy the zero boundary conditions, and θα satisfies the β boundary
conditions. Since the α and β boundary conditions are linearly independent, this gives

a = 0. But with a = 0 (5.10) implies φ [n]
α ∈ L 2

w [a,∞) which is a contradiction. Thus
ν(z0) � n and hence ν(z0) = n . �

We now examine the behavior of (Tα − z)−1 around an eigenvalue z0 of Tα and
give a representation of the resolvent there. Suppose z0 is an eigenvalue of Tα of
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multiplicity n. By Theorem 5.4, mα(z) can be expressed in a deleted neighborhood of
z0 as

mα(z) =
c−n

(z− z0)n + . . .+
c−1

(z− z0)
+m0,α(z), (5.11)

where c−n �= 0, and m0,α(z) is analytic at z0.

THEOREM 5.5. Suppose z0 is an isolated eigenvalue of Tα of multiplicity n.
Then the Green’s function Hα of (4.4) has the representation in a deleted neighbor-
hood of z0 ,

Hα(x,t,z) =
n

∑
r=1

Hα ,r(x,t)
(z− z0)r +Hα ,0(x,t,z), (5.12)

where Hα ,0 is analytic at z0, and

Hα ,r(x,t) =
n−r

∑
j=0

θ [ j]
β (x,z0)

n−r

∑
s= j

c−r−s

(
s

s− j

)
θ [s− j]

β (t,z0), (5.13)

where β = α +π/2, c− j are as in (5.11). Further Hα ,0(x,t,z)= Hα ,0(t,x,z), Hα ,r(x,t)=
Hα ,r(t,x).

Proof. From the proof of Theorem 5.4, we have that

ψ [i]
β (x,z) = θ [i]

β (x,z) = −φ [i]
α (x,z), i = 0, . . . .,n−1,

and that {θβ , . . . ,θ [i−1]
β } is contained in the null space N ((Tα − z0)i). By (4.5) and

(4.8), for z ∈ ρ(Tα),

(Rα(z) f )(x) = −
∫ x

a
ψα(x,z)φα (t,z)w(t) f (t)dt −

∫ ∞

x
φα(x,z)ψα (t,z)w(t) f (t)dt

= −mα(z)(Sz f )(x),

(Sz f )(x) :=
∫ x

a
ψβ (x,z)θβ (t,z)w(t) f (t)dt +

∫ ∞

x
ψβ (x,z)θβ (t,z)w(t) f (t)dt.

(5.14)

Using only functions f of compact support we compute that (Sz f )(x) is analytic at z0

and with ψβ (x,z0) = θβ (t,z0), the two integrals in (5.14) add yielding,

(Sz0 f )(x) =
∫ ∞

a
θβ (x,z0)θβ (t,z0)w(t) f (t)dt,

and in general,

∂ s

∂ zs (Sz f )(x)�z=z0 =
s

∑
k=0

(
s
r

)
θ [s−k]

β (x,z0)
∫ ∞

a
θ [k]

β (t,z0)w(t) f (t)dt, (5.15)
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so that

(Sz f )(x)=
n−1

∑
s=0

s

∑
k=0

(z−z))
s
(

s
r

)
θ [s−k]

β (x,z0)
∫ ∞

a
θ [k]

β (t,z0)w(t) f (t)dt+(z−z0)n(S0,z f )(x),

(5.16)
where (S0,z f )(x) is analytic at z0. Now substitute (5.5) and (5.16) into (5.14) to obtain

(Rα(z) f )(x) =

[
n

∑
i=1

c−i

(z− z0)i

]

×
[

n−1

∑
s=0

s

∑
k=0

(z− z))
s
(

s
r

)
θ [s−k]

β (x,z0)
∫ ∞

a
θ [k]

β (t,z0)w(t) f (t)dt

]

+ analytic term,

(5.17)

so that

n

∑
i=1

c−i

(z− z0)i ×
n−1

∑
s=0

s

∑
k=0

(z− z))
s
(

s
r

)
θ [s−k]

β (x,z0)
∫ ∞

a
θ [k]

β (t,z0)w(t) f (t)dt

=
n

∑
i=1

i−1

∑
s=0

c−i

(z− z0)i−s

s

∑
k=0

(
s
r

)
θ [s−k]

β (x,z0)
∫ ∞

a
θ [k]

β (t,z0)w(t) f (t)dt + analytic term

(5.18)

Interchanging the order of summation in the first two summands of (5.18) yields

n

∑
i=1

i−1

∑
s=0

=
n−1

∑
s=0

n

∑
i=s+1

.

With the change of index r = i− s and ∑n
i=s+1 = ∑n−s

r=1 , we obtain

n

∑
i=1

i−1

∑
s=0

c−i

(z− z0)i−s

s

∑
k=0

(
s
r

)
θ [s−k]

β (x,z0)
∫ ∞

a
θ [k]

β (t,z0)w(t) f (t)dt,

=
n−1

∑
s=0

n−s

∑
r=1

c−r−s

(z− z0)r

s

∑
k=0

(
s
r

)
θ [s−k]

β (x,z0)
∫ ∞

a
θ [k]

β (t,z0)w(t) f (t)dt,

=
n

∑
r=1

n−r

∑
s=0

c−r−s

(z− z0)r

s

∑
k=0

(
s
r

)
θ [s−k]

β (x,z0)
∫ ∞

a
θ [k]

β (t,z0)w(t) f (t)dt.

(5.19)

Finally, with j = s− k below and one more interchange of summations, the coefficient
of 1/(z− z0)r in (5.19) with the integral and w(t) f (t) deleted is

n−r

∑
s=0

c−r−s

s

∑
k=0

(
s
r

)
θ [s−k]

β (x,z0)θ
[k]
β (t,z0) =

n−r

∑
j=0

c−r−s

n−r

∑
s= j

(
s

s− j

)
θ [ j]

β (x,z0)θ
[s− j]
β (t,z0),

=
n−r

∑
j=0

θ [ j]
β (x,z0)

n−r

∑
s= j

c−r−s

(
s

s− j

)
θ [s− j]

β (t,z0),

(5.20)
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which is (5.13).
The equation above shows the symmetry of Hα ,r , and Hβ is symmetric by defini-

tion. Together these make Hα ,0 symmetric. �
An examination of the proofs of Theorems 4.3 and 5.4 shows that if T0 − z has

a closed range and s = 2, then mα(z) satisfies locally the properties of Theorems 4.3
and 5.4 without invoking Theorem 2.2. In particular, mα(z) has a pole at an eigenvalue
of Tα . These results for the m-function hold in much more generality and have been
shown by Remling [34], Brown et al [10], and Behncke and Hinton [3].

REMARK 5.6. Note that the term ∑n−r
s= j c−r−s

( s
s− j

)
θ [s− j]

β (t,z0) of (5.20) is in the

null space N ((Tα − z)n−r− j+1).

Note from equation (5.13) that Hα ,n(x,t) = c−nθβ (x,z0)θβ (t,z0) , a one term equa-
tion. An illustration is for n = 2,

Hα ,1(x, t) = c−1θβ (x,z0)θβ (t,z0)+ c−2[θ̇β (x,z0)θβ (t,z0)+ θβ (x,z0)θ̇β (t,z0)].

The coefficients c− j can be found by expanding the function mβ and using the
relation mβ (z) = −1/mα(z). If mβ (z) = c0 + c1(z− z0)+ . . . , then for a pole of order
one, c0 = 0 and c−1 = −1/c1 = −1/ṁβ (z0). For a pole of order two, c0 = c1 = 0,

and c−2 = −1/c2 = −2/m[2]
β (z0), c−1 = c3/c2

2 = 2m[3]
β (z0)/3(m[2]

β )(z0)2. The values of

m[i]
β (z) can be found be successively differentiating the expression (4.7),

ṁβ (z) = −
∫ ∞

a
w(t)ψβ (t,z)2 dt,

yielding

m̈β (z) = −2
∫ ∞

a
w(t)ψβ (t,z)ψ̇β (t,z)dt, . . .

From these relations certain orthogonality relations follow, e.g., if z0 is a pole of order
three of mα , then∫ ∞

a
w(t)ψβ (t,z)2 dt =

∫ ∞

a
w(t)ψβ (t,z)ψ̇β (t,z)dt = 0.

This extends to ∫ ∞

a
w(t)ψ [k]

β (t,z)ψ [l]
β (t,z)dt = 0, k, l � ν(z0)−2.

An alternate approach to Theorem 5.5 is to use contour integration, i.e., for r =
0, . . . ,n

Hα ,r(x,t) =
1

2π i

∫
Γ
(z− z0)r−1Hα(x,t,z)dz

where Γ is a small circle around z0. From

(Tα − z0)(Hα ,r(x,t)) = Hα ,r+1(x,t), Hα ,n+1 ≡ 0,
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and the symmetry of Hα ,r, one can show Hα ,r has the form

Hα ,r(x,t) =
n−r+1

∑
i, j=0

ai jφ
[i]
α (x)φ [ j]

α (t) (5.21)

which is of the form (5.13). A similar approach has been used by Kemp [26] for the
operator −y′′ +qy on (−∞,∞) with q satisfying

∫ ∞
−∞ (1+ x2)1/2|q(x)|dx < ∞. In this

case there is an essential spectrum [0,∞). In Theorem 3.2 and Corollary 4.1 of Kemp an
expansion of the Green’s function is obtained which in addition to containing terms like
(5.21) contains a term Hα ,0 which integrates over the essential spectrum. The explicit
representation of Hα is an improvement of the results of Kemp for the discrete part of
the resolvent. Our approach here is more elementary in that it consists of multiplying
two series and collecting terms. This yields a more direct calculation of the coefficients
ai j in (5.21). However, with these strong conditions on q , Kemp is able to obtain a
spectral resolution of the operator. We expect that these results for the discrete spectrum
hold in much greater generality, because most computations are formal and no specific
properties of the coefficients are used.

While it is an open problem which operators lead to higher order poles, potentials
with analytic or rational coefficients will not have higher order poles, the proof of this
may be quite complicated as the next example shows.

EXAMPLE 5.1. The complex square well. Suppose in (1.1) that w = p = 1, and

q(x) =

{
c, for 0 � x � 1

0, for 1 � x < ∞.

where c �= 0 is a complex number. Assume z0 is an eigenvalue of Tα of algebraic
multiplicity να(z0) > 1. Then with β = α + π/2, we have mβ (z0) = ṁβ (z0) = 0.

Since −y′′ = zy has no L 2[0,∞) solutions if z ∈ [0,∞), we can assume z0 = s2 with
Im s > 0. Then

ψβ (x,z0) = θβ (x,z0) = −φα(x,z0) =

{
deisx, x � 1,

aeis1x +be−is1x, 0 � x < 1,

where s2
1 = s2 − c. Since (Tα − z0)(φα ) = (Tα − z0)2(φ̇α ) = 0, we have using ψ̇β =

−φ̇α , continuity of ψβ , ψ ′
β , ψ̇β , ψ̇ ′

β at x = 1, z = z0, and ds/dz = 1/2s, ds1/dz =
1/2s1, that

deis = aeis1 +be−is1 , isdeis = is1(aeis1 −be−is1),
di
2s

eis =
i

2s1
(aeis1 −be−is1),

di
2s

eis(1+ is) =
i

2s1
(aeis1 −be−is1 + is1(aeis1 +be−is1).

Equating the first two equations gives

s1

s
=

aeis1 +be−is1

aeis1 −be−is1
, (5.22)
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and equating the second two gives

1
1+ is

=
aeis1 −be−is1

aeis1 −be−is1 + is1(aeis1 +be−is1)
. (5.23)

Substituting (5.22) into (5.23) and simplifying yields

1
1+ is

=
s

s+ is2− ic

which implies c = 0 a contradiction. Thus all eigenvalues have algebraic multiplicity
one.

The next example from [14, p. 2314] gives an operator with a higher order pole.
So far no explicit examples for half line operators with higher order poles are known
though the results of Lyantse [29]and Pavlov [33] state abstract results in this direction.

EXAMPLE 5.2. Here we show the operator L[y] = −y′′ on [0,1] with boundary
conditions y(0) = k1y′(0), y(1) = k2y′(1) may have a resolvent with a higher order
pole. For this let the general solution of L[y] = s2y, z = s2 �= 0 be given by

y(x) = c1 cos(sx)+ c2 sin(sx), y′(x) = −c1ssin(sx)+ c2scos(sx).

In order for z to be an eigenvalue, there must be a nontrivial solution satisfying the
boundary conditions. This gives

c1 = sk1c2, c1 coss+ c2 sins = k2s(−c1 sins+ c2 coss). (5.24)

For (5.24) to have a nontrivial solution the determinant Δ(s) of the coefficients must be
zero and this gives

Δ(s) = sins− k2scoss+ k1s(coss+ k2ssins)

= sins(1+ds2)− cscoss = 0,
(5.25)

where c = k2− k1, d = k1k2. Since the boundary conditions are separated, the geomet-
ric multiplicity of an eigenvalue is one. Now Δ(s) occurs in the denominator in the
construction of the Green’s function, Hence the resolvent will have a pole of order at
least two if also Δ′(s) = 0 when Δ(s) = 0. A short computation yields that

Δ′(s) = (coss)(1+ds2− c)+ (sins)(2sd + cs). (5.26)

If coss �= 0, then the eigenvalue equation is

Δ(s) = 0 ⇔ tans =
s(k2 − k1)
1+ k2k1s2 =

cs
1+ds2

which is also given in [14, p. 2314]. It is noted in [14] that only finitely many eigenval-
ues are nonsimple. The asymptotic form of the eigenvalues is also derived.
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From (5.25) and (5.26) a pole in the resolvent of order at least two if

0 = (1+ds2)sin s− cscoss

0 = (1+ds2− c)coss+(2sd + cs)sins.
(5.27)

Note that the equations (5.27) are linear in c, d. Thus we can assume a value s for
our eigenvalue z = s2 , compute c, d from (5.27), and then solve for k1, k2 to produce
an example of a pole of order two in the resolvent. For example with s = π/2, the
equations in (5.27) become

0 = 1+ds2, 0 = s(2d + c),

whose solution is d = −4/π2, c = 8/π2, and k2 satisfies the equation k2
2 − (8/π2)k2 +

4/π2 = 0. Both k1, k2 are complex.

Examples of a boundary value problem on a compact interval [a,b] with eigenval-
ues of finite algebraic multiplicity � 3 have been given by Chen and Lin [12].

6. The hypothesis H

We first prove on a compact interval with separated boundary conditions there are
no eigenvalues of infinite algebraic multiplicity. We write the boundary conditions in
the form

(BC) : α1y(a)+β1(py′)(a)= 0, α2y(b)+β2(py′)(b)= 0, |α1|+ |β1| �= 0, |α2|+ |β2| �= 0.

PROPOSITION 6.1. Let p, q, and w be continuous on [a,b] with w > 0. Suppose
p = p1 + ip2 and one of p1, p2 does not vanish on [a,b] . Define the operator A on
[a,b] by

A[y] = L[y] =
1
w

[−(py′)′ +qy],

where the domain of A is given by

D(A) = {y∈L 2
w [a,b] : y, py′ ∈ AC[a,b],A[y]∈L 2

w [a,b], y satisfies the conditions BC}
Then A has no eigenvalues of infinite algebraic multiplicity.

Proof. First we note that if z0 is an eigenvalue of A with eigenfunction y0 , then a
solution of A[y] = z0y independent of y0 will not satisfy either of the boundary condi-
tions BC as the solution set is one dimensional. Thus z0 will be in the resolvent set of
an operator with the same first boundary condition of A , but with a different condition
at b . Such an operator will have a compact resolvent and hence empty essential spec-
trum. This implies A also would have empty essential spectrum as both operators are
finite dimensional extensions of the minimal operator. Thus if z0 is an eigenvalue of
infinite algebraic multiplicity, then by Locker [28, p. 57], z is an eigenvalue of infinite
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algebraic multiplicity for all z ∈ C. We now prove this leads to a contradiction as the
conditions above bound the eigenvalues to a half plane.

For definiteness, suppose p1 is not zero on [a,b] and p1 > 0. The other cases are
similar. From A[y0] = z0y0 we multiply by y0 and integrate to yield

− (py′0)y0
∣∣b
a +

∫ b

a
[p|y′0|2 +q|y0|2]dx = z0

∫ b

a
w|y0|2 dx. (6.1)

By the boundary conditions BC ,

−(py′0)y0
∣∣b
a = −γ1|y(b)|2 + γ2|y(a)|2

where γi = −αi/βi if βi �= 0 and γi = 0 if βi = 0.

Taking
∫ b
a |y0|2 dx = 1, equation (6.1) yields by taking the real part,

( Re z0)wmax � − Re γ1|y0(b)|2 + Re γ2|y0(a)|2 +
∫ b

a
p1,min|y′|2 dx+q1,min(b−a),

(6.2)
where the subscripts max, min refer to the maximum, minimum values on [a,b].

Choose c so that |y0(x)| � |y0(c)| for all x ∈ [a,b]. Then y0(x)2 − y0(c)2 =∫ x
c 2y0y′0 ds implies by the Cauchy Schwarz inequality,

|y0(x)|2 � |y0(c)|2 +2
(∫ b

a
|y′0|2 ds

)1/2 � 1
b−a

+2
(∫ b

a
|y′0|2 ds

)1/2 (6.3)

since |y0(c)|2(b−a) �
∫ b
a |y0|2 dx = 1.

From (6.2) and (6.3) we have an inequality of the form

( Re z0) � B1 +B2
(∫ b

a
|y′0|2 dx

)1/2 +B3
(∫ b

a
|y′0|2 dx

)
(6.4)

with B3 > 0. The right hand side of (6.4) is bounded below as it is a quadratic in the
quantity (

∫ b
a |y′0|2 dx)1/2 which completes the proof. �

Suppose under the conditions of Theorem 2.2 that z0 is an eigenvalue of infinite
algebraic multiplicity of Tα . By Locker [28, p. 57] then z is an eigenvalue of infinite
algebraic multiplicity of Tα for all z ∈ C since σess(Tα) = /0 by Theorem 3.2. Suppose
[a,b0] is an interval on which Re p or Im p does not vanish and that for some b∈ (a,b0]
there is an eigenvalue of infinite algebraic multiplicity of some operator Tβ on [b,∞).
Since there is only one linearly independent L 2

w [a,∞) solution of L[y] = zy for all
z ∈ C, then we have on the interval [a,b] and separated boundary conditions α and β
an eigenvalue of infinite algebraic multiplicity contrary to the above Proposition. We
have proved

THEOREM 6.1. Under the conditions of Theorem 2.2, the set of a’s for which
some boundary condition yields an eigenvalue of infinite algebraic multiplicity is a set
of isolated points.
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Further, if the condition that Re p or Im p does not vanish on [a,∞) , then Propo-
sition 6.1 proves that there is at most one point a for which an eigenvalue of infinite
algebraic multiplicity exists.

We note also under the conditions of Theorem 2.2 that if z0 is an eigenvalue of
infinite algebraic multiplicity of Tα , then for β �= α, z ∈ ρ(Tβ ) for all z ∈ C since
there is only one linearly independent L 2

w [a,∞) solution of L[y] = zy for all z ∈ C.

7. The operator (1.1) on (−∞,∞)

We consider now the singular second order operator

L[y] =
1
w

[
(−py′)′ +qy

]
, −∞ < x < ∞, (7.1)

where again w is real and p = p1 + ip2 �= 0, q = q1 + iq2 �= 0 are complex valued. To
apply Theorem 2.2 at −∞ , we make the change of variable v(x) = y(−x). Then

L[y] = zy ⇔ L̂[v] =
1
ŵ

[
(− p̂v′)′ + q̂v

]
, −∞ < x < ∞,

where p̂(x) = p(−x), q̂(x) = q(−x), ŵ(x) = w(−x). We say Theorem 2.2 holds for L
at −∞ if it holds for L̂ at ∞. For example, −y′′ + xy = 0 becomes −v′′ − xv = 0, and
we see that Theorem 2.2 does not apply although Theorem 2.1 does.

The maximal operator T and an unclosed minimal operator T ′
0 are now defined

by the action of L on the domains

D(T ) = {y ∈ L 2
w(−∞,∞) : y, py′ ∈ ACloc and L[y] ∈ L 2

w(−∞,∞)}
and

D(T ′
0) = {y ∈ D(T ) : y has compact support in (−∞,∞)}.

Again T ′
0 is closeable, and the closure will be indicated by T0 . As before, let T+

denote the adjoint maximal operator.

THEOREM 7.1. Assume at each endpoint ±∞ hypothesis H holds and that the
conditions of Theorem 2.2 hold. Then σess(T ) = /0, T0 = T, the eigenvalues of T are
isolated, and z not an eigenvalue of T implies z ∈ ρ(T ).

Proof. Under the conditions of Theorem 2.2 the minimal half line operators S−, S+
on (−∞,0], [0,∞), respectively, have empty essential spectrum by Theorem 3.2. By
the decomposition principle, see Glazman [18, p. 10], σess(T ) = /0 . This gives that
T − z, z ∈ C, is a Fredholm operators so T has isolated eigenvalues by Locker [28, p.
56].

To show T0 = T, note first that y∈D(S−) or in D(S+) satisfies y(0) = (py′)(0) =
0. Further the each of the domains of T and T0 is equal to the domain of S+⊕S− plus
the same two dimensional subspace of D(T ). Hence T0 = T. �
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Following [8], we can define a resolvent for T . Hence by the above Theorem 7.1,
T has isolated eigenvalues. Define for all z ∈ C, the basis of solutions of L[y] = zy by
the initial conditions [

θ φ
pθ ′ pφ ′

]
(0,z) =

[
1 0
0 1

]
. (7.2)

For z∈ρ(T ), define the functions m±(z) and functions ψ± as follows: let ψ+(·,z)
= θ (·,z)+m+(z)φ(·,z) be the normalized L 2

w [0,∞) solution of L[y] = z and ψ−(·,z)=
θ (·,z)+m−(z)φ(·,z) be the normalized L 2

w(−∞,0] solution of L[y] = zy . As proved
in section 5, the functions m± are meromorphic functions under the hypotheses of The-
orem 7.1.

As in the symmetric case, we define a Green’s function H(x,y,z) , for z ∈ ρ(T ),
by ( below it is noted that the meromorphic function m+(z)−m−(z) is analytic on
z ∈ ρ(T )):

H(x,y,z) =

{
−ψ+(x,z)ψ−(y,z)

m+(z)−m−(z) , y � x,

−ψ−(x,z)ψ+(y,z)
m+(z)−m−(z) , x < y.

(7.3)

Define (R(z) f )(x) on L 2
w (−∞,∞) by, wirh M = M(z) := [m+(z)−m−(z)]−1,

(R(z) f )(x) =
∫ ∞

−∞
H(x,y,z)w(y) f (y)dy

=
∫ x

−∞
−Mψ+(x,z)ψ−(y,z)w(y) f (y)dy

−
∫ ∞

x
Mψ−(x,z)ψ+(y,z)w(y) f (y)dy. (7.4)

It follows as in the proof of Theorem 15 of [8] that R(z) = (T − z)−1 is the resol-
vent of T . This gives

THEOREM 7.2. Assume at each endpoint ±∞ hypothesis H holds and that the
conditions of Theorem 2.2 hold. Then the resolvent operator for T is given by (7.4)
where H is given by (7.3).

The proof of Theorem 16 in [8] also applies to give the following result.

THEOREM 7.3. Assume at each endpoint ±∞ hypothesis H holds and that the
conditions of Theorem 2.2 hold. Then the eigenvalues of T are given by:

Spectrum T = S1∪S2,

where
S1 = {z : m+,m− are analytic at z and m−(z) = m+(z)},

and
S2 = {z : m+,m− each have a pole at z}.

We also have the analog of Theorem 3.4.
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THEOREM 7.4. Assume at each endpoint ±∞ hypothesis H holds and that the
conditions of Theorem 2.2 hold. Then the resolvent operator for T is compact. Further
the operator T has a Schatten class Ct resolvent, t � 2, if

∫ ∞

−∞
w(x)2|p(x)|−1/2|q(x)|−3/2 dx < ∞ (7.5)

in which case for some constant Ct , the Schatten norm of the resolvent R(z) of T is
given by some constant Ct ,

‖R(z)‖t
t � Ct

∫ ∞

−∞
w(x)t |p(x)|−1/2|q(x)|−t+1/2 dx. (7.6)

Proof. The operator R(z) of (7.4) can be written as the sum of two operators
R1(z), R2(z) where R1(z), respectively, R2(z), acts on functions f with support in
(−∞,0] , respectively, [0,∞). For R2(z), we have

(R2(z) f )(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ ∞
0 −Mψ+(x,z)ψ−(y,z)w(y) f (y)dy = C( f )ψ+(x,z), x < 0,∫ x

0
−Mψ+(x,z)ψ−(y,z)w(y) f (y)dy

−
∫ ∞

x
Mψ−(x,z)ψ+(y,z)w(y) f (y)dy, x � 0,

(7.7)
where C( f ) = −∫ ∞

0 Mψ−(y,z)w(y) f (y)dy. Since

(R2(z)( f )(0) = −Mψ−(0,z)
∫ ∞

0
ψ+(y,z)w(y) f (y)dy,

(R2(z) f )′(0) = −Mψ ′
−(0,z)

∫ ∞

0
ψ+(y,z)w(y) f (y)dy,

we see that the x � 0 part of R2(z) is the resolvent for an extension of the minimal
operator for the interval [0,∞) with boundary condition

y(0)ψ ′
−(0,z)− y′(0)ψ−(0,z) = 0,

and is hence a compact operator by Corollary 3.1. The operator C( f ) is a bounded
rank one operator and is thus compact. It follows then that R2(z) is a compact operator.
Similarly R1(z) is compact making R(z) compact.

It also follows that R1 is Hilbert-Schmidt by Corollary 3.1 since by the condition
(7.5), ∫ ∞

0
w(x)2|p(x)|−1/2|q(x)|−3/2 dx < ∞.

Similarly R2 is Hilbert-Schmidt which gives Rz Hilbert-Schmidt since it is the sum of
two Hilbert-Schmidt operators. The proof of the Schatten class Ct part follows from
similar considerations. �
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EXAMPLE 7.1. Consider the example T [y] = −y′′+axy, Im a �= 0,−∞ < x < ∞.
For a �= 0 real the spectrum of T is (−∞,∞) . This follows from the fact that for
a real T is selfadjoint and there are no L 2[0,∞), (a < 0) or L 2(−∞,0], (a > 0),
solutions of T [y] = zy, z real, as follows from the asymptotic solutions. Theorem 7.1
gives that T = T0 and σess(T ) = /0. Thus σ(T ) = σp(T ). Herbst [22] has shown that
the Schrodinger operator in n -dimensions with potential ax1 has an empty spectrum.
With | arg a− π/2| < π/3 this can be seen directly. Transformation of the equation
T [y] = zy with t = a−2/3(ax− z) leads to

d2y
dt2

− ty = 0,

the Airy equation. The solutions are the Airy functions Ai(t) and Bi(t) . These have
the asymptotics for large t,

Ai(t) ≈ 1
2
√

π
t−1/4 exp

(
− 2

3
t3/2
)
, Bi(t) ≈ 1√

π
t−1/4 exp

(2
3
t3/2
)
.

For | arg a− π/2| < π/2 the Airy function Ai is square integrable on [0,∞) , while
Bi is square integrable on (−∞,0]. At x = 0 ⇔ t = −a−2/3z these functions don’t
match [1, p. 446]. The nonmatching condition results from the fact that the wronskian
W (Ai,Bi) �= 0 so that Ai′/Ai �= Bi′/Bi. Thus the spectrum is empty.

Note that Theorem 2.2 applies to the Airy operator. Let T+, T− be the J-selfadjoint
extensions of the corresponding minimal half line operators S+, S− , respectively, de-
fined by the boundary condition y(0) = 0. By Theorem 3.4 T+ and T− have Hilbert-
Schmidt resolvents and by Theorem 7.4 T has a Hilbert-Schmidt resolvent. Earlier
Herbst [22, Theorem II.3] has shown that T has a compact resolvent. By Theorem
12 of [8] each of T+, T− has a nonempty point spectrum. Let S = T+ ⊕ T− . Then S
has nonempty point spectrum. The resolvents of S and T differ by a rank one opera-
tor, i.e., the finite rank perturbation destroys all eigenvalues. This cannot happen with
selfadjoint or normal operators where a rank l spectral projection P(Δ) will keep a
dimension between l − k and l + k under a rank k perturbation. For Sturm-Liouville
operators this is known as the interlacing property.

The example above is in contrast to the operator L[y] = −y′′ + ix3y on (−∞,∞).
This operator has real spectrum which consists of positive eigenvalues tending to infin-
ity. See the discussion in Giordanelli and Graf [19] and references.

For L[y] = −y′′ + i|x|ny, n > 2/3, on (−∞,∞), the theory of [8] shows that L is
Hilbert-Schmidt and the eigenfunctions and associated eigenfunctions are complete in
L 2(−∞,∞). Further the Dirichlet condition holds so that if z is an eigenvalue with
eigenfunction y , then

∫ ∞

−∞
[|y′|2 + i|x|n|y|2]dx = z

∫ ∞

−∞
|y|2 dx.

This equation shows that both the real and imaginary parts of z are positive.
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8. The complex Wigner-von Neumann potential

In this section we examine for two cases the problem of eigenvalues embedded in
the essential spectrum. The classic example being given by von Neumann and Wigner
in 1929 [37]. Here we consider the operator for two choices of the potential q ,

L[y] = −y′′ −q(t)y, 0 � t < ∞, q1(t) = g(t)sin(λ t), q2(t) = g(t)eiλ t , g /∈ L [a,∞),
(8.1)

where λ is real and the complex valued function g also satisfies

g(t), tg′(t), t2g′′(t) = O(t−α), α > 1/2, Re g(t), Im g(t)→ 0 monotonically as t →∞.
(8.2)

Thus Re g(t), Im g(t) are eventually of one sign. In the case q ∈ L [a,∞) then it is
well known there are no positive eigenvalues. Since g(t) → 0 as t → ∞, the maximal
operator T for (8.1) is a relatively compact perturbation of the maximal operator for
L[y] = −y′′ ; hence the essential spectrum of T is [0,∞), see Goldberg [20, p. 166].
Since the equation −y′′ = zy, z /∈ [0,∞), satisfies an exponential dichotomy and g(t)→
0 as t → ∞, then so does −y′′ + q(t)y = zy, z /∈ [0,∞). (Corollary 3.1 of [23]) Thus
for z /∈ [0,∞), nullity T − z = nullity T ∗ − z = 1, and all C -selfadjoint operators Tα ,
which are restrictions of T ,are given by imposing a boundary condition of the form
(1.7). Further for z /∈ [0,∞), z ∈ ρ(Tα) or z is an eigenvalue of Tα .

If z ∈ (0,∞), is an eigenvalue, scaling allows us to assume z = 1 so that the
eigenvalue equation becomes

Y ′ =
(

0 1
−1−q 0

)
Y, Y =

(
y
y′

)
.

Following Harris and Lutz [21], this equation is transformed by

T1 =
1
2

(−i 1
1 −i

)
, T1Z1 = Y

into

Z′
1 =

[(
i 0
0 −i

)
+

q
2

(
i −1

−1 −i

)]
Z1. (8.3)

Splitting off the diagonal terms by T2Z2 = Z1, T2 = diag (eit , e−it) gives

Z′
2 =

q
2

(
i −e−2it

−e2it −i

)
Z2 =: AZ2. (8.4)

The so called (1 + Q)-transformation has the form T = (1 + Q) and Z2 = (1 +
Q)Z3 leads to

Z′
3 = (1+Q)−1[−Q′ +A(1+Q)]Z3. (8.5)

For this one needs that Q is small, so that (1+Q)−1 = 1−Q+Q2 + . . . . The (1+Q)
transformation is use to eliminate unwanted terms of A by counterterms of Q′. Using
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the identity (1+Q)−1 = 1−Q+(1+Q)−1Q2 , we may collect terms in the form

(1+Q)−1[−Q′ +A(1+Q)]

= −Q′ +A+QQ′+AQ−QA−QAQ+(1+Q)−1Q2[−Q′ +A(1+Q)], (8.6)

which is used for grouping of terms of different order.
The non-resonant case λ �= 2 is particularly easy. Here Q is chosen so that Q′

compensates the off-diagonal terms of A . Thus

Q =
(

0 q12

q21 0

)
, q′12 = A12, q′21 = A21

with q12(t) =
∫ ∞
t −A12(s)ds, q21(t) =

∫ ∞
t −A21(s)ds. Then q12(t) = O(t−α), q21(t) =

O(t−α), so that (8.5) reduces to

Z′
3 =

[
q
2

(
i 0
0 −i

)
+R

]
Z3, R ∈ L [a,∞). (8.7)

because QA, AQ are of order t−2α , and all expressions in (8.7) that involve more than
two factors like Q2A,QAQ, . . . are of order t−3α . The solutions of (8.7) are given by

Z3(t) =
[(

1 0
0 1

)
+o(1)

]
diag (exp(ih(t)),exp(−ih(t))), h(t) =

∫ t

a

1
2
q(s)ds. (8.8)

Since q is conditinally integrable, the full solution of Y (t) = T1T2(1 + Q)Z3(t) can,
after some simplification, be written

y1(t) = cos(t +h(t))+o(1), y2(t) = sin(t +h(t))+o(1).

In the resonant case λ = 2, q1 and q2 require different approaches. The classical
case arises for q1. In this case, (8.4) is transformed by

Z̃3 = T3Z2, T3 =
(

1 −i
−i 1

)
,

to

Z̃′
3 =

q1

2

( −sin2t −1− cos2t
1− cos2t sin2t

)
. (8.9)

Since the terms q1(t)(1± cos2t) are conditionally integrable, these expressions can be
removed by a (1+Q)-transformation as above. The fundamental matrix of (8.9) then
has the form

Z̃3(t) = [1+o(1)]diag(eG(t),e−G(t)), G(t) =
1
2

∫ t

a
q1(s)sin2sds.

Thus the solutions in this case are given by

y1(t) = ρ(t)(1+o(1))cost, y2(t) = ρ(t)(1+o(1))sint, (8.10)
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where ρ(t) = exp( 1
2

∫ t
a q1(s)sin2sds). For q1(t) = ct−1 sin(λ t), there are solutions of

the form
y1(t) = tc/4(cost +o(1)), y2(t) = t−c/4(sin t +o(1)).

For Re |c| > 2, one of these functions is square integrable and yields the eigenvalue
z = 1 for a suitable boundary condition. Quantum mechanics explains these bound
states as arising from the resonance of the eigenfunction with the potential.

For q2(t) = g(t)exp(2it) a different approach is needed though again all condi-
tionally integrable terms can and will be eliminated . First remove the A21 element by
Q with only the q21 �= 0. Thus (8.5) becomes with q11 = q12 = q22 = 0,

Z′
3 = [−Q′ +A+AQ−QA−QAQ]Z3.

Integration by parts shows that (q/2)exp(2it) is conditionally integrable so we choose
q21(t) = −∫ ∞

t (q(s)/2)exp(2is)ds so as to make q′21 +A21 = 0. Note also integration
by parts yields |q21(t)| = O(t−α) by (8.2). Then

−Q′ +A =
q
2

(
i 0
0 −i

)
− g

2

(
0 1
0 0

)

and

R := AQ−QA−QAQ =
q
2

( −q21e−2it 0
−2iq21 +q2

21e
−2it q21e−2it

)

The elements of R are of order O(t−2α) . We now perform a second 1+ Q̃ transforma-
tion of the same type with q̃21 +R21 = 0. This results in the system

Z′
3 =

[
q
2

(
i 0
0 −i

)
− g

2

(
0 1
0 0

)
+ R̃

]
Z3, (8.11)

where now all elements of R̃ are of order O(t−3α) .
Set p(t)= exp((−i/2)

∫ ∞
t q(s)ds) and make the transformation Z3 = diag (p,1/p)Z4

to obtain

Z′
4 =

[(
0 μ
0 0

)
+
(

R̃11 0
R̃21p2 R̃22

)]
Z4 (8.12)

with μ(t) = (−g(t)/2)exp(i
∫ ∞
t q(s)ds. Define σ(t) =

∫ t
a μ(s)ds. Theorem 1.10.1 of

Eastham [15] applies if(
1 0
0 σ

)(
R̃11 0

R̃21p2 R̃22

)(
1 0
0 σ−1

)
=
(

R̃11 0
σ R̃21p2 R̃22

)
∈ L [a,∞), (8.13)

and |σ(x)/σ(t)| � K > 0 for a � t � x < ∞. Since the elements of R̃ are of order
O(t−3α) , then R̃11, R̃22 ∈ L [a,∞). Again integration by parts shows that

∫ ∞
t q(s)ds =

O(t−α). Thus p(t) = 1+O(t−α) and

μ(t) = −g(t)
2

(1+O(t−α)) = −g(t)
2

+O(t−2α).
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This gives |σ(t)|= O(t1−α) , and since R̃21 = O(t−3α) , we see that σ R̃21p2 ∈L [a,∞).
Further since the real and complex parts of g are monotone, g /∈ L [a,∞) , and σ(t) =
−∫ t

a g(s)/2ds+ a bounded function , it follows that for some K , |σ(x)/σ(t)|� K > 0
for a � t � x < ∞.

This yields by Theorem 1.10.1 of Eastham [15] a solution of (8.12) with the
asymptotic form

Z4 =
(

σ 1
1 σ−1

)
(1+o(1)). (8.14)

This gives a fundamental matrix Y for L[y] = y with the asymptotic form

Y = T1T2

(
pσ p
1/p 1/pσ

)
(1+o(1)) = T1T2

(
σ 1
1 1/σ

)
(1+o(1)).

For there to be an L 2[a.∞) solution of L[y] = y , there must be a linear combination of
σ , 1 or of 1/σ , 1 which is in L 2[a.∞) . This does not happen since g /∈L [a,∞) . Thus
for no Tα does z = 1 appear as an embedded eigenvalue as in contrast to the classical
case.
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