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Abstract. This work is devoted to a functional description of the weakly closed algebra generated
by a Pontryagin Space unitary operator under the condition that this operator contains a part like
the two-side shift operator. The latter means that the inverse operator does not belong to the
algebra.

Introduction

This paper is related with the theme treated initially in the papers [15], [16] and
is a direct continuation of the paper [19]. For the terminology and the history of the
subject, see the monograph [1] (or [2]), more specific concepts and facts can be found
in [19]. The setting of the main problem is as follows. Consider a unitary operator U
acting in a Pontryagin space, calculate all operator values of polynomials, where the
value of the independent variable is taken to be equal to U . Next, close this operator
algebra in weak topology denoting the new algebra by AlgU . Our aim is to describe
a structure of AlgU . Depending on some properties of U , the algebra AlgU can (or
not) contain the operator U−1 . The case U−1 ∈ AlgU was studied in [19], so in the
present paper the case U−1 �∈ AlgU will be analyzed.

Section 1 provides an introduction to known notions and results used in the course
of the paper. Section 2 presents a slightly modified version of F. and M. Riesz Lemma
on peak sets for the disc algebra, in Section 3 some function spaces related with func-
tional calculus for π -unitary operators are introduced. The role of these spaces is
sketched by Proposition 3.1. Section 4 gives some preliminary results concerning the
functional calculus for any π -unitary operator with the unbounded spectral function.
Section 5 deals with a behavior on some unbounded functionals. Section 6 is de-
voted to the case of a π -unitary operator U with unbounded spectral function such
that U−1 �∈ AlgU . The main result is given by Theorem 6.2.
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1. Preliminaries

In what follows the term ”Pontryagin space” means a separable Hilbert space H
with an ordinary scalar product (·, ·) and a Hermitian sesquilinear indefinite form (inner
product) [·, ·] : (∀x,y ∈ H) [x,y] = (Jx,y) , J = J−1 , dimKer(I + J) = κ < ∞ . Operator
J is called the fundamental symmetry (of [·, ·] with respect to (·, ·)). As usual the
symbol [⊥] means the π -orthogonality, i.e. the orthogonality with respect to [·, ·] and
the symbol ⊥ means the orthogonality with respect to the Hilbert scalar product. In
what follows U means a π -unitary operator, i.e., in particular, UH = H . Next, the
symbols C , D and T mean complex plane, open unit disk and its border respectively.

Let us present H in the form

H = HT[+]HT′ , UHT ⊂ HT, UHT′ ⊂ HT′ , (1.1)

where σ(U |HT
)⊂T , σ(U |H

T′ )⊂ C/T . The subspace HT′ has a finite dimension. Let
Eλ be the π -orthogonal spectral function (spectral resolution) generated by U |HT

and

let {λ j} be the set of its critical points. Denote H̃ : = CLin{E(Δ)H} , where Δ runs
the set of all closed arcs Δ⊂ T , such that Δ∩{λ j} = /0 , so

the subspace E(Δ)H is positive. (1.2)

The subspace H̃ is non-negative and generally speaking has a non-trivial isotropic part.
We shall suppose

H̃∩ H̃[⊥] �= {0}. (1.3)

Note that Condition (1.3) is fulfilled if and only if the spectral function Eλ is un-
bounded. Let G1 = H̃∩ H̃[⊥] , G0 = JG1 , G2 = H̃∩G⊥

1 , G3 = (H̃⊕G0)[⊥] . All
considerations would be only simpler if G3 is trivial so we will suppose G3 �= {0} .
Without loss of generality one can suppose that G3 = (H̃⊕G0)⊥ and that the Hilbert
scalar product on G2 coincides with [·, ·] . Thus,

HT = G0 ⊕G1⊕G2⊕G3

J|HT
=

⎛⎜⎜⎝
0 V−1 0 0
V 0 0 0
0 0 I2 0
0 0 0 J3

⎞⎟⎟⎠ , U |HT
=

⎛⎜⎜⎝
U00 0 0 0
U10 U11 U12 U13

U20 0 U22 0
U30 0 0 U33

⎞⎟⎟⎠ .

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(1.4)

In this representation V is an isometry, I2 is the identity in G2 , J3 is a fundamen-
tal symmetry in G3 and the elements of the matrix representation for U |HT

have the
following relations

(U00)−1 = V−1(U11)∗V,

U10 = − 1
2U11V ((U20)∗U20 +(U30)∗J3U30 + iA) ,

U20 = −U22(U12)∗VU00,

U30 = −U33J3(U13)∗VU00,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(1.5)
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where A is a self-adjoin operator. Moreover, the operators U22 and U33 are, respecti-
vely, unitary and J3 -unitary in the corresponding subspaces. Let us put

Ũ : =
(

U11 U12

0 U22

)
, Ũ↑ : =

(
U00 0
U20 U22

)
. (1.6)

Operators Ũ and Ũ↑ act in the spaces H̃ = G1⊕G2 and H̃↑ : = G0⊕G2 respectively.
Since U22 is a unitary operator, its model is eiT , i.e. the multiplication operator by eit

in a suitable space L2
�σ (E) , where E is a Hilbert space (maybe finite-dimensional), a

vector-valued measure is defined as usually in the theory of multiplicity of self-adjoint
operators (see [10], §41; [4], Chapter 7; [5], Chapter 4.4; [11], Chapter VII). So, assume
that σ(t) is a non-decreasing function defined on the segment [0,2π ] , continuous (at
least) from the left in all points of the segment and having an infinite number of growth
points. The mentioned function generates on the segment the scalar Lebesgue-Stieltjes
measure μσ . Let t �→ Et , t ∈ [0,2π ] be a map such that

• Et ⊂ E ,

• dim(Et) is a μσ -measurable (but not necessarily finite a.e.) function,

• if dim(Et1) = dim(Et2) , then Et1 = Et2 ,

• if dim(Et1) < dim(Et2) , then Et1 ⊂ Et2 .

Denote by M�σ (E ) the space of the vector-valued functions f (t) : t �→ Et μσ -measu-
rable in the weak sense, defined a.e. and finite a.e. on the segment [0,2π ] . Accordingly,
the symbol L2

�σ (E ) means here a Hilbert space of functions f (t) ∈ M�σ (E ) , such that∫ 2π
0 ‖ f (t)‖2

E dσ(t) < ∞ , ( f (t),g(t))L2
�σ

= 1
2π
∫ 2π
0 ( f (t),g(t))E dσ(t) . Due to these con-

ditions there is some vector d ∈ E such that

d(t) ≡ d ∈ L2
�σ (E ) , σ(t) =

∫ t

0
‖d(t)‖2

E dσ(t) . (1.7)

Let {g̃ j(t)}k
j=1 ⊂ M�σ (E) be a finite set of functions with the following properties

a) the system {g̃ j(t)}k
j=1 is linear independent modulo L2

�σ (E);

b) for all j = 1,2, . . . ,k the function eit g̃ j(t) has the representation

eit g̃ j(t) = η j(t)+
k

∑
l=1

c jl g̃l(t) , where η j(t) ∈ L2
�σ (E);

c) eigenvalues of the matrix C =
(
c jl
)
k×k have unit module.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(1.8)

Denote by L̃2
�σ (E) the Hilbert functional space generated by the linear span of L2

�σ (E)
and {g̃ j(t)}k

j=1 , where functions from the set {g̃ j(t)}k
j=1 are supposed by definition to

be normalized, pairwise orthogonal and orthogonal to L2
�σ (E) .
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Conditions (1.8) allow us to define on L̃2
�σ (E) the operator of multiplication by eit :

f (t) �→ eit f (t) . This operator will be denote by eiT . Conditions (1.8) also allow us to
define on L̃2

�σ (E) the operator of multiplication by e−it (denoted by e−iT ). It is easy to
check that e−iT is inverse to eiT .

THEOREM 1.1. ([19]) For the operator U the same as above there are a Hilbert
space L2

�σ (E) , a function set {g̃ j(t)}k
j=1 satisfying Conditions (1.8) and an isometric

operator W : L̃2
�σ (E) �→ H̃ , WL2

�σ (E) = G2 , such that

Ũ = W (e−iT )∗W−1, Ũ↑ = W ↑eiT (W ↑)−1, (1.9)

where W ↑ = (I2⊕V−1)W , I2 is the identical operator on G2 , V is an isometric oper-
ator mapping G0 onto G1 : Vx = Jx for every x ∈ G0 , σ(t) is continuous for every t
such that eit ∈ σ(U11)∪σ(U33) . L2

�σ (E) and {g̃ j(t)}k
j=1 can be chosen by a such way

that for all j = 1,2, . . . ,k and at a.a. t ∈ [0,2π ] the condition g̃ j(t) ∈ E1 holds, where
E1 is some subspace of E with the dimension no greater than k.

DEFINITION 1.1. The space L̃2
�σ (E) in Theorem 1.1 is called a basic model space

for the operator U and W is called an operator of similarity (generated by L̃2
�σ (E)).

Let us note that a basic model space and a corresponding operator of similarity are not
uniquely determined (see [18], Subsection 6.2 for details).

Let us introduce some notions and notations from [17].

DEFINITION 1.2. Every operator B∈AlgU can be associated with a scalar func-
tion φB(t) (the portrait of B) such that

BE(Δ) =
∫
Δ
φB(t)dEt ,

where Δ runs over the set of all closed subintervals of [0,2π ] disjoint from Λ . If φB(t)
is the portrait of B then B is called an original for φB(t) (the same function can have
different originals).

An alternative approach that establishes the connection between the operator B
and its portrait can be presented (see (1.9)) as follows:

P↑B|
H̃↑ =W ↑ΦB(W ↑)−1 (1.10)

where P↑ is the orthogonal projection onto H̃↑ and ΦB is the operator of multiplication
by φB(t) .
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2. On peak sets for holomorphic functions.

Before proceeding further we need a technical result.

PROPOSITION 2.1. For an arbitrary finite set of pairwise different points {ν j}m
1 ⊂

(0,2π ] there is a system of 2m real functions {η±
j (t)}m

1 given on [0,2π ] , such that

a) for all j = 1,2, . . . ,m the functions η+
j (t) and η−

j (t) are contin-

uously differentiable and η±
j (0) = η±

j (2π );

b) the inequality η±
j (t) � 0 holds for all j = 1,2, . . . ,m and t ∈

[0,2π ] ;

c) for every j = 1,2, . . . ,m there is a neigborhood δ (ν j) of ν j ,
such that the equality η±

q (t) = 0 holds for all t ∈ δ (ν j) and
q = 1,2, . . . ,m;

d) for all j,q = 1,2, . . . ,m the equalities 1
2π
∫ 2π
0 η+

j (t)ctg t−νq
2 dt =

δ jq , 1
2π
∫ 2π
0 η−

j (t)ctg t−νq
2 dt = −δ jq

(briefly 1
2π
∫ 2π
0 η±

j (t)ctg t−νq
2 dt = ±δ jq ) hold,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.11)

where δ jq is the Kronecker symbol.

Proof. First, let us compose a set {μ±
j (t)}m

1 of continuously differentiable func-
tions under the following conditions

a) μ±
j (t) � 0 for t ∈ [0,2π ] , μ±

j (t) = 0 if t �∈ (α±
j ,β±

j ) , where the
interval (α±

j ,β±
j ) ⊂ (0,2π ] is chosen such that νq �∈ (α±

j ,β±
j ) ,

j,q = 1,2, . . . ,m , μ±
j (0) = μ±

j (2π) ;

b) 1
2π
∫ 2π
0 μ±

j (t)ctg
t−ν j

2 dt = ±1, j = 1,2, . . . ,m ;

c) 1
2π |

∫ 2π
0 μ±

j (t)ctg t−νq
2 dt| � 4−m , j,q = 1,2, . . . ,m , j �= q .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
The mentioned above system {μ±

j (t)}m
1 it is easy to construct taking, for instance,

the function

τ(t) =
{

(15/16)(t2−1)2, t ∈ [−1;1];
0, t ∈ (−∞;−1]∪ [1;+∞);

and using the relations ( |α| and |β | are sufficiently small)

lim
α ,β→+0,α<β

1
β −α

∫ π

−π
τ
(

2
β −α

t− β +α
β −α

)
ctg

t
2
dt = +∞,

lim
α ,β→−0,α<β

1
β −α

∫ π

−π
τ
(

2
β −α

t− β +α
β −α

)
ctg

t
2
dt = −∞,
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lim
α ,β→±0,α<β

2
β −α

∫ π

−π
τ
(

2
β −α

t− β +α
β −α

)
ctg

t−ν
2

dt = −ctg(ν/2),

where ν ∈ (−π ,0)∪ (0,π) .
Functions η±

j (t) we will construct stage by stage and (within the same stage) step
by step. The process slightly remains a construction of biorthogonal families (see, for
instance, [13]) but has some details related principally with the item b) from (2.11).

First stage. Put γ±j q = 1
2π
∫ 2π
0 μ±

j (t)ctg t−νq
2 dt , j,q = 1,2, . . . ,m . Let q=1. During

this stage we will construct a system of functions “orthogonal” to ctg t−ν1
2 .

First step. Let us consider γ+
21 . If γ+

21 = 0, then the function μ+
2 (t) is not changed,

if γ+
21 > 0, then we set μ̃+

2 (t) = μ+
2 (t)+ γ+

21μ
−
1 (t) , if γ+

21 < 0, then we set μ̃+
2 (t) =

μ+
2 (t)− γ+

21μ
+
1 (t) . Thus, in any case we have μ̃+

2 (t) � 0,

1
2π

∫ 2π

0
μ̃+

2 (t)ctg
t−ν1

2
dt = 0 ,

1
2π

∫ 2π

0
μ̃+

2 (t)ctg
t−ν2

2
dt = 1+ |γ+

21|γ∓12,

1
2π

∫ 2π

0
μ̃+

2 (t)ctg
t−ν j

2
dt = γ+

2 j + |γ+
21|γ∓1 j, j = 3,4, . . . ,m,

where the choice of the signs “−” or “+” for the multiple γ∓1 j corresponds to the sign

of −γ+
21 . Let us redefine μ+

2 (t) by the following way: μ+
2 (t) := μ̃+

2 (t)/(1+ |γ+
21|γ∓12) .

After that we can write

1
2π

∫ 2π

0
μ+

2 (t)ctg
t−ν1

2
dt = 0,

1
2π

∫ 2π

0
μ+

2 (t)ctg
t−ν2

2
dt = 1,

1
2π

∣∣∣∣∫ 2π

0
μ+

2 (t)ctg
t−ν j

2
dt

∣∣∣∣< 1
4m + 1

42m

1− 1
42m

< 1/22m−1, j = 3,4, . . . ,m.

By these formulae the first step is finished. Note that during this we we did not use the
functions μ−

2 (t) , μ±
j (t) , j = 3,4, . . . ,m and only the function μ+

2 (t) was redefined.
Second step. During this step we will redefined the function μ−

2 (t) . Let us con-
sider γ−21 . If γ−21 = 0, then the function μ+

2 (t) is not changed, if γ−21 > 0, then we set
μ̃−

2 (t) = μ−
2 (t)+ γ−21μ

−
1 (t) , if γ−21 < 0, then we set μ̃−

2 (t) = μ−
2 (t)− γ−21μ

+
1 (t) . Thus,

in any case we have μ̃−
2 (t) � 0,

1
2π

∫ 2π

0
μ̃−

2 (t)ctg
t−ν1

2
dt = 0,

1
2π

∫ 2π

0
μ̃−

2 (t)ctg
t −ν2

2
dt = −1+ |γ−21|γ∓12,

1
2π

∫ 2π

0
μ̃−

2 (t)ctg
t−ν j

2
dt = γ−2 j + |γ−21|γ∓1 j, j = 3,4, . . . ,m,

where the choice of the signs “−” or “+” for the multiple γ∓1 j corresponds to the sign

of −γ−21 . Let us redefine μ−
2 (t) by the following way: μ−

2 (t) := μ̃−
2 (t)/(1−|γ−21|γ∓12) .

After that we can write

1
2π

∫ 2π

0
μ−

2 (t)ctg
t−ν1

2
dt = 0,

1
2π

∫ 2π

0
μ−

2 (t)ctg
t−ν2

2
dt = −1,



ON A FUNCTIONAL CALCULUS IN PONTRYAGIN SPACES 977

1
2π

∣∣∣∣∫ 2π

0
μ+

2 (t)ctg
t−ν j

2
dt

∣∣∣∣< 1
4m + 1

42m

1− 1
42m

< 1/22m−1, j = 3,4, . . . ,m.

So, the second step is finished.
Third step. The aim of this step is a redefinition of μ+

3 (t) making it “orthogonal”
to ctg t−ν1

2 . Consider γ+
31 . If γ−31 = 0, then the function μ+

3 (t) is not changed, if
γ+
31 > 0, then we set μ̃+

3 (t) = μ+
3 (t) + γ+

31μ
−
1 (t) , if γ+

31 < 0, then we set μ̃+
3 (t) =

μ+
3 (t)− γ+

31μ
+
1 (t) . Thus, we have μ̃−

2 (t) � 0. A final part of this step is similar to the
corresponding one of the first step.

The subsequent steps are devoted to a redefinition of μ−
3 (t) and μ±

j (t) , j =
4, . . . ,m with the aim to obtain the conditions of the type (2.11), where η±

j (t) is sub-
stituted by μ±

j (t) , q = 1 .
Thus, in the first stage we obtained the system that satisfies the following condi-

tions

a) for all j = 1,2, . . . ,m the functions μ+
j (t) and μ−

j (t) are contin-

uously differentiable and μ±
j (0) = μ±

j (2π) ;

b) the inequality μ±
j (t) � 0 holds for all j = 1,2, . . . ,m and t ∈

[0,2π ] ;

c) for any j = 1,2, . . . ,m there is a neigborhood δ (ν j) of ν j ,
such that the equality μ±

q (t) = 0 holds for all t ∈ δ (ν j) and
q = 1,2, . . . ,m ;

d) for all j = 1,2, . . . ,m the equalities 1
2π
∫ 2π
0 μ±

j (t)ctg
t−ν j

2 dt = ±1
hold;

e) for all j = 2,3, . . . ,m the equalities
∫ 2π
0 μ±

j (t)ctg t−ν1
2 dt = 0 hold;

f) for all j = 1,2, . . . ,m and q = 2,3, . . . ,m , j �= q the inequalities
1
2π |

∫ 2π
0 μ±

j (t)ctg t−νq
2 dt| � 1/22m−1 ) hold.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.12)

The system {μ±
j (t)}∞j=1 under Conditions (2.12) represents a base for the next stage.

Second stage. Put γ±j q = 1
2π
∫ 2π
0 μ±

j (t)ctg t−νq
2 dt , j,q = 1,2, . . . ,m . During this

stage we will construct a system of functions “orthogonal” to ctg t−ν2
2 . A way to do

it is similar to the process used during the first stage. In particular, let us describe
the first step. If γ+

12 = 0 then we do not change μ+
1 (t) , in the opposite case we put

μ̃+
1 (t) = μ+

1 (t)+ |γ+
12|μ∓

2 (t) , where the choice of the signs “−” or “+” for the multiple
μ∓

2 (t) corresponds to the sign of −γ+
12 . Note that the latter formula can be considered

as valid in the case γ+
12 = 0 too. Next, we redefine μ+

2 (t) := μ̃+
2 (t) (note that γ∓21 = 0).

By the same manner we, first, put μ̃+
j (t) = μ+

j (t)+ |γ+
j2|μ∓

2 (t) and, second, redefine

μ+
j (t) := μ̃+

j (t)/(1+ |γ+
j2|γ∓2 j) , j = 3,4, . . . m , etc.

As a next stage (for q=3) we redefine by the same manner the functions μ±
1 (t) ,

μ±
2 (t) , μ±

4 (t) , . . . , μ±
m (t) , etc. Finally, concluding the last stage (for q=m) we put

η±
j (t) = μ±

j (t) , j = 1,2, . . . ,m . �
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The following lemma represents a slightly modified version of F. and M. Riesz
Lemma on peak sets for the disc algebra (see, for instance, Garnett [7], Part III, Page
125).

LEMMA 2.1. Let E ⊂ T be a compact of Lebesgue measure equal to zero and
let {ν j}m

1 ⊂ T be a some some finite set of pairwise different points and E ∩{ν j}m
1 =

/0 . Then there is a holomorphic on D and continuous up to the border T numerical
function ϕ(ξ ) such that

a) ϕ(ξ ) = 1 for ξ ∈ E ;

b) |ϕ(ξ )| < 1 for ξ ∈ T/E ;

c) the function ϕ(ξ )/Πm
j=1(ξ −ν j) is uniformly bounded on D .

⎫⎪⎪⎬⎪⎪⎭ (2.13)

Proof. Without loss of generality one can assume that −1 �∈ E ∪{ν j}m
1 , so the

function 1
i lnξ maps the set E ∪{ν j}m

1 to an interior part of the interval (0,2π ] . By the
Fatou’s theorem (see Garnett [1], Ch.III, p. 125) there is a function ω : T �→ [−∞;0) ,
such that the pre-image of the set {−∞} coincides with E , ω(eit)∈ L1(0,2π) , ω(ξ ) is
continuous (taking into account the natural topology of semi-closed interval [−∞;0))
on T and the function ω(ξ ) has a continuous derivative on the set T/E . Next, let
a real-valued function ψ(ξ ) is defined and has the continuous derivative on the set
T , ψ(ξ ) � 0 for all ξ ∈ T , ψ(ξ ) is equal to zero in some neighborhood of the set
{ν j}m

1 , but the pre-image of zero for ψ(ξ ) has no intersection with E . Let ω1(t) =
ω(eit)×ψ(eit) , t ∈ [0;2π ] , and let ω̃1(t) be the conjugate of ω1(t) function, i.e.

ω̃1(t) =
1
2π

∫ 2π

0
ω1(τ)ctg

t− τ
2

dτ

(the integral is treated as a principal value integral). Due to the conditions imposed on
ω1(t) the function ω̃1(t) is continuous on 1

i ln(T\E ) and is analytic as a real-valued
function in some neighborhood of the points 1

i lnν j , j = 1,2, . . . ,m . Put ω2(t) =

ω1(t)−
m

∑
j=1

|ω̃1(ν j)|η±
j (t) , the choice of the sign for η±

j (t) is the following: it is “+”

if ω̃1(ν j) � 0, and it is “−” in the opposite case, the functions η±
j (t) are the same as

in Proposition 2.1. Due to the construction of ω2(t) the conjugate function ω̃2(t) is
analytic as a real-valued function at points 1

i lnν j ,

ω̃2(
1
i
lnν j) = 0, j = 1,2, . . . ,m, (2.14)

and for the function ω2(t) the inequality ω2(t) � 0 is fulfilled everywhere. Let us put

ζ (ξ ) = ζ (ρeiτ)=
1
2π

∫ 2π

0

eit + ξ
eit − ξ

ω2(t)dt . The function ζ (ξ ) is holomorphic in D

and continuous in D∪ (T\E ) and its range is a part of the closed left complex semi-
plane, moreover due to (2.14) the equalities ζ (ν j) = 0, j = 1,2, . . . ,m are fulfilled and
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the function ζ (ξ )/Πm
j=1(ξ −ν j) is bounded on the intersection T with some neighbor-

hood of the set {ν j}m
1 . Let us put ϕ(ξ ) = ζ (ξ )/(ζ (ξ )−1) . It is clear that the function

ϕ(ξ ) has the required properties. �

3. Some function spaces

Let us recall that U is a π -unitary operator satisfying Condition (1.3). Let us
choose and fix a basic model space L̃2

�σ (E) for U , where σ(t) is a non decreasing
continuous from the left function given on the segment [0,2π ] . Then σ(t)

σ(t) = σc(t)+σs(t), (3.15)

where σc(t) and σs(t) are uniquely determined non-decreasing functions such that
σc(t) generates absolutely continuous and σs(t) generates singular (including the ato-
mic component) measures with respect to the standard Lebesgue measure.

Due to Theorem 1.1 μσ (ln(σ(U11)∪σ(U33))) = 0, so

μσs(ln(σ(U11)∪σ(U33))) = 0 . (3.16)

Next, let {g̃ j(t)}k
j=1 be a set of unbounded elements generating the space L̃2

�σ (E) . In
concordance with the notations given in [17] (formula (4.4)) (compare also with [18],
formula (6.79)) we define

ι jq(t) = (g̃ j(t), g̃q(t))E, j,q = 1,2, . . . ,k, G(t) = 1+
k

∑
j=1

ι j j(t). (3.17)

For simplicity we assume that

1 �∈ σ(U11)∪σ(U33). (3.18)

Condition (3.18) means that the operator E2π is correctly defined and projects all the
space on HT .

Next, let numbers 0 = α0 < α1 < α2 < .. . < αm < αm+1 = 2π be such that
{eiα j}m

j=1 =σ(U11)∪σ(U33) , let β j ∈ (α j,α j+1) be some fixed numbers, j = 0,1,2, . . . ,m .
Then for t ∈ (α j,α j+1) we put

νc(t) =
∫ t

β j

G(t)dσc(t), νs(t) =
∫ t

β j

G(t)dσs(t), ν(t) = νc(t)+νs(t). (3.19)

By the same way we introduce functions

ηc(t) =
∫ t

0
(1/G(t))dσc(t), ηs(t) =

∫ t

0
(1/G(t))dσs(t), η(t) = ηc(t)+ηs(t), (3.20)

where t ∈ [0,2π ] .
The space L2

ν is by definition the natural closure of the set of all continuous func-
tions given on [0,2π ] and vanishing on some neighborhood of the set {α j}m

j=1 . By the
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similar way the spaces L2
νc

and L2
νs

are introduced, the spaces L2
η , L2

ηc
, L2

ηs
, etc, are

defined as usual.
Note that the spaces L∞

σ and L2
ν , as well as the spaces L1

σ and L2
η , form compatible

pairs or, the so called Banach pairs (for details see [3] or [9]). Therefore, the spaces
L1
σ +L2

η and L∞
σ ∩L2

ν are well defined. In particular, the standard norm on L1
σ +L2

η is
given by the formula

‖ f‖ = inf
f1+ f2= f

{‖ f1‖L1
σ
+‖ f2‖L2

η
}.

The space L∞
σ ∩L2

ν can be considered as the adjoin one to the space L1
σ +L2

η if the dual-

ity between these two spaces is given by the formula ( f (t),g(t)) =
∫ 2π
0 f (t)g(t)dσ(t) ,

where f (t) ∈ L1
σ +L2

η and g(t) ∈ L∞
σ ∩L2

ν .
An importance of above function spaces for our aims can be illustrated by the

following manner (see [17], Proof of Proposition 4.1 for more details).

PROPOSITION 3.1. Let the spaces L̃2
�σ (E) and L1

σ +L2
η be related by Definition

1.1 and Formulae (3.20). Then for any function ψ(t) ∈ L1
σ + L2

η there are vector-
functions g−1(t), g0(t), f−1(t), f0(t), . . . , fk(t) ∈ L2

�σ (E) , such that

ψ(t) = (g−1(t), f−1(t))E +(g0(t), f0(t))E +
k

∑
j=1

(g̃ j(t), f j(t))E.

Below we will also use the symbol μX for the standard Lebesgue measure of a set
X and the symbol L1 for for the Lebesgue space of scalar complex valued absolutely
integrable functions, given on the interval [0,2π ] , etc.

4. Constructing AlgM U : first steps

We study the structure of AlgU in two stages. In this section we consider the
set of operators M(U) , where M(ξ ) is a polynomial such that M(U) is completely
defined by the basic model space of the operator U , and, next, some other functions
with similar properties. The second stage starts in Section 5. For the beginning let
us note that the spectrum of the operator U33 is a subset of the set Λ and therefore
forms a finite set. Therefore G3 is a Pontryagin space, it is a finite-dimensional space
or can be presented as a π -orthogonal sum of two subspaces invariant with respect to
U33 such that the first one is finite-dimensional and the other one is positive. Thus, U33

has the minimal polynomial M3(ξ ) : M3(U33) = 0. Next, let M0(ξ ) (≡ M1(ξ )) be the
minimal polynomial for the finite-dimensional operator U00 (or U11) , and MT′(ξ ) be
the minimal polynomial for the operator U |H

T′ . In this case for any polynomial M(ξ )
of the form

M(ξ ) = M2
0 (ξ )M2

3(ξ )MT′(ξ )Q(ξ ), (4.21)

where Q(ξ ) is an arbitrary polynomial, all matrix elements of M(U) with respect to
the decomposition

H = G0⊕G1⊕G2⊕G3⊕HT′ (4.22)
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are equal to zero with exception, maybe, for ones corresponding to the mappings G0 →
G1 , G0 → G2 , G2 → G1 , G2 → G2 . The exceptional elements G0 → G2 , G2 → G1

and G2 → G2 can be calculated via the basic model space of U , but this way does not
work for G0 → G1 . Indeed, let W be an operator of similarity generated by L2

�σ (E) .
Let us define (see (1.9))

h j = W ↑g̃ j(ξ ), e j = Wg̃ j(ξ ), j = 1,2, . . . ,k. (4.23)

The equality M0(U00) = 0 yields M0(eit)g̃(t) ∈ L2
�σ (E) . Due to (1.1) M0(eit)M3(eit) =

c ·e−ipt ·M0(eit)M3(eit) , where |c|= 1 and p is the degree of M0(ξ )M3(ξ ) , hence (see
(3.17) and (4.21)) the integrals

∫ 2π
0 M(eit )ι jq(t)dσ(t) , j,q = 1,2, . . . ,k , converge but,

generally speaking (see Example 1 from [19]),

(M(U)h j,eq) �=
∫ 2π

0
M(eit)ι jq(t)dσ(t), j,q = 1,2, . . . ,k. (4.24)

The latter problem can be resolved by the following way. Let us redefine (4.21)

M(ξ ) = M4
0 (ξ )M4

3(ξ )MT′(ξ )Q(ξ ). (4.25)

Then (see the justification of Formula (9) in [19])

(M(U)h j,eq) =
∫ 2π

0
M(eit)ι jq(t)dσ(t), j,q = 1,2, . . . ,k. (4.26)

Everywhere below we put

M = {M4
0(ξ )Q(ξ )}, M′ = {M4

0(ξ )M4
3(ξ )MT′(ξ )Q(ξ )}, (4.27)

where Q(ξ ) runs throw the set of all polynomials. Using the equalities like (4.26) let
us introduce values ϕ(U) for some class of functions ϕ(ξ ) . Note that we do not make
the assumption that the condition ϕ(U) ∈ AlgU is satisfied. Thus, let the function
ϕ(ξ ) be such that the function ϕ(eit) is measurable, defined a.e., uniformly bounded
on [0,2π ] and ∫ 2π

0
|ϕ(eit)|G(t)dσ(t) < ∞. (4.28)

Let us introduce the operator
�
ϕ (U) as it is described (see (1.9) and (4.26)):

• P↑ �
ϕ (U)|

H̃↑ = W ↑Φ(W ↑)−1 , where P↑ is the ortoprojection on

H̃↑ , and Φ is the multiplication operator by function ϕ(eit ) act-
ing on L̃2

�σ (E) ;

• the subspace H̃ is invariant with respect to
�
ϕ (U) and

�
ϕ (U)|H̃ =

WΦ
∗
(W )−1 , where Φ is the multiplication operator by ϕ(eit) ;

• (
�
ϕ (U)h j,eq) =

∫ 2π
0 ϕ(eit)ι jq(t)dσ(t) , j,q = 1,2, . . . ,k ;

• all other elements of the matrix representation of the operator
�
ϕ (U) with respect to the decomposition (4.22) are equal to zero.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.29)
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Due to (4.28) the operator
�
ϕ (U) is well defined by Conditions (4.29). The answer

to the natural question concerning the relation between
�
ϕ (U) and AlgU is directly

connected (see below) with some properties of σc .
Condition (4.28) is satisfied if ϕ(ξ ) is such that

ϕ(ξ ) = ψ(ξ )M4
0 (ξ )M4

3(ξ )MT′(ξ ), (4.30)

where ψ(ξ ) is a holomorphic on D and continuous on D∪T function. The next
proposition follows directly from Theorem 1.1 and comparison with Formulae (4.26)
and (4.29).

PROPOSITION 4.1. If a function ϕ(ξ ) has Form (4.30), then the corresponding

operator
�
ϕ (U) belongs to the closure in norm topology of the set of elements M(U) ,

where M(ξ ) ∈ M′ .

Let AlgM U be the weak closure of the operator set {M(U)} , where M(ξ ) runs

throw the set M′ . Due to Proposition 4.1 the relation
�
ϕ (U) ∈ AlgM U is fulfilled for

any function ϕ(ξ ) that have the representation (4.30).

THEOREM 4.1. Let X ⊂ T be a set such that its pre-image ln−1(X) is mea-
surable both with respect to Lebesgue measure and μσ , moreover μσ (ln−1(X)) > 0 ,
μ(ln−1(X)) = 0 and for the closure X the equality X ∩ (σ(U11)∪σ(U33)) = /0 holds.
Then E(X) ∈ AlgM U .

Proof. As it is well known (see, for instance, [6], Theorem 1.18) for the measur-
able set X there is a subset Xc such that Xc is a finite or countable union of closed
sets and μσ (X\Xc) = 0. Moreover, due to (1.2) E(X)(H) is a positive subspace
and the inner product [·, ·] defines on E(X)(H) a structure of Hilbert space. Thus,
E(X) = E(Xc) and E(Xc) is a strong limit of projections, where each projection cor-
responds to a closed subset. The latter means that it is enough to prove the theo-
rem for the case of closed X . So, let us assume that X is closed. Then due to
Lemma 2.1 there is a function ϕ(ξ ) , such that for ϕ(ξ ) Conditions ((2.13)) hold
with E = X and {ν j}m

1 = σ(U11)∪σ(U33) . Next, there is a natural number q0 such
that all functions from the sequence θl(ξ ) = MT′(ξ )(ϕ(ξ ))q0+l , l = 0,1,2, . . . have

Representation (4.30), hence the sequence { �
θ l (U)}∞0 is well defined. Moreover, the

choice of the function ϕ(ξ ) is such that the sequence {θl(ξ )}∞0 is uniformly bounded
on T , everywhere on T converges to the function θX (ξ ) = MT′(ξ )χX(ξ ) , where
χX(ξ ) is the indicator of the set X . Moreover, if δ (X) is an arbitrary neighborhood
X , then the sequence {(ϕ(ξ ))l}∞0 uniformly converges to zero on T\δ (X) . Thus,

w− lim l→∞
�
θ l (U) =

�
θX (U) , where the operator

�
θX (U) is defined by ñ (4.29). If X

is a single-point set, then the theorem has been already because in this case the opera-

tor
�
θX (U) is up to a non-zero multiple a projection. In the general case the operator

E(X) can be obtained as the Riesz projection for the non-zero spectrum of the operator
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�
θX (U) . Indeed, X ⊂ T is a closed set and its Lebesgue measure is equal to zero, so it

is nowhere dense on T and the non-zero spectrum of
�
θX (U) can be surrounded by a

simple contour. �

PROPOSITION 4.2. If a polynomial M(ξ ) has Form (4.21) then
�
M (U)∈ AlgMU .

Proof. If ξ ∈ C then the expression

Lm(ξ ) =
1− ( mξ

m+1)
m2

1− mξ
m+1

(4.31)

represents in fact a polynomial. If ξ = eit , t ∈ (0,2π) then Lm(eit)→ 1
1−eit for m→∞ .

Next,

|(1− eit)Lm(eit)| =
∣∣∣1−( meit

m+1

)m2 ∣∣∣∣∣∣1− eit

(m+1−meit)

∣∣∣ (4.32)

the expression (1− eit)Lm(eit) is bounded on [0,2π ] y trends to 1 for all t �= 0, 2π . Us-
ing this construction one can prove the existence of a sequence of polynomials Qm(ξ )
such that

• limm→∞ Qm(eit)M2
0 (eit)M2

3(eit) = 1 if t �∈ σ(U00)∪σ(U33) ;

• limm→∞ Qm(eit)M2
0 (eit)M2

3(eit) = 0 if t ∈ σ(U00)∪σ(U33) ;

• There is a constant c > 0 such that |Qm(eit)M2
0 (eit)M2

3(eit)| � c
for all t ∈ [0,2π ] and m = 1,2, . . . .

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Latter Conditions jointly with the basic model representation for U and Equality (3.16)
show that

w− lim
m→∞

M4
0 (U)M4

3(U)Qm(U) = M2
0(U)M2

3(U),

where w− lim is a symbol of limit in the week operator topology. The rest is straight-
forward. �

Let us present MT′(ξ ) from (4.21) and (4.25) in the form

MT′(ξ ) = M�
T′

(ξ ) ·M�
T′

(ξ ), (4.33)

where M�
T′

(ξ ) and M�
T′

(ξ ) are two polynomials with zero sets out of D∪T and within

D respectively.

PROPOSITION 4.3. If a polynomial M(ξ ) has the form

M(ξ ) = M2
0(ξ )M�

T′
(ξ )Q(ξ ), (4.34)

then
�
M (U) ∈ AlgMU .
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Proof. One can removed first M2
3(U) by the same way as in the proof of Proposi-

tion 4.2 and next M�
T′

(ξ ) using the idea of Proposition 4.1 replacing ψ(ξ ) by Q(ξ )
M�

T′
(ξ ) .

�
In the next discursion the polynomials (4.34) will play a special role, so we denote

K={M(ξ ) : M(ξ )=M2
0(ξ )Q(ξ )}, L={M(ξ ) : M(ξ )=M2

0 (ξ )M�
T′

(ξ )Q(ξ )}, (4.35)

where Q(ξ ) runs throw the set of all polynomials. Now let us discuss on a functional
space in which the the functional set corresponding to AlgM(U) could be embedded. It
does not mean that there is one-to-one correspondence between this set and AlgM(U) ,
but it is clear that for any operator from AlgM(U) there exists the corresponding func-

tion. Thus, let M(ξ ) is defined as in (4.34) and the corresponding operator
�
M (U) is

described as in (4.29). Then, in particular, for x,y ∈ G2 we have

[
�
M (U)x,y] =

∫ 2π

0
M(eit )( f (t),g(t))Edσ(t), (4.36)

where (see Theorem 1.1 ) f (t) = W−1x, g(t) = W−1y . Then ( f (t),g(t))E runs throw
the whole space L1

σ . So, one can consider Expression (4.36) as a continuous lin-
ear functional related with M and defined on L1

σ . If we have a sequence {Nl(ξ ) =

M2
0(ξ )P�

T′
(ξ )Ql(ξ )} such that {[ �Nl (U)x,y]} converges for every x,y ∈ G2 then due

to Banach-Steinhaus Theorem the sequence {Nj(eit)} converges in w*-topology to a
function φ(t) ∈ L∞

σ . On the other hand, for (see (4.22) and (4.23)) h j ∈ G0 and the
same x the expression

[
�
M (U)x,h j] =

∫ 2π

0
M(eit )( f (t), g̃ j(t))Edσ(t),

can be consider as a linear continuous linear functional acting on L2
�σ (E) , so, taking the

same polynomial sequence we get that φ(t)g̃ j(t) ∈ L2
�σ (E) . Putting j = 1,2, . . . ,k and

taking into account that φ(t) ∈ L∞
σ we obtain (see (3.18) and(3.19)) φ(t) ∈ L2

ν . So, for
every operator B ∈ AlgM U there is a continuous linear functional defined on L1

σ +L2
η ,

i.e. there is a function φ(t) ∈ L2
ν ∩L∞

σ that corresponds to the model representation of
B or, in the terms of Definition 1.2, it is the portrait of B .

Note that, generally speaking, Condition (4.28) is not fulfilled for φ(t) ∈ L2
ν ∩L∞

σ ,
because G(t) �∈ L1

σ + L2
η therefore (compare with (4.29)) we must explain a way to

define the set of numbers {[Bh j,eq]}k
j,q=1 . Another important question is related with

a description of the closure of the polynomial set L as a linear manifold in the space
L2
ν ∩ L∞

σ . Let us denote this closure as B . Note that B coincides with the set of
portraits for the operators from AlgM U . The structure of B strongly depends of the
corresponding measure. Let us illustrate this statement.

Due to the definition of σc(t) (see (3.15)) there is a Lebesgue integrable functions
ω(t) � 0 given e.e. in segment [0,2π ] and such that for every t ∈ [0,2π ]

σc(t) =
∫ t

0
ω(t)dt. (4.37)
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Below the symbol μX means the standard Lebesgue measure of a set X .
In [19] it was explicitly proved (see Theorem 5) that if

μ{t : ω(t) = 0} > 0, (4.38)

then B = L2
ν ∩L∞

σ , and implicitly it was shown (see Theorem 2) that B �= L2
ν ∩L∞

σ if

μ{t : ω(t) = 0} = 0. (4.39)

In the next section we present a complete description of B for the case (4.39).
As a previous analysis let us consider the expression

ϑ jq(M) =
∫ 2π

0
M(eit )ι jq(t)dσ(t) (4.40)

with M(eit ) from (4.34). It can be treated as a linear functional well defined on L and
(maybe) unbounded with a dense domain in B . The unboundedness of at least one of
these functionals takes place if B = L2

ν ∩L∞
σ , but if B �= L2

ν ∩L∞
σ the situation can be

different. Let us given two examples.

EXAMPLE 4.1. Put g̃(t) = 1
eit−1

and take the linear span of g̃(t) , L2 and a formal

vector h as a Hilbert space H . In the latter space put ‖g̃(t)‖ = ‖h‖ = 1, g̃(t) ⊥ h ⊥ L2

and define a Hilbert structure on L2 as usual. Next, introduce on H a Pontryagin
space structure using a fundamental symmetry J as follows: Jg̃(t) = h , Jh = g̃(t) .
Finally, put Ug̃(t) = eit g̃(t) = 1+ g̃(t)− 1

2h , Uh = h , Ue−it = 1−h , Ueint = ei(n+1)t

for n = 0,1,±2,±3, . . . . It is easy to check that U is a π -unitary operator, G1 is a one-
dimensional subspace spanned by h , M0(ξ ) = ξ − 1 and ι11(t) = −eit

(eit−1)2 . Thus, in

this case there is only one functional (4.40). The direct calculation brings
∫ 2π
0 eimt(eit −

1)2ι11(t)dt = 0 for all m = 0,1, . . . , therefore ϑ11(M) ≡ 0.

EXAMPLE 4.2. Here the construction is similar to one in Example 4.1, J acts un-
der the same rules, but g̃(t) = 1

eit−1(−ln(2sin t
2 )+ i( t−π

2 )) , t ∈ (0,2π) . Then eit g̃(t) =
g̃(t)+υ(t) , where υ(t) = (−ln(2sin t

2 )+ i( t−π
2 )) . Note that in L2

υ(t) =
∞

∑
p=1

e−ipt

p
, (4.41)

so due to (1.5) Ueint = ei(n+1)t for n =−1,0,1,2, . . . and Ue−int = e−i(n−1)t − 1
n−1h for

n = 2,3 . . . , Uh = h , moreover taking A = 0 in (1.5)) we can put Ug̃(t) = 1+ g̃(t)−
1
2

∫ 2π
0 |υ(t)|2dt ·h . Note that due to (4.41) we have the following representation

|υ(t)|2 =
+∞

∑
−∞

αle
ilt , where α−l = αl =

∞

∑
p=1

1
p(p+ l)

, l = 0,1, . . . ,

or, after a transformation,

α1 = 1, αl =
1
l

l

∑
p=1

1
p
, l = 2,3, . . . , so

+∞

∑
l=0

αl = ∞.
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So, ι11(t) = |g̃(t)|2 = −eit

(eit−1)2 |υ(t)|2 , so G(T ) = 1+ −eit

(eit−1)2 |υ(t)|2 . Let us consider

the sequence {Qm(eit) = (eit − 1)2Lm(eit)}∞1 , where Lm(eit) is defined by (4.31). It
easy to check (see (4.32)) that this sequence is bounded in B :

∫ 2π
0 |Qm(eit)|2G(t)dt =∫ 2π

0 |(eit −1)2L2
m(eit)||(eit −1)2− eit |υ(t)|2|dt . Next,

∫ 2π

0
Qm(eit)ι11(t)dσ(t) = −

∫ 2π

0
eitLm(eit)|υ(t)|2dσ(t)

= −
∫ 2π

0
eit

m2−1

∑
p=0

( m
m+1

)p
eipt |υ(t)|2dσ(t)

= −
m2−1

∑
p=0

( m
m+1

)p
αp+1 →−∞.

Thus, the corresponding linear functional (4.40) is unbounded.

Generalizing a few the above cases let us consider a collection of functions {υq(t)}m
q=1

such that for every q : M2
0 (eit)υq(t) ∈ L1

σ and let us consider the corresponding collec-
tion of linear functionals {ϒq}m

q=1 defined (compare with (4.40)) on L :

ϒq(M) =
∫ 2π

0
M(eit )υq(t)dσ(t), q = 1,2, . . . ,m . (4.42)

DEFINITION 4.1. The collection (4.42) is said to be linear independent modulo
B∗ if its unique linear combination extendable on whole B as a continuous linear
functional is trivial (i.e. all its coefficients are equal to zero).

LEMMA 4.1. Let functionals ϒ1 , ϒ2, . . . ,ϒm be as in (4.42). Then they are lin-
early independent modulo B∗ if and only if for all q = 1,2, . . . ,m

sup
M∈⋂m

j=1, j �=q Kerϒ j ,‖M‖
L2
ν∩L∞σ

=1
{|ϒq(M)|} = ∞.

The proof of Lemma 4.1 is omitted because it is directly follows from Hahn-Banach
Theorem (see also the proof of Lemma 2.4 in [17]).

5. A concept of equivalence for some functionals

In [19] the following theorem was proved:

THEOREM 5.1. Let L̃2
�σ (E) be a basic model space for U . Then U−1 ∈ AlgU if

and only if Condition (4.38) is fulfilled.
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Thus, for our aim we need to impose on basic model space of U Condition (4.39).
Let us define an additional functional space. First, we put

Ĝ(ξ ) = exp

[
1
2π

∫ 2π

0

eit + ξ
eit − ξ

(
1
2

ln((1+
k

∑
j=1

‖g̃ j(t)‖2
E)ω(t)))dt

]
. (5.43)

Then H2
Ĝ
(E) is by definition the set of holomorphic in D vector-valued functions f (ξ )

with the range in E , such that f (ξ )Ĝ(ξ ) ∈ H2(E) , by the same way the spaces L2
Ĝ
(E)

and L2
1/Ĝ

(E) are defined, i.e., for instance, φ(t) ∈ L2
1/Ĝ

(E) if and only if φ(t )/Ĝ(eit) ∈
L2(E) .

Since the structure of B∗ is not yet discussed we try in a first step to compare
unbounded functional using L1

σ +L2
η . Let us recall Representations (4.21) and (4.33).

DEFINITION 5.1. Two given on [0,2π ] μσ -measurable functions ϕ(t) and ψ(t)

are called M-equivalent (
M∼ ) if Condition

M2
0(eit)ϕ(t), M2

0 (eit)ψ(t) ∈ L1
σ (5.44)

is fulfilled and for all polynomials Q(ξ ) Equality∫ 2π

0
Q(eit)M2

0 (eit){ϕ(t)−ψ(t)}dσ(t) = 0 (5.45)

holds, and M′ -equivalent (
M′∼ ) if Condition (5.44) is fulfilled and Equality∫ 2π

0
Q(eit)M2

0 (eit)M�
T′

(eit){ϕ(t)−ψ(t)}dσ(t) = 0 (5.46)

holds for all polynomials Q(ξ ) .

REMARK 5.1. The notion of M′ -equivalence lost sense if HT′ = {0} , so in this
case we put M�

T′
(eit)≡ 1. Below it will be proved that M′ -equivalence can be reduced

to M-equivalence in the case HT′ �= {0} too. Note also that in Definition 3.15 we take
into account Proposition 4.3.

The following lemma describes a special case of M-equivalence.

LEMMA 5.1. Let ω(t) ≡ 1 and ϕ(t) be such that

M2
0(eit)ϕ(t) ∈ L1. (5.47)

Then one can find a function ψ(t) ∈ L1 +L2
1/G such that ϕ(t) M∼ ψ(t) if and only if

sup
N(ξ )∈X

{|
∫ 2π

0
ϕ(t)N(eit)dt|} < ∞, (5.48)
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where X is the set of all polynomials from M such that∫ 2π

0
|Ĝ(eit)N(eit)|2dt � 1, max

t∈[0;2π ]
{|N(eit)|} � 1,

i.e. ‖N(eit)‖C[0,2π ]∩L2
Ĝ

� 1 .

Proof. First, let us prove the necessity of Condition (5.48). Thus, let as assume

the existence of ψ(t) ∈ L1 +L2
1/G such that ϕ(t) M∼ ψ(t) . Then due to Definition 5.1∫ 2π

0 ϕ(t)N(eit )dt =
∫ 2π
0 ψ(t)N(eit)dt for all N(ξ ) ∈ X . The integral

∫ 2π
0 ψ(t)N(eit)dt

represents a continuous linear functional on C[0,2π ]∩L2
Ĝ

, so the necessity of Condition
(5.48) is now evident and we go to its sufficiency. Thus, let (5.48) be fulfilled. Then
one can consider the expression ∫ 2π

0
ϕ(t)N(eit)dt

as (see (4.35)) a continuous linear functional on K ⊂ C[0,2π ]∩L2
Ĝ
. Due to Hahn-

Banach Theorem and the structure of the space dual to C[0,2π ]∩L2
Ĝ

(see [3] or [9])
there are functions ϑ(t) and ς(t) such that ϑ(0) = 0, ϑ(t) has on [0,2π ] a bounded
variation, is continuous from the left and satisfies to the condition

if M0(eit0) = 0 then ϑ(t0 +0) = ϑ(t0), (5.49)

ς(t) ∈ L2
1/G and for all entire non negative numbers m

∫ 2π

0
ϕ(t)M2

0 (eit)eimtdt =
∫ 2π

0
M2

0 (eit)eimtdϑ(t)+
∫ 2π

0
M2

0(eit)eimtς(t)dt.

Due to F. and M. Riesz Theorem on analytic measures (Garnett [7], Chapter II, Sect.3,
Theorem II.3.8, Hoffman [8], Chapter 4, Page 47) we have that the following function
of bounded variation∫ t

0
ϕ(t)M2

0(eit)dt −
∫ t

0
M2

0 (eit)dϑ(t)−
∫ t

0
M2

0(eit)ς(t)dt

is absolutely continuous and analytic, i.e. there is a function ζ (ξ )∈H1(C) with bound-
ary values ζ (eit) , ζ (0) = 0 such that∫ t

0
ζ (eit)dt =

∫ t

0
ϕ(t)M2

0(eit)dt −
∫ t

0
M2

0 (eit)dϑ(t)−
∫ t

0
M2(eit)ς(t)dt.

The latter means that the function of bounded variation ϑ(t) is absolutely continuous
for all segments [α,β ] ⊂ [0,2π ] such that M(eit) �= 0 for t ∈ [α,β ] . Due to Condition
(5.49) it gives that ϑ(t) is absolutely continuous on the whole interval [0,2π ] . Thus,
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there is a function τ(t) ∈ L1 such that ϑ(t) =
∫ t
0 τ(t)dt and ϕ(t) = ζ (eit )M−2

0 (eit)+
τ(t)+ ς(t) . Moreover, for all N(ξ ) ∈ K we have∫ 2π

0
N(eit)ζ (eit )M−2

0 (eit)dt =
∫ 2π

0
Q(eit)ζ (eit)dt = 2πQ(0)ζ (0) = 0,

so we can put ψ(t) = τ(t)+ ς(t) because in this case ψ(t) ∈ L1 +L2
1/G . �

DEFINITION 5.2. Let all functions of the collection {ϕ j(t)}m
1 satisfy Condition

(5.44). This collection is called M-linearly independent (M′ -linearly independent)
with respect to L1

σ +L2
η , if for every non-trivial linear combination ϕ(t) of these func-

tions there is no one function ψ(t) ∈ L1
σ +L2

η such that

ϕ(t) M∼ ψ(t) (ϕ(t) M′∼ ψ(t)).

The reference to the space L1
σ +L2

η can be omitted.

PROPOSITION 5.1. If ϕ(t) M∼ ψ(t) or ϕ(t) M′∼ ψ(t) then μσs{t : ϕ(t) �=ψ(t)}=
0 .

Proof. Due to F. and M. Riesz Theorem on analytic measures and the conditions
of Proposition 5.1 the complex valued Borel measures M2

0(eit){ϕ(t)−ψ(t)}dσ(t) and
M2

0(eit)M�
T′

(eit){ϕ(t)−ψ(t)}dσ(t) are absolutely continuous, so their singular parts

M2
0(eit){ϕ(t)−ψ(t)}dσs(t) and M2

0 (eit)M�
T′

(eit){ϕ(t)−ψ(t)}dσs(t)

must be equal to zero. Thanks to (3.16) the rest is straightforward. �

PROPOSITION 5.2. Let Condition (4.38) be fulfilled for the measure μσ . If func-
tions ϕ(t) and ψ(t) are M-equivalent or M′ -equivalent then μσ{t : ϕ(t) �= ψ(t)} =
0 .

Proof. Due to Proposition 5.1 we can assume that σ(t) = σc(t) . Next, let ϑ(t)
be an arbitrary function such that ϑ(t) ∈ L1

σ . Then thanks to Szegö Theorem (see [7],
Chapter IV, Theorem 3.1 or [8], Chapter 4) and Condition (4.38)

inf
P

∫ 2π

0
|1− eitQ(eit)|2|ϑ(t)|dσ(t) = 0 ,

where Q(t) runs throw the set of all polynomials. Thus, there is a sequence of polyno-

mials {Qm}∞1 such that lim
m→∞

∫ 2π

0
|1− eitQm(eit)|2|ϑ(t)|dσ(t) = 0 . Now let us assume

that
∫ 2π

0
eiktϑ(t)dσ(t) = 0 , k = 0,1,2, . . . .
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Then∣∣∣∣∫ 2π

0
(e−it −Qm(eit))ϑ(t)dσ(t)

∣∣∣∣� ∫ 2π

0
|e−it −Qm(eit)||ϑ(t)|dσ(t)

=
∫ 2π

0
|1− eitQm(eit)||ϑ(t)|dσ(t)

�
{∫ 2π

0
|1− eitQm(eit)|2|ϑ(t)|dσ(t)

}1/2{∫ 2π

0
|ϑ(t)|dσ(t)

}1/2

−→ 0 ,

so
∫ 2π
0 e−itϑ(t)dσ(t) =

∫ 2π
0 (e−it −Qm(eit))ϑ(t)dσ(t) = 0. The same reasoning apply-

ing to the expression
∫ 2π
0 (e−2it −e−itQm(eit))ϑ(t)dσ(t) gives

∫ 2π
0 e−2itϑ(t)dσ(t) = 0,

etc. Thus, all Fourier coefficients of the measure ϑ(t)dσ(t) are equal to zero. As
it is well known (see, for instance, [14], Chapter VII, Part 1, Item 5) a function in
L1 can be uniquely restored via Fejér sums, the latter brings (let us recall (4.37)) the
equality ϑ(t)ω(t)≡ 0. Now one can conclude the proof taking as ϑ(t) in the first step
M2

0(eit){ϕ(t)−ψ(t)} and M2
0(eit)M�

T′
(eit){ϕ(t)−ψ(t)} in the second one. �

The following proposition is a direct corollary of Proposition 5.2.

PROPOSITION 5.3. Let μσ satisfy Condition (4.38) and functions from a system
{ϕ j(t)}m

1 satisfy Condition (5.44). Then the latter system be M-linearly independent
(M′ -linearly independent) with respect to L1

σ +L2
η if and only if it is linearly indepen-

dent modulo L1
σ +L2

η , i.e.

if
m

∑
1
α jϕ j(t) ∈ L1

σ +L2
η then α1 = α2 = . . . = αm = 0.

LEMMA 5.2. Let φ(t) satisfy Condition (5.44) and ω(t) satisfy Condition (4.39).
Then φ(t) has an M-equivalent function ψ(t) ∈ L1

σ +L2
η if and only if

sup
N(ξ )∈X

{
|
∫ 2π

0
N(eit)φ(t)dσ(t)|

}
< ∞, (5.50)

where X is the set of all polynomials N(ξ ) = M2
0(ξ )Q(ξ ) such that ‖N(eit)‖L∞

σ∩L2
ν
� 1 .

Proof. The necessity of (5.51) has the same justification as the similar one in
Lemma 5.1, so we go to its sufficiency. Denote

c = sup
N(ξ )∈X

{
|
∫ 2π

0
N(eit )φ(t)dσ(t)|

}
. (5.51)

Next, let X be a number set such that

X ⊂ [0,2π ], X is closed, μX = 0, μσsX > 0, X ∩σ(U00) = /0 . (5.52)
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Let us choose an arbitrary continuous on {eit}t∈X function θX(ξ ) such that

max
t∈X

{|θX(eit)|} � 1,

∫
X
|θX (eit)|2dν(t) � 1 . (5.53)

Due to Rudin-Carleson Theorem on a peak interpolation set (see [7], Part III, Section
“Exercises and further results” or the original papers) there is a function θ (ξ ) holo-
morphic on D and continuous on D∪T such that ‖θ‖H∞ = Maxt∈X{|θX(eit)|} . Note
that, generally speaking, θ (eit) �∈ L2

ν(C) but θ (eit)ϕ p(eit) ∈ L2
ν(C) for a suitable nat-

ural p , ϕ(ξ ) was introduced in Lemma 2.1, {ν j}m
1 = σ(U00) , E = X . Moreover,

for every ε > 0 there is a natural number pε such that
∫ 2π
0 |θ (eit)ϕ p(eit)|2dν(t) �

(1+ ε)
∫
X |θX (eit)|2dν(t) for p � pε . Next, for sufficiently big p the function ϕ p(ξ )

M0(ξ )
is holomorphic on D and continuous (see (2.13), item c)) on D∪T . Thus, the latter
can be uniformly approximated by polynomials Q(eit) , so the functions ϕ p(eit) can
be approximated by polynomials from the set (1+ ε)X mentioned in (5.51). Finally,
the sequence {θ (eit)ϕ p(eit)} has the pointwise limit equal to θX (eit) if t ∈ X and 0 if
t ∈ [0,2π ]\X . Taking into account all these steps one can attain the following estima-
tion

sup
θX∈VX

{|
∫

X
θX (eit)φ(eit)dσ(t)|} < c, (5.54)

where X is under Conditions (5.52), c is the constant defined by (5.51), VX is the set
of all continuous on X functions subordinate to Conditions (5.53). The latter means
that

φ(eit )χX(t) ∈ L1
σ +L2

η , (5.55)

where, as usual, χX(t) denotes the indicator of the set X . Now let us split the segment
[0,2π ] into two subsets X (1) and X (2) in such a way that separates absolutely con-
tinuous and singular parts of the measure: X (1) ∩X (2) = /0 , χX(1) (t)dσ(t) = ω(t)dt ,
χX(2) (t)dσ(t) = ωs(t)dt . Then (5.55) yields χX(2) (t)φ(t) ∈ L1

σs
+L2

ηs
, so after this ob-

servation we can assume σ(t) = σc(t) . Under this hypothesis and Condition (4.39)
Condition (5.50) takes the form

sup
N(ξ )∈Xc

{|
∫ 2π

0
N(eit)φ(t)ω(t)dt|} < ∞ . (5.56)

where Xc denotes the set of all polynomials admitting the representation N(ξ ) =
M2

0(ξ )Q(ξ ) such that ‖N(eit)‖C[0,2π ]∩L2
ν

� 1. The next steps that use Inequality (5.56)
are similar to the corresponding ones applied during the proof of Lemma 5.1 so we give
their short description only. Due to (5.56) one can consider the expression∫ 2π

0
φ(t)N(eit )dσ(t)

as a continuous linear functional on K⊂C[0, ,2π ]∩L2
νc

. Thanks to Hahn-Banach The-
orem and the structure of the space dual to C[0,2π ]∩L2

νc
(see [3] or [9]) there are
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functions ϑ(t) and ς(t) such that ϑ(0) = 0, ϑ(t) has on [0,2π ] a bounded variation,
is continuous from the left and satisfies to the condition

if M0(eit0) = 0 then ϑ(t0 +0) = ϑ(t0), (5.57)

ς(t) ∈ L2
ηc

and for every entire non negative number m

∫ 2π

0
φ(t)M2

0 (eit)eimtdσ(t) =
∫ 2π

0
M2

0 (eit)eimtdϑ(t)+
∫ 2π

0
M2

0(eit)eimtς(t)dσ(t).

Due to F. and M. Riesz Theorem on analytic measures we have that the following
function of bounded variation∫ t

0
φ(t)M2

0 (eit)dσ(t)−
∫ t

0
M2

0(eit)dϑ(t)−
∫ t

0
M2

0(eit)ς(t)dσ(t)

is absolutely continuous and analytic, i.e. there are function ζ (ξ )∈H1(C) with bound-
ary values ζ (eit) , ζ (0) = 0 and τ(t) ∈ L1 such that

ζ (eit) = φ(t)M2
0 (eit)ω(t)−M2

0(e
it)τ(t)−M2

0(e
it)ς(t)ω(t),

i.e.

φ(t) =
ζ (eit)

ω(t)M2
0 (eit)

+
τ(t)
ω(t)

+ ς(t).

Next,
∫ 2π
0 N(eit)ζ (eit )M−2

0 (eit)ω−1(t)dσ(t) =
∫ 2π
0 Q(eit)ζ (eit )dt = 2πQ(0)ζ (0) = 0

for all N(ξ ) ∈ K , so we can put ψ(t) = τ(t)ω−1(t)+ ς(t) because in this case ψ(t) ∈
L1
σ +L2

η and the difference φ(t)−ψ(t) is “orthogonal” to K . �

LEMMA 5.3. Let a function φ(t) satisfy Condition (5.44) and let the weight func-

tion ω(t) satisfy Condition (4.39). Then φ(t) M′∼ ψ(t) for some ψ(t) ∈ L1
σ +L2

η if and
only if

sup
N(ξ )∈Y

{
|
∫ 2π

0
N(eit)φ(t)dσ(t)|

}
< ∞, (5.58)

where Y is the set of polynomials N(ξ ) with Representation (4.34) and such that
‖N(eit)‖L∞

σ∩L2
ν

� 1 . Moreover, if Condition (5.58) holds then there is (maybe) another

function ψ0(t)) ∈ L1
σ +L2

η such that that φ(t) M∼ ψ(t) .

Proof. There are two positive constant a and b , a � b such that a � |M�
T′

(eit)|� b

for all t ∈ [0,2π ] . Taking into account this fact it is easy to transform Condition (5.58)
to a condition like (4.25)

sup
N(ξ )∈X

{
|
∫ 2π

0
N(eit)M�

T′
(eit)φ(t)dσ(t)|

}
< ∞, (5.59)
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where φ(t) is replaced by M�
T′

(eit)φ(t) . Due to Lemma 5.2 the latter means that the

necessity of Condition (5.58) was already proved, moreover, for the proof of the suffi-
ciency of the same condition we can assume that σ(t) = σc(t) . Under this hypothesis
Condition (5.59) takes the form

sup
N(ξ )∈X

{|
∫ 2π

0
N(eit )M�

T′
(eit)φ(t)ω(t)dt|} < ∞ .

The latter and Lemma 5.2 bring M�
T′

(eit)φ(t) M∼ ψ(t) ∈ L1
σ +L2

η , so due to mentioned

above F. and M. Riesz Theorem on analytic measures there is a function ζ (ξ ) ∈H1(C)
such that

M2
0(eit)[M�

T′
(eit)φ(t)−ψ(t)]ω(t) = eitζ (eit)

or

φ(t) =
ψ(t)

M�
T′

(eit)
+

eitζ (eit)
M2

0 (eit)M�
T′

(eit)ω(t)
.

Note that ψ(t)
M�

T′
(eit) ∈ L1

σ +L2
η , so we need to analyze the second summand only. The

function ζ0(ξ ) = ζ (ξ )
M2

0 (ξ )
is holomorphic on D and the function ζ1(ξ ) = ζ0(ξ )

M�
T′

(ξ ) is mero-

morphic on D and has here finitely many pols. Let K(ξ ) be the Hermite-Birkhoff in-
terpolant for ζ0(ξ ) with the set of interpolation points that coincides with the zero set
of M�

T′
(ξ ) taking into account the multiplicity of zeros. Due to this choice the function

γ(ξ ) = ζ0(ξ )−K(ξ )
M�

T′
(ξ ) has within D removable singularities only. Then

eitζ (eit)
M2

0 (eit)M�
T′

(eit)ω(t)
=

eit

ω(t)
γ(eit)+

eitK(eit)
ω(t)M�

T′
(eit)

,
eitK(eit)

M�
T′

(eit)ω(t)
∈ L1

σ ,

γ(eit)M2
0 (eit)

ω(t)
=

ζ (eit )−K(eit)M2
0 (eit)

M�
T′

(eit)ω(t)
∈ L1

σ ,

and
∫ 2π
0 eitγ(eit)ω−1(t)N(eit )dσ(t) =

∫ 2π
0 eitγ(eit)M2

0 (eit)Q(eit)dt = 0 for all N(ξ ) ∈
K . The rest is straightforward. �

Taken together, Lemma 4.1 and Lemma 5.3 yield the following result.

COROLLARY 5.1. Let a function set {υq(t)}m
q=1 be such that M2

0(eit)υq(t) ∈ L1
σ

for all q and let the corresponding set of linear functionals {ϒq}m
q=1 be defined by

(4.42). This function set is M′ -linear independent with respect to L1
σ +L2

η if and only
if for all q = 1,2, . . . ,m:

sup
M∈⋂m

j=1, j �=q Kerϒ j ,‖M‖
L2
ν∩L∞σ

=1
{|ϒq(M)|} = ∞.
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COROLLARY 5.2. Let a function set {υq(t)}m
q=1 be such that M2

0(eit)υq(t) ∈ L1
σ

for all q . Then this set is M′ -linear independent with respect to L1
σ +L2

η if and only if
it is M-linear independent with respect to the same space.

6. The case in which AlgU is not a WJ� -algebra

Let S(U) be the collection of operators {S} that can be presented (see Decom-
position (4.22)) as

S =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0

S10 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠ , (6.60)

where S01 : G0 → G1 runs through all operators such that (compare with (4.26))

if
k

∑
j,q=1

α jqι jq(t)
M′∼ ψ(t) ∈ L1

σ +L2
η , then

k

∑
j,q=1

α jq(Sh j,eq) = 0. (6.61)

Note that if Condition (5.44) is fulfilled then due to Proposition 5.3 Condition (6.61)
can be replaced by the following condition

if
k

∑
j,q=1

α jqι jq(t) ∈ L1
σ +L2

η , then
k

∑
j,q=1

α jq(S10h j,eq) = 0.

The latter was used for the definition of S(U) in the paper [19] that was mainly con-
cerned with the case (5.44).

Let ϕ(t) be μσ -measurable bounded function defined on [0,2π ] . Let us denote
by Gϕ(U) the set of operators B ∈ AlgU any of which has ϕ(t) as a portrait (see
Definition 1.2 and Formula (1.10)). It can occur that Gϕ(U) = /0 for some ϕ(t) , but,
for instance, Gϕ(U) �= /0 for ϕ(t) ≡ 0.

PROPOSITION 6.1. S(U) = G0(U)∩AlgM U .

Proof. If Condition (4.38) is fulfilled then due to Proposition 5.3 the statement of
Proposition 6.1 was proved in some previous papers (see, for instance, [17] and [19]).
On the other hand a way that we apply here does not depend, roughly speaking, of
Condition (4.38).

Let S ∈ AlgM U . Then for any collection of vectors x1,x2, . . .,xk,y,z ∈ G2 and the
collection h1,h2, . . . ,hk,e1,e2, . . . ,ek defined by (4.23) there is a sequence of polyno-
mials {Ql(ξ )}∞1 such that

lim
l→∞

(
�

M2
0(U)M�

T′
(U)Ql(U)y,z) = (Sy,z),

lim
l→∞

(
�

M2
0 (U)M�

T′
(U)Ql(U)h j,x j) = (Sh j,x j),

lim
l→∞

(
�

M2
0 (U)M�

T′
(U)Ql(U)h j,eq) = (Sh j,eq), j,q = 1,2, . . . ,k.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(6.62)



ON A FUNCTIONAL CALCULUS IN PONTRYAGIN SPACES 995

Since S ∈ G0(U) then

(Sy,z) = 0, (Sh j,x j) = 0, j = 1,2, . . . ,k. (6.63)

As it was shown in Proposition 3.1) every function ψ(t) ∈ L1
σ +L2

η accepts the repre-
sentation∫ 2π

0
Ql(eit)M(eit )ψ(t)dσ(t) = (M(U)Ql(U)y,z)+

k

∑
j=1

(M(U)Ql(U)h j,x j),

so (6.61), (6.62) and (6.63) yield G0(U)∩AlgM U ⊂ S(U) . Now let S ∈ S(U) and let
Ξ be a subset of the set {( j,q)}k

j,q=1 such that {ι jq(t)}( j,q)∈Ξ is a maximal linear M′ -
independent subset of the set {ι jq(t)}k

j,q=1 . Due to Corollary 5.1 for any ( j0,q0) ∈ Ξ

there is a polynomial sequence {M2
0(ξ )M�

T′
(ξ )Q( j0,q0)

l (ξ )}∞l=1 such that

lim
l→∞

‖M2
0(eit)M�

T′
(eit)Q( j0,q0)

l (eit)‖L2
ν∩L∞

σ
= 0,

lim
l→∞

(
�

M2
0 (U)M�

T′
(U)Q( j0,q0)

l (U)h j0 ,eq0) = (Sh j0 ,eq0),

lim
l→∞

(
�

M2
0 (U)M�

T′
(U)Q( j0,q0)

l (U)h j,eq) = 0, ( j,q) ∈ Ξ, ( j,q) �= ( j0,q0).

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
The latter yields S ∈ G0(U)∩AlgM U . �

In [19] the following result was obtained.

THEOREM 6.1. If U is such that (4.38) is fulfilled, then Gϕ(U)∩AlgM U �= /0
if and only if ϕ(t) ∈ L∞

σ ∩L2
ν ; if B0 is a fixed operator from Gϕ(U)∩AlgM U , then

Gϕ(U)∩AlgM U = {B0 +S}S∈S(U) .

Before going further, let us make a simple observation concerning the space H∞(C) .
It can be treated as a space of uniformly bounded holomorphic functions on D . These
functions have bonded values: f (eit) = limr→1−0 f (reit ) , the limit exists a.e. with re-
spect to the standard Lebesgue measure, one can say also that f (reit ) converges to
f (eit) in the weak* topology on L∞ , see, for instance, [8], P.33. The latter gives a
possibility to treat the space H∞(C) as a subspace of L∞ . The analogous remark on the
couple H2

Ĝ
(C) and L2

νc
is valid too. The latter gives a possibility to consider the space

(H2
Ĝ
∩H∞(C))+̇(L∞

σs
∩L2

νs
) as a subspace of L∞

σ ∩L2
ν .

THEOREM 6.2. If U is such that (4.39) is fulfilled, then Gϕ(U)∩AlgM U �= /0 if
and only if ϕ(t) = M�

T′
(eit)ψ(t) , where ψ(t) ∈ (H2

Ĝ
∩H∞(C))+̇(L∞

σs
∩L2

νs
); if B0 is a

fixed operator from Gϕ(U)∩AlgM U , then Gϕ(U)∩AlgM U = {B0 +S}S∈S(U) .

Proof. Due to Theorems 4.1, 5.1, 6.1 and Relation (5.55) we can assume σ(t) =
σc(t) . If (4.39) is fulfilled and d is as in (1.7), then eint√

ω(t)
d ∈ L2

�σ (E ) , where n =
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0,±1,±2, . . . . If ϕ(eit) is a portrait of B ∈ AlgM(U) , then for every natural N there is

a polynomial sequence {Ml(ξ ) = M2
0(ξ )M�

T′
(ξ )Q(N)

l (ξ )}∞l=1 such that

[
BW

eint√
ω(t)

d,W
1√
ω(t)

d
]

=
∫ 2π

0
ϕ(eit)eintdt = lim

l→∞

∫ 2π

0
Ml(eit)eintdt ,

where n = 0,±1,±2, . . . ,±N . This yields
∫ 2π
0 ϕ(eit)eintdt = 0 for all n = 1,2, . . . . So,

there is the holomorphic in D function ϕ(ξ ) such that a. e. limρ→1−0ϕ(ρeit) =ϕ(eit) .
Due to Proposition 3.1 ϕ(eit) ∈ L∞

σ ∩L2
ν , in particular,

∫ 2π
0 |ϕ(eit)|2G(t)ω(t)dt < ∞ .

The latter thanks to ϕ(eit)∈ L∞
σ can be transformed into the condition

∫ 2π
0 |ϕ(eit)|2(1+

∑k
j=1 ‖g̃ j(t)‖2

E)ω(t))dt < ∞ . So (see (5.43)), ϕ(ξ ) ∈ (H2
Ĝ
∩H∞(C)) . Suppose now

that ξ0 is a zero of M�
T′

(ξ ) with a multiplicity m0 . Then eit

(eit−ξ0) j
√

ω(t)
d ∈ L2

�σ (E ) ,

j = 1,2, . . . ,m0 and there is a polynomial sequence {Ml(ξ ) = M2
0 (ξ )M�

T′
(ξ )Ql(ξ )}∞l=1

such that[
BW

eit

(eit − ξ0) j
√

ω(t)
d,W

1√
ω(t)

d
]

=
∫ 2π

0

ϕ(eit)eit

(eit − ξ0) j dt = lim
l→∞

∫ 2π

0

Ml(eit)eit

(eit − ξ0) j dt ,

where j = 1,2, . . . ,m0 . But for the same j

ϕ( j−1)(ξ0) =
( j−1)!

2π

∫ 2π

0

ϕ(eit)eit

(eit − ξ0) j dt and
∫ 2π

0

Ml(eit)eit

(eit − ξ0) j dt = 0 ,

The latter yields ϕ(ξ )
M�

T′
(ξ ) ∈ (H2

Ĝ
∩H∞(C)) . This concludes the first part of the proof.

Now we need to prove that if ϕ(ξ ) = ψ(ξ )M�
T′

(ξ ) , where

ψ(ξ ) ∈ (H2
Ĝ
∩H∞(C)), (6.64)

then Gϕ(U)∩AlgM U �= /0 . As a previous step let us consider the function φ(ξ ) =
ψ(ξ )M�

T′
(ξ )M4

0(ξ )M4
3(ξ ) . Let Cn(ρeit) be the Cesaro means of the Fourier series

for ψ(ρeit) . Condition ψ(ξ ) ∈ (H2
Ĝ
∩H∞(C)) means that Cn(ρeit) is a polynomial

of ξ = ρeit . Take an arbitrary collection of vectors x1,x2, . . .,xk,y,z ∈ G2 and the
collection h1,h2, . . . ,hk,e1,e2, . . . ,ek defined by (4.23). Put f1(t) = W−1x1, f2(t) =
W−1x2, . . ., fk(t) = W−1xk , u(t) = W−1y , v(t) = W−1z . Then

[Cn(U)M�
T′

(U)M4
0 (U)M4

3(U)y,z]

=
∫ 2π

0
Cn(eit)M�

T′
(eit)M4

0 (eit)M4
3 (eit)(u(t),v(t))E dσ(t),

[Cn(U)M�
T′

(U)M4
0 (U)M4

3(U)h j,x j]

=
∫ 2π

0
Cn(eit)M�

T′
(eit)M4

0 (eit)M4
3(eit)(g̃ j(t), f j(t))E dσ(t), j = 1,2, . . . ,k ,
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[Cn(U)M�
T′

(U)M4
0(U)M4

3(U)h j,eq]

=
∫ 2π

0
Cn(eit)M�

T′
(eit)M4

0(eit)M4
3 (eit)ι jq(t)dσ(t), j,q = 1,2, . . . ,k .

The functions (u(t),v(t))E ω(t), M0(eit)(g̃ j(t), f j(t))E ω(t), M2
0 (eit)ι jq(t)ω(t) are ab-

solutely integrable and, as is well known (see, for instance, [8], page 19), the Cesaro
means Cn(eit) converges to ψ(eit) in weak-* topology. These yield

�
φ (U) = w− lim

n→∞
Cn(U)M�

T′
(U)M4

0(U)M4
3(U).

Now let us apply the scheme like in Proposition 4.2: using the polynomials (4.31) we
construct a sequence of polynomials Qm(ξ ) such that

• limm→∞ Qm(eit)M4
0 (eit)M4

3(eit) = 1 if t �∈ σ(U00)∪σ(U33) ;

• limm→∞ Qm(eit)M4
0 (eit)M4

3(eit) = 0 if t ∈ σ(U00)∪σ(U33) ;

• There is a constant c > 0 such that |Qm(eit)M4
0 (eit)M4

3(eit)| � c
for all t ∈ [0,2π ] and m = 1,2, . . . .

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Now let us define the sequence of operators {

�
φm (U)}∞m=1 :

�
φm (U) = w− lim

n→∞
Cn(U)Qm(U)M�

T′
(U)M4

0 (U)M4
3(U). (6.65)

Then

[
�
φm (U)y,z] =

∫ 2π

0
ψ(eit)Qm(eit)M�

T′
(eit)M4

0 (eit)M4
3(eit)(u(t),v(t))E dσ(t),

[
�
φm (U)h j,x j]

=
∫ 2π

0
ψ(eit)Qm(eit)M�

T′
(eit)M4

0 (eit)M4
3(eit)(g̃ j(t), f j(t))E dσ(t), j = 1,2, . . . ,k ,

Due to Condition (6.64) the functions

(ψ(eit)u(t),v(t))E ω(t) and (ψ(eit)g̃ j(t), f j(t))E ω(t)

are absolutely integrable, so,

lim
m→∞

[
�
φm (U)y,z] =

∫ 2π

0
ψ(eit)M�

T′
(eit)(u(t),v(t))E dσ(t) and

lim
m→∞

[
�
φm (U)h j,x j] =

∫ 2π

0
ψ(eit)M�

T′
(eit)(g̃ j(t), f j(t))E dσ(t), j = 1,2, . . . ,k .

On the other hand, the convergence of the sequences{
[
�
φm (U)h j,eq]

}∞

m=1
, j,q = 1,2, . . . ,k .
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cannot, generally speaking, be garanteed, therefore we need to modify (6.65). Acting
as in Proposition 6.1 fix a subset Ξ of the set {( j,q)}k

j,q=1 such that {ι jq(t)}( j,q)∈Ξ is

a maximal linear M′ -independent subset of the set {ι jq(t)}k
j,q=1 . Select an arbitrary

set of numbers {b jq}( j,q)∈Ξ . Due to Corollary 5.1 for every ( j0,q0) ∈ Ξ there is a

polynomial sequence {M2
0(ξ )M�

T′
(ξ )Q( j0,q0)

m (ξ )}∞m=1 such that

lim
m→∞

‖M2
0(eit)M�

T′
(eit)Q( j0,q0)

m (eit)‖L2
ν∩L∞

σ
= 0,

lim
m→∞

({ �
φm (U)+

�
M2

0 (U)M�
T′

(U)Q( j0,q0)
m (U)

}
h j0 ,eq0

)
= b j0q0 ,

lim
m→∞

(
�

M2
0 (U)M�

T′
(U)Q( j0,q0)

m (U)h j,eq) = 0, ( j,q) ∈ Ξ, ( j,q) �= ( j0,q0).

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
The rest is straightforward. �

THEOREM 6.3. Let B∈AlgU . Then B = Q(U)+F , where Q(ξ ) is a polynomial
and F ∈ AlgM U .

We omite the proof of this theorem because it can be realised on the base of The-
orem 6.2 by the same way that was applied in [17] proving Theorem 4.23 on the base
of Theorem 4.7.

Closing remarks

The results concerning a similar circle of problem for normal and, in particular,
for unitary operators in Hilbert spaces are well known, see [12] for detail analysis. The
proof of Lemma 2.1 (including Proposition 2.1) is presented here for the first time. The
treatment of unbounded elements in Section 5 differs from one in [19] due to Condition
(4.39) that yields U−1 �∈ AlgU . A similar remark is valid for the notions and results of
Section 6.

Acknowledgement. The author is very grateful to Professor I. Pesenson for his
assistance in making the paper more readable.
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