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INTEGRAL REPRESENTATIONS OF SOME

FAMILIES OF OPERATOR MONOTONE FUNCTIONS

YOICHI UDAGAWA

(Communicated by D. R. Farenick)

Abstract. We obtain an integral representation of holomorphic function Pα(z) which is real on
the positive part of the real axis and formed

Pα(x) =
(

xα +1
2

) 1
α

(x � 0).

For this purpose we define a two variable function which is substituted for an argument θ , and
also find an explicit real and imaginary part of Pα(x+ iy) .

1. Introduction

Let H be a complex Hilbert space with an inner product 〈·, ·〉, and B(H ) be
the set of all bounded linear operators on H . An operator A ∈ B(H ) is said to be
positive if and only if 〈Ax,x〉 � 0 for all x ∈ H . We denote a positive operator A by
A � 0. For self-adjoint operators A,B ∈ B(H ), A � B means B−A is positive. A
continuous function f (x) defined on an interval I in R is called an operator monotone
function if A � B =⇒ f (A) � f (B) holds for every pair A,B ∈ B(H ) whose spectra
σ(A) and σ(B) lie in I . A typical example of it is xα for α ∈ (0,1) , this claims
0 < A � B =⇒ Aα � Bα for 0 < α < 1 ([4], [5]). This inequality is so famous and
called the Löwner-Heinz inequality. This inequality also asserts that

Aα − I
α

� Bα − I
α

holds for α ∈ (0,1) , and by tending α ↘ 0, both sides of the above inequality converge
to logA and logB in the norm topology, respectively. From this fact, we can conclude
that the logarithmic function logx is operator monotone too.

We call f (z) a Pick function if f (z) is holomorphic on C+ = {z ∈ C | ℑz > 0}
and satisfies f (C+) ⊂ C+ . By Löwner’s results ([1], [5]), a real function f (x) is
operator monotone if and only if a complex function f (z) is a Pick function. Strictly
speaking, an operator monotone function f (x) defined on an interval (a,b) has an
analytic continuation to the upper half plane as a Pick function, and, conversely, if a
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Pick function f (z) satisfies f ((a,b)) ⊂ R for an interval (a,b) , then the restriction
of f (z) to (a,b) is operator monotone. For example, we have confirmed that logx
is operator monotone on (0,∞) , and, indeed, the logarithmic function has an analytic
continuation to the cut plane C\ (−∞,0] as a Pick function

Logz := logr+ iθ ,

where z := reiθ (r > 0, −π < θ < π) . Moreover, it is well-known that a Pick function
f (z) has an integral representation

f (z) = αααz+ βββ +
∫ ∞

−∞

(
1

λ − z
− λ

λ 2 +1

)
dμ(λ ) (�)

where ααα � 0, βββ ∈ R and μ(λ ) is a nonnegative Borel measure on R such that∫ ∞

−∞

1
λ 2 +1

dμ(λ ) < ∞.

The measure μ in (� ) is called representing measure of f . We remark that if f satisfies
f
(
(a,b)

) ⊂ R for an interval (a,b) , namely, f is an operator monotone function on
(a,b) , then the measure μ has no mass on (a,b) . In particular, if f is an operator
monotone function on [a,b) , then the measure μ has no mass on [a,b) . Recently
F. Hansen showed interesting results about the representing measure of an operator
monotone function on (0,∞) ;

THEOREM A. (Hansen [2]) Let g : (0,∞)→R be an operator monotone function
which has an integral representation

g(x) = αααx+ βββ +
∫ ∞

0

(
λ

λ 2 +1
− 1

λ + x

)
dν(λ )

where ν(λ ) is a positive measure on the closed positive half-line [0,∞) with∫ ∞

0

1
λ 2 +1

dν(λ ) < ∞.

Let ν̃ be the measure obtained from ν by removing a possible atom in zero. Then

lim
ε→0

1
π

ℑg(−t + iε)h(t)dt =
h(0)
2

ν({0})+
∫ ∞

0
h(λ )dν̃(λ )

for every continuous, bounded and integrable function h defined in [0,∞) .

It is also known that constants ααα,βββ and measure μ(λ ) which appear in the above
integral representation (�) is found as

ααα = lim
y→∞

f (iy)
iy

, βββ = ℜ f (i), πdμ(λ ) = lim
y↘0

ℑ f (λ + iy)dλ ,

where the last limit is in the vague topology. Following this method, we can easily get
ααα and βββ . But it is little harder to obtain measure μ(λ ) than previous case, because we
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need to find not only a limit of a family of functions but also convergence in the vague
topology. For this purpose, it is usually required for us to show that a convergence
theorem is applicable to ℑ f (λ + iy) . However, there are some functions such that we
can confirm the validity of its integral representation only using a simple computation,
for instance

DL(z) :=
zLogz
z−1

=
π
4

+
∫ 0

−∞

(
1

λ − z
− λ

λ 2 +1

)
λ

λ −1
dλ .

Note that a “real” function DL(x) can be extended continuously to [0,∞) by DL(1) = 1
and DL(0) = 0. This function is also known as the representing function of the dual of
the logarithmic mean ([6]). In [6] , we proved that the imaginary part of DL(z) satisfies

0 < ℑDL(reiθ ) < θ

for z = reiθ ∈ C+ , where θ is an “argument” of z . Hence exp{DL(x)} is operator
monotone on (0,∞) .

The 1-parameter family of functions {Pα(x)}α∈[−1,1] ;

Pα(x) =
(

xα +1
2

) 1
α

(−1 � α � 1)

is one of the most famous family of operator monotone functions, and also known as
the representing function of the Power mean [7]. When we confirm operator mono-
tonicity of Pα(x) , we usually show that Pα(x) has a holomorphic branch, which maps
the upper half plane into itself, by checking their “argument” θ . This technique is very
simple and useful, but, in its proof, there is no information about an explicit form of
holomorphic branch Pα(z) . If we want to find an integral representation of Pα(x+ iy)
by the above way, then we have to describe its real part ℜPα(x + iy) and imaginary
part ℑPα(x+ iy) concretely. In Section 2, we give a “device” to express this real and
imaginary parts, and we obtain an explicit form of Pα(x+ iy) in Section 3. Lastly, in
Section 4, we obtain an integral representation of Pα(z) .

2. Tan−1(x,y)

As mentioned in the Section 1, it is well-known that a real function gα(x) = xα ,
which is continuous and increasing on [0,∞) , is operator monotone for α ∈ (0,1] .
gα(x) has a holomorphic branch

gα(z) := rαeiαθ ,

where z = reiθ (r > 0, −π < θ < π) , and is also known as a Pick function. This form
is described by an “argument” θ , and thus it is difficult to express like gα(x + iy) =
u(x,y)+ iv(x,y) . We remark that

Pα(x) = g 1
α

(
gα(x)+1

2

)
(x > 0).
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In [3] F. Hansen gave imaginary part and real part of g 1
α

(
gα(z)+ 1

)
= (zα + 1)

1
α by

using “argument” θ , but their form was not explicit. So we consider introducing a two
variable function which is substituted for an argument θ to express concrete real and
imaginary part of gα(x+ iy) .

DEFINITION 1. Let A := R2 \ {(a,b) ∈ R2|−∞ < a � 0,b = 0} . We define the
two variable function Tan−1 : A → (−π ,π) ∈ R as the following;

Tan−1(x,y) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tan−1
(y

x

)
+ π (x < 0,y > 0)

π
2

(x = 0,y > 0)

tan−1
(y

x

)
(x > 0)

−π
2

(x = 0,y < 0)

tan−1
(y

x

)
−π (x < 0,y < 0).

Clearly, Tan−1(x,y) is continuous on A . On the other hand, next proposition
determines how to treat Tan−1(x,y) for the case y = 0.

PROPOSITION 1. (1) lim
x<0,y↘0

Tan−1(x,y) = lim
y>0,x→−∞

Tan−1(x,y) = π ,

(2) lim
x<0,y↗0

Tan−1(x,y) = lim
y<0,x→−∞

Tan−1(x,y) = −π ,

(3) lim
x→∞

Tan−1(x,y) = 0.

Proof. (1) When x < 0 and y > 0, Tan−1(x,y) = tan−1
(y

x

)
+ π . So we have

lim
x<0,y↘0

Tan−1(x,y) = lim
y→0

tan−1
(y

x

)
+ π = π ,

lim
y>0,x→−∞

Tan−1(x,y) = lim
x→−∞

tan−1
(y

x

)
+ π = π .

(2) We can prove similar to the case (1) .
(3) For x > 0,

lim
x→∞

Tan−1(x,y) = lim
x→∞

tan−1
(y

x

)
= 0. �

From the Definition 1, we can easily find that a two variable function Tan−1(x,y)
defined above has many properties that an argument θ satisfies. We introduce some of
these without proof in the following. These properties will often appear as useful tools.
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PROPOSITION 2. (1) For a > 0 , Tan−1(ax,ay) = Tan−1(x,y) ,

(2) For b < 0 , (i) y > 0 =⇒ Tan−1(bx,by) = Tan−1(x,y)−π ,

(ii) y < 0 =⇒ Tan−1(bx,by) = Tan−1(x,y)+ π

LEMMA 1. (1) For y > 0 and x1 > x2 , Tan−1(x1,y) < Tan−1(x2,y) ,
(2) For y < 0 and x1 > x2 , Tan−1(x1,y) > Tan−1(x2,y) ,
(3) For x > 0 and y1 > y2 , Tan−1(x,y1) > Tan−1(x,y2) ,
(4) For x < 0 and y1 > y2 > 0 > y3 > y4 ,

Tan−1(x,y2) > Tan−1(x,y1) > Tan−1(x,y4) > Tan−1(x,y3).

LEMMA 2. (1) Let x > 0 and y > 0 . Then
(i) Tan−1(−x,y) = −Tan−1(x,y)+ π ,

(ii) Tan−1(x,−y) = −Tan−1(x,y),
(iii) Tan−1(−x,−y) = Tan−1(x,y)−π ,

(2) Tan−1(x,−y) = −Tan−1(x,y),

(3) (i) y > 0 implies Tan−1(−x,y) = −Tan−1(x,y)+ π ,
(ii) y < 0 implies Tan−1(−x,y) = −Tan−1(x,y)−π .

Next proposition asserts that Tan−1(x,y) can be substituted for an argument θ .

PROPOSITION 3.

sin
(
Tan−1(x,y)

)
=

y√
x2 + y2

, cos
(
Tan−1(x,y)

)
=

x√
x2 + y2

.

Proof. When x < 0 and y > 0,

sin
(
Tan−1(x,y)

)
cos
(
Tan−1(x,y)

) = tan
(
Tan−1(x,y)

))

= tan
(
tan−1

(y
x

)
+ π
)

= tan
(
tan−1

(y
x

))
=

y
x
. (∗)

From this, we have

x2 sin2(Tan−1(x,y)
)

= y2 cos2(Tan−1(x,y)
)

= y2
(
1− sin2(Tan−1(x,y)

))
,

and therefore
(x2 + y2)sin2(Tan−1(x,y)

)
= y2.

Since y > 0 and sin
(
Tan−1(x,y)

)
> 0,√

x2 + y2 sin
(
Tan−1(x,y)

)
= y.
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By this fact and (∗) we obtain

sin
(
Tan−1(x,y)

)
=

y√
x2 + y2

, cos
(
Tan−1(x,y)

)
=

x√
x2 + y2

. �

By Proposition 3, we can immediately have

x+ iy =
√

x2 + y2
(
cos
(
Tan−1(x,y)

)
+ isin

(
Tan−1(x,y)

))
.

From this, it is expected that Tan−1(x,y) will be able to express real and imaginary part
of gα(x+ iy) as an explicit form, instead of θ .

PROPOSITION 4. Define the function Gα : R×C\ (−∞,0]→ C by

Gα(x+ iy) :=
(
x2 + y2) α

2
{

cos
(
αTan−1(x,y)

)
+ isin

(
αTan−1(x,y)

)}
.

Then the following hold;

(1) Gα(x+ iy) is holomorphic on C\ (−∞,0] ,

(2) If α ∈ (0,1) , then Gα(C+) ⊂ C+ , where C+ = {z ∈ C | ℑz > 0}.

Proof. (1) We verify that Gα satisfies the Cauchy-Riemann equations.
Put ℜGα(x+ iy) = R(x,y),ℑGα(x+ iy) = I(x,y) . Since

∂
∂x

Tan−1(x,y) = − y
x2 + y2 ,

∂
∂y

Tan−1(x,y) =
x

x2 + y2 ,

we obtain
∂
∂x

R(x,y) =
∂
∂y

I(x,y),
∂
∂y

R(x,y) = − ∂
∂x

I(x,y).

(2) Take y > 0. Then Tan−1(x,y)∈ (0,π) , and we have αTan−1(x,y)∈ (0,απ)⊂
(0,π). Accordingly,

sin
(
αTan−1(x,y)

)
> 0

holds and it implies I(x,y) > 0. �
For x+ iy∈ C+ , it is clear that Gα(x+ iy)→ xα as y↘ 0. From this we find that

Gα(x+ iy) is an analytic continuation of gα(x) such that Gα(C+)⊂C+ . Furthermore,
this holomorphic branch will play an important role when we construct an explicit form
of Pα(x+ iy) . Also, we find that Gα has some properties which a real power function
satisfies.

LEMMA 3. (1) For α ∈ (0,1) ,

Tan−1
(
cos
(
αTan−1(x,y)

)
,sin
(
αTan−1(x,y)

))
= αTan−1(x,y).

(2) Tan−1
(
cos
(
Tan−1(x,y)

)
,−sin

(
Tan−1(x,y)

))
= −Tan−1(x,y).
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Proof. If x < 0, y > 0, then
π
2

< αTan−1(x,y) < π . So

Tan−1
(
cos
(
αTan−1(x,y)

)
,sin
(
αTan−1(x,y)

))
= αTan−1(x,y),

Tan−1
(
cos
(
Tan−1(x,y)

)
,−sin

(
Tan−1(x,y)

))
= −Tan−1(x,y). �

PROPOSITION 5. G−α(z) =
1

Gα(z)
= Gα

(
z−1)

PROPOSITION 6. (1) Gα(z)Gβ (z) = Gβ (z)Gα(z) = Gα+β (z),

(2) If α,β ∈ (−1,1) , then Gα
(
Gβ (z)

)
= Gβ

(
Gα(z)

)
= Gαβ (z).

REMARK 1. Proposition 6.(2) doesn’t hold for if |α|> 1 or |β |> 1. For example,

we put z = −1+ i, α = 2 and β =
1
2

. Then

G2
(
G 1

2
(z)
)

= −1+ i = z, G 1
2

(
G2(z)

)
= 1− i = −z.

3. An explicit form of Pα

In this section, we define an explicit form of Pα anew by applying Gα which is
determined in the previous section.

Firstly, let α ∈ (0,1) . For a “real ” x > 0, Pα(x) is described as

Pα(x) =
(

xα +1
2

) 1
α

= g 1
α

(
gα(x)+1

2

)

by “real function” gα(x) = xα . From this relation, we define a “complex function” Pα
as

Pα(z) = G 1
α

(
Gα(z)+1

2

)
.

Then lim
x>0,y↘0

Pα(x+ iy) =
(

xα +1
2

) 1
α

is clear. By Proposition 4, Gα is holomorphic

on C\ (−∞,0] . Since the set of all holomorphic functions is closed under composition,
Pα is also holomorphic. For z = x+ iy (y > 0) ,

Pα(x+ iy) =
(
Rα(x,y)2 + Iα(x,y)2

) 1
2α

×
{

cos

(
1
α

Tan−1(Rα(x,y), Iα(x,y)
))

+ isin

(
1
α

Tan−1(Rα(x,y), Iα (x,y)
))}

,

where

Rα(x,y)=

(
x2 + y2

) α
2 cos

(
αTan−1(x,y)

)
+1

2
, Iα(x,y)=

(
x2 + y2

) α
2 sin

(
αTan−1(x,y)

)
2

.
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Since y > 0, αTan−1(x,y) ∈ (0,π) . Hence Tan−1
(
Rα(x,y), Iα(x,y)

)
> 0. By Proposi-

tion 2, Lemma 1 and Lemma 3,

0 <
1
α

Tan−1(Rα(x,y), Iα(x,y)
)

=
1
α

Tan−1
((

x2 + y2) α
2 cos

(
αTan−1(x,y)

)
+1,

(
x2 + y2) α

2 sin
(
αTan−1(x,y)

))
<

1
α

Tan−1
(
cos
(
αTan−1(x,y)

)
,sin
(
αTan−1(x,y)

))
=

1
α
(
αTan−1(x,y)

)
= Tan−1(x,y) < π .

Since

ℑPα(x+ iy) =
(
Rα(x,y)2 + Iα(x,y)2

) 1
2α

sin

(
1
α

Tan−1(Rα(x,y), Iα(x,y)
))

,

we see that Pα is a Pick function for any α ∈ (0,1) .
Next we consider the case α ∈ (−1,0) . For real function Pα(x) ,

Pα(x) =
(

xα +1
2

) 1
α

=

(
2x|α |

x|α | +1

) 1
|α|

= g 1
|α|

(
2− 2

g|α |(x)+1

)

holds, and we determine a complex function Qα , similar to the case α ∈ (0,1) , as the
following;

Qα(z) = G 1
α

(
2− 2

Gα(z)+1

) (
α ∈ (0,1)

)
.

Clearly, lim
x>0,y↘0

Qα(x+ iy) =
(

2xα

xα +1

) 1
α

. For z = x+ iy ∈ C+

Qα(x+ iy) =
(
Sα(x,y)2 + Jα(x,y)2

) 1
2α

×
{

cos

(
1
α

Tan−1(Sα(x,y),Jα(x,y)
))

+ isin

(
1
α

Tan−1(Sα(x,y),Jα (x,y)
))}

,

where

Sα(x,y) =
2
{(

x2 + y2
)α +

(
x2 + y2

) α
2 cos

(
αTan−1(x,y)

)}
(
x2 + y2

)α +2
(
x2 + y2

) α
2 cos

(
αTan−1(x,y)

)
+1

,

Jα(x,y) =
2
(
x2 + y2

) α
2 sin

(
αTan−1(x,y)

)
(
x2 + y2

)α +2
(
x2 + y2

) α
2 cos

(
αTan−1(x,y)

)
+1

.

Similarly to Pα , we can easily obtain

0 <
1
α

Tan−1(Sα(x,y),Jα(x,y)
)

< π .
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Consequently, we have Qα(C+) ⊂ C+ .
From the above, we have obtained next two theorems;

THEOREM 1. Define the function Pα : R×C\ (−∞,0]→ C by

Pα(z) = G 1
α

(
Gα(z)+1

2

)
.

Then Pα(z) is a Pick function for α ∈ (0,1) , and for x+ iy ∈ C+

lim
x>0,y↘0

Pα(x+ iy) = Pα(x).

THEOREM 2. Define the function Qα : R×C\ (−∞,0]→ C by

Qα(z) = G 1
α

(
2− 2

Gα(z)+1

)
.

Then Qα(z) is a Pick function for α ∈ (0,1) , and for x+ iy ∈ C+

lim
x>0,y↘0

Qα(x+ iy) = P−α(x).

REMARK 2. Pα(x) can be extended naturally to [0,∞) for α ∈ (0,∞) , and so Pα
and Qα can be extended naturally to C\(0,∞) . Thus the representing measure of them
have no mass on [0,∞) .

REMARK 3. It follows from their definitions that both Pα and Qα are continuous
in α ∈ (0,1) . Namely, for fixed z ∈ C \ (0,∞] and any sequence δn which converges
to δ , we can confirm that the following equations

lim
n→∞

Pδn(z) = Pδ (z), lim
n→∞

Qδn(z) = Qδ (z)

are satisfied.

From Theorem 1, Theorem 2 and the identity theorem, we could obtain an explicit
form of Pα(z) for α ∈ (−1,0)∪ (0,1) . But we have left a question that how Pα (or
Qα ) is treated for α = 0. Thus we haven’t complete to get an explicit form of Pα(z) ,
and we must solve this question. For the case of a “real function”, Pα(x) converges

pointwise to x
1
2 as α → 0. We shall show that this relation is satisfied for “complex

functions” Pα(x+ iy) and Qα(x+ iy) from definitions of them, and we will treat P0(x+
iy) and Q0(x+ iy) as these results.

LEMMA 4.

Gα(z) = Gα(z), Pα(z) = Pα(z), Qα(z) = Qα(z).
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Proof. For z = x+ iy , we have z = x− iy .Firstly we consider Gα . By Lemma 2,
Tan−1(x,−y) = −Tan−1(x,y) . This yields

cos
(
αTan−1(x,−y)

)
= cos

(
αTan−1(x,y)

)
, sin

(
αTan−1(x,−y)

)
=−sin

(
αTan−1(x,y)

)
.

Accordingly,

Gα(x+ iy) =
(
x2 +(−y)2) α

2
{

cos
(
αTan−1(x,−y)

)
+ isin

(
αTan−1(x,−y)

)}
=
(
x2 + y2) α

2
{

cos
(
αTan−1(x,y)

)− isin
(
αTan−1(x,y)

)}
= Gα(x+ iy).

Next we consider Pα . From the definition of Pα ,

Pα(x− iy) =
(
Rα(x,−y)2 + Iα(x,−y)2

) 1
2α

×
{

cos

(
1
α

Tan−1(Rα(x,−y), Iα(x,−y)
))

+ isin

(
1
α

Tan−1(Rα(x,−y), Iα(x,−y)
))}

.

Applying the above relations, we have Rα(x,−y) = Rα(x,y), Iα(x,−y) = −Iα(x,y) .
This fact and Lemma 2 yield

Tan−1(Rα(x,−y), Iα(x,−y)
)

= −Tan−1(Rα(x,y), Iα(x,y)
)
.

Therefore,

cos

(
1
α

Tan−1(Rα(x,−y), Iα(x,−y)
))

= cos

(
1
α

Tan−1(Rα(x,y), Iα(x,y)
))

,

sin

(
1
α

Tan−1(Rα(x,−y), Iα(x,−y)
))

= −sin

(
1
α

Tan−1(Rα(x,y), Iα (x,y)
))

.

From the above
Pα(x− iy) = Pα(x+ iy).

For Qα , we can also obtain Sα(x,−y) = Sα(x,y),Jα(x,−y) = −Jα(x,y) and hence get
a desired assertion. �

THEOREM 3. For families of functions {Pα(z)}α∈(0,1) and {Qα(z)}α∈(0,1)

lim
α↘0

Pα(z) = lim
α↘0

Qα(z) = G 1
2
(z)

(
z ∈ C\ (−∞,0]

)
holds, namely, {Pα(z)}α∈(0,1) and {Qα(z)}α∈(0,1) converge pointwise to G 1

2
(z) when

α ↘ 0 .

Proof. Firstly we consider Pα(x + iy) . It is clear for the case z ∈ (0,∞) from
Theorem 1. It is sufficient to show the case z ∈ C+ , because if we can prove that
lim
α↘0

Pα(z) = G 1
2
(z)
(
z ∈ C+) , then

lim
α↘0

Pα(z) = lim
α↘0

Pα(z) = G 1
2
(z) = G 1

2
(z)
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by Lemma 4. Put z = x+ iy∈C+ . For any x+ iy there exists a sufficiently small α > 0

such that αTan−1(x,y) ∈
(
0,

π
2

)
. Therefore we can assume that cos

(
αTan−1(x,y)

)
>

0. We easily get

(
Rα(x,y)2 + Iα(x,y)2

) 1
2α =

((
x2 + y2

)α +2
(
x2 + y2

) α
2 cos

(
αTan−1(x,y)

)
+1

4

) 1
2α

Applying l’Hospital’s theorem, we have

lim
α↘0

log
(
Rα(x,y)2 + Iα(x,y)2

) 1
2α =

log
(
x2 + y2

)
4

.

Accordingly, lim
α↘0

(
Rα(x,y)2 + Iα(x,y)2

) 1
2α =

(
x2 + y2) 1

4 . We apply l’Hospital’s theo-

rem again and get

lim
α↘0

Tan−1
(
Rα(x,y), Iα (x,y)

)
α

=
1
2
Tan−1(x,y).

From the above, lim
α↘0

Pα(x+ iy) = G 1
2
(x+ iy) holds for x+ iy ∈ C+ . Next we consider

Qα(x+ iy) . We easily obtain

(
Sα(x,y)2 + Jα(x,y)2

) 1
2α

=

(
4
(
x2 + y2

)α

(
x2 + y2

)α +2
(
x2 + y2

) α
2 cos

(
αTan−1(x,y)

)
+1

) 1
2α

.

So we can similarly get

(
Sα(x,y)2 + Jα(x,y)2

) 1
2α → (

x2 + y2) 1
4 ,

Tan−1
(
Sα(x,y),Jα (x,y)

)
α

→ 1
2
Tan−1(x,y)

when α ↘ 0. Therefore lim
α↘0

Qα(x+ iy) = G 1
2
(x+ iy) . �

4. Integral representations of Pα(z)

In this section, we shall find an integral representation of Pα(z) . Pα(z) is treated
by divided it into three parts, namely Pα(z) when α ∈ (0,1) , Qα(z) when α ∈ (−1,0)
and G 1

2
(z) when α = 0, as before. But, we have already known that G 1

2
has an integral

representation

G 1
2
(z) =

1√
2

+
∫ 0

−∞

(
1

λ − z
− λ

λ 2 +1

)√|λ |
π

dλ

(see [1, p. 27]). Therefore we only have to consider Pα and Qα .



12 Y. UDAGAWA

THEOREM 4. Let 0 < α < 1 . Then Pα(z) has an integral representation

(
1
2

) 1
α

z+

(
cos
(α

2 π
)
+1

2

) 1
2α

cos

(
1
α

tan−1

(
sin
(α

2 π
)

cos
(α

2 π
)
+1

))

+
∫ 0

−∞

(
1

λ − z
− λ

λ 2 +1

)
pα(λ )dλ ,

where

pα(λ )=
1
π

( |λ |2α +2|λ |α cosαπ +1
4

) 1
2α

sin

(
Tan−1

(|λ |α cosαπ +1, |λ |α sinαπ
)

α

)
.

Proof. From Theorem 1, we know that Pα(z) is a Pick function for 0 < α < 1.
Thus Pα has an integral representation

Pα(z) = ααααz+ βββ α +
∫ ∞

−∞

(
1

λ − z
− λ

λ 2 +1

)
dμα(λ ),

where αααα ,βββ α and μα(λ ) are constants and measure which depend on α , respectively.
In the following we find αααα ,βββ α and μα(λ ) . Put z = λ + iy ∈ C+ .

Pα(iy)
iy

=

(
y2α +2yα cos

(α
2 π
)
+1

4y2α

) 1
2α

×
{

sin

(
Tan−1

(
Rα(0,y), Iα(0,y)

)
α

)
− icos

(
Tan−1

(
Rα(0,y), Iα(0,y)

)
α

)}
.

From Definition 1, Rα(0,y) =
yα cos

(α
2 π
)
+1

2
, Iα(0,y) =

yα sin
(α

2 π
)

2
. Since 0 <

α
2

π <
π
2

, we have cos
(α

2
π
)

,sin
(α

2
π
)
∈ (0,1) and then Rα(0,y), Iα(0,y)> 0. There-

fore

lim
y→∞

Tan−1(Rα(0,y), Iα(0,y)
)

= lim
y→∞

tan−1

(
sin
(α

2 π
)

cos
(α

2 π
)
+ y−α

)
=

α
2

π .

By this fact,

lim
y→∞

sin

(
Tan−1

(
Rα(0,y), Iα(0,y)

)
α

)
= 1, lim

y→∞
cos

(
Tan−1

(
Rα(0,y), Iα(0,y)

)
α

)
= 0.

We thus find lim
y→∞

Pα(iy)
iy

=
(

1
2

) 1
α

. By putting λ = 0,y = 1 we also find

ℜ
{
Pα(i)

}
=

(
cos
(α

2 π
)
+1

2

) 1
2α

cos

(
1
α

tan−1

(
sin
(α

2 π
)

cos
(α

2 π
)
+1

))
.
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Lastly, we find μα(λ ) . We have already known that

ℑ{Pα(λ + iy)} =
(
Rα(λ ,y)2 + Iα(λ ,y)2

) 1
2α

sin

(
Tan−1

(
Rα(λ ,y), Iα(λ ,y)

)
α

)
.

From Theorem 1, Pα(λ )∈R when λ � 0. Therefore ℑ
{
Pα(λ + iy)

}→ 0 (λ � 0,y↘
0) . Since lim

λ<0,y↘0
Tan−1(λ ,y) = π , Rα(λ ,y) → |λ |α cosαπ +1

2
and Iα(λ ,y) →

|λ |α sinαπ
2

hold when λ < 0,y ↘ 0. By Proposition 2, we get

lim
λ<0,y↘0

sin

(
Tan−1

(
Rα(λ ,y), Iα(λ ,y)

)
α

)
= sin

(
Tan−1

(|λ |α cosαπ +1, |λ |α sinαπ
)

α

)
,

and also have
(
Rα(λ ,y)2 +Iα(λ ,y)2

) 1
2α →

( |λ |2α +2|λ |α cosαπ +1
4

) 1
2α

when λ <

0,y↘ 0. Accordingly,we can find that ℑ{Pα(λ + iy)} converges pointwise to π pα(λ )

as λ < 0,y ↘ 0. Moreover, when we put y =
1
n

(n ∈ N) ,

(
λ 2 + 1

n2

)α +2
(
λ 2 + 1

n2

) α
2 cos

(
αTan−1(λ , 1

n )
)
+1

4
�
(
λ 2 +1

)α +2
(
λ 2 +1

)α
2 +1

4

holds. Thus we get

ℑ
{

Pα

(
λ + i

1
n

)}
�
((

λ 2 +1
)α

2 +1

2

) 1
α

�
(
λ 2 +1

) 1
2 +1

2
� λ 2 +4

4
.

Since
λ 2 +4

4
is integrable on (−∞,0) , we see that dominated convergence theorem is

applicable. Let φ(λ ) be a nonnegative continuous function and assume that its support
is compact. From the assumption, support is contained in closed interval [−K,K] for
K > 0. By dominated convergence theorem,∫ K

−K
φ(λ )ℑ

{
Pα

(
λ + i

1
n

)}
dλ −→

∫ K

−K
φ(λ )π pα(λ )dλ (n → ∞).

Therefore, we conclude that ℑ
{
Pα
(
λ + i 1

n

)}
converges π pα(λ ) in the vague topol-

ogy, and thus dμα(λ ) = pα(λ )dλ . �

THEOREM 5. Let 0 < α < 1 . Then Qα(z) has an integral representation

(
2

1+ cos(α
2 π)

) 1
2α

cos

(
1
α

tan−1

(
sin
(α

2 π
)

cos
(α

2 π
)
+1

))

+
∫ 0

−∞

(
1

λ − z
− λ

λ 2 +1

)
qα(λ )dλ ,
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where

qα(λ ) =
1
π

(
4|λ |2α

|λ |2α +2|λ |α cosαπ +1

) 1
2α

sin

(
Tan−1

(|λ |α + cosαπ ,sinαπ
)

α

)
.

Proof. We find αααα ,βββ α and dμα(λ ) similar to a proof of Theorem 4. For z =
λ + iy ∈ C+ ,

Qα(iy)
iy

=

(
4

y2α +2yα cos
(α

2 π
)
+1

) 1
2α

×
{

sin

(
Tan−1

(
Sα(0,y),Jα(0,y)

)
α

)
− icos

(
Tan−1

(
Sα(0,y),Jα(0,y)

)
α

)}
.

It is easy to find

Sα(0,y) =
2
(
y2α + yα cos

(α
2 π
))

y2α +2yα cos
(α

2 π
)
+1

> 0, Jα(0,y) =
2yα sin

(α
2 π
)

y2α +2yα cos
(α

2 π
)
+1

> 0

since cos
(α

2
π
)

,sin
(α

2
π
)
∈ (0,1) . From this relation, we obtain

lim
y→∞

Tan−1(Sα(0,y),Jα(0,y)
)

=
α
2

π .

Therefore lim
y→∞

Qα(iy)
iy

= 0. Putting λ = 0,y = 1, we also have

ℜ
{
Qα(i)

}
=

(
2

cos
(α

2 π
)
+1

) 1
2α

cos

(
1
α

tan−1

(
sin
(α

2 π
)

cos
(α

2 π
)
+1

))
.

Lastly we find dμα(λ ) . We can assume that λ < 0 and y > 0 similar to a proof of
Theorem 4. Then

lim
y↘0

Sα(λ ,y) =
2
(|λ |2α + |λ |α cosαπ

)
|λ |2α +2|λ |α cosαπ +1

, lim
y↘0

Jα(λ ,y) =
2|λ |α cosαπ

|λ |2α +2|λ |α cosαπ +1
.

By Proposition 2,

lim
λ<0,y↘0

sin

(
Tan−1

(
Sα(λ ,y),Jα(λ ,y)

)
α

)
= sin

(
Tan−1

(|λ |α + cosαπ ,sinαπ
)

α

)
.

It follows from this fact that ℑ{Qα(λ + iy)} converges pointwise to πqα(λ ) as λ <
0,y ↘ 0. In the following we show that dominated convergence theorem is applicable
to ℑ{Qα(λ + iy)} . Since 0 < αTan−1(λ ,y) < π , −1 < cos

(
αTan−1(λ ,y)

)
< 1. Thus

0 < cos2
(
αTan−1(λ ,y)

)
< 1. From this fact we can choose a constant Cα > 4, which
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depends on only α , such that cos2
(
αTan−1(λ ,y)

)
<

Cα −4
Cα

< 1. For this constant

Cα > 4 4
(
λ 2 + y2

)α

(
λ 2 + y2

)α +2
(
λ 2 + y2

) α
2 cos

(
αTan−1(λ ,y)

)
+1

< Cα

holds. Accordingly, ℑ
{

Qα

(
λ +

i
n

)}
<C

1
2α
α for any n ∈ N . From the above, we see

that dominated convergence theorem is applicable. �
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