INTEGRAL REPRESENTATIONS OF SOME FAMILIES OF OPERATOR MONOTONE FUNCTIONS

YOICHI UDAGAWA

(Communicated by D. R. Farenick)

Abstract. We obtain an integral representation of holomorphic function $P_{\alpha}(z)$ which is real on the positive part of the real axis and formed

$$P_{\alpha}(x) = \left(\frac{x^{\alpha} + 1}{2}\right)^{\frac{1}{\alpha}} \ (x \ge 0).$$

For this purpose we define a two variable function which is substituted for an argument θ , and also find an explicit real and imaginary part of $P_{\alpha}(x+iy)$.

1. Introduction

Let \mathscr{H} be a complex Hilbert space with an inner product $\langle \cdot, \cdot \rangle$, and $\mathscr{B}(\mathscr{H})$ be the set of all bounded linear operators on \mathscr{H} . An operator $A \in \mathscr{B}(\mathscr{H})$ is said to be positive if and only if $\langle Ax, x \rangle \ge 0$ for all $x \in \mathscr{H}$. We denote a positive operator A by $A \ge 0$. For self-adjoint operators $A, B \in \mathscr{B}(\mathscr{H}), A \le B$ means B - A is positive. A continuous function f(x) defined on an interval I in \mathbb{R} is called an operator monotone function if $A \le B \implies f(A) \le f(B)$ holds for every pair $A, B \in \mathscr{B}(\mathscr{H})$ whose spectra $\sigma(A)$ and $\sigma(B)$ lie in I. A typical example of it is x^{α} for $\alpha \in (0, 1)$, this claims $0 < A \le B \implies A^{\alpha} \le B^{\alpha}$ for $0 < \alpha < 1$ ([4], [5]). This inequality is so famous and called the Löwner-Heinz inequality. This inequality also asserts that

$$\frac{A^{\alpha}-I}{\alpha} \leqslant \frac{B^{\alpha}-I}{\alpha}$$

holds for $\alpha \in (0,1)$, and by tending $\alpha \searrow 0$, both sides of the above inequality converge to log *A* and log *B* in the norm topology, respectively. From this fact, we can conclude that the logarithmic function log *x* is operator monotone too.

We call f(z) a Pick function if f(z) is holomorphic on $\mathbb{C}^+ = \{z \in \mathbb{C} \mid \exists z > 0\}$ and satisfies $f(\mathbb{C}^+) \subset \mathbb{C}^+$. By Löwner's results ([1], [5]), a real function f(x) is operator monotone if and only if a complex function f(z) is a Pick function. Strictly speaking, an operator monotone function f(x) defined on an interval (a,b) has an analytic continuation to the upper half plane as a Pick function, and, conversely, if a

Keywords and phrases: Operator mean, operator monotone function, power mean, Pick function.

Mathematics subject classification (2010): 15A60, 47A64.

Pick function f(z) satisfies $f((a,b)) \subset \mathbb{R}$ for an interval (a,b), then the restriction of f(z) to (a,b) is operator monotone. For example, we have confirmed that $\log x$ is operator monotone on $(0,\infty)$, and, indeed, the logarithmic function has an analytic continuation to the cut plane $\mathbb{C} \setminus (-\infty, 0]$ as a Pick function

$$\operatorname{Log} z := \log r + i\theta$$
,

where $z := re^{i\theta}$ ($r > 0, -\pi < \theta < \pi$). Moreover, it is well-known that a Pick function f(z) has an integral representation

$$f(z) = \boldsymbol{\alpha} z + \boldsymbol{\beta} + \int_{-\infty}^{\infty} \left(\frac{1}{\lambda - z} - \frac{\lambda}{\lambda^2 + 1} \right) d\mu(\lambda) \tag{(\star)}$$

where $\boldsymbol{\alpha} \ge 0$, $\boldsymbol{\beta} \in \mathbb{R}$ and $\mu(\lambda)$ is a nonnegative Borel measure on \mathbb{R} such that

$$\int_{-\infty}^{\infty} \frac{1}{\lambda^2 + 1} d\mu(\lambda) < \infty.$$

The measure μ in (\star) is called representing measure of f. We remark that if f satisfies $f((a,b)) \subset \mathbb{R}$ for an interval (a,b), namely, f is an operator monotone function on (a,b), then the measure μ has no mass on (a,b). In particular, if f is an operator monotone function on [a,b), then the measure μ has no mass on (a,b). Recently F. Hansen showed interesting results about the representing measure of an operator monotone function on $(0,\infty)$;

THEOREM A. (Hansen [2]) Let $g: (0, \infty) \to \mathbb{R}$ be an operator monotone function which has an integral representation

$$g(x) = \boldsymbol{\alpha} x + \boldsymbol{\beta} + \int_0^\infty \left(\frac{\lambda}{\lambda^2 + 1} - \frac{1}{\lambda + x}\right) d\boldsymbol{v}(\lambda)$$

where $v(\lambda)$ is a positive measure on the closed positive half-line $[0,\infty)$ with

$$\int_0^\infty \frac{1}{\lambda^2 + 1} d\nu(\lambda) < \infty.$$

Let \tilde{v} be the measure obtained from v by removing a possible atom in zero. Then

$$\lim_{\varepsilon \to 0} \frac{1}{\pi} \Im g(-t + i\varepsilon)h(t)dt = \frac{h(0)}{2}v(\{0\}) + \int_0^\infty h(\lambda)d\tilde{v}(\lambda)$$

for every continuous, bounded and integrable function h defined in $[0,\infty)$.

It is also known that constants $\boldsymbol{\alpha}, \boldsymbol{\beta}$ and measure $\mu(\lambda)$ which appear in the above integral representation (\star) is found as

$$\boldsymbol{\alpha} = \lim_{y \to \infty} \frac{f(iy)}{iy}, \ \boldsymbol{\beta} = \Re f(i), \ \pi d\mu(\lambda) = \lim_{y \searrow 0} \Im f(\lambda + iy) d\lambda,$$

where the last limit is in the vague topology. Following this method, we can easily get α and β . But it is little harder to obtain measure $\mu(\lambda)$ than previous case, because we

need to find not only a limit of a family of functions but also convergence in the vague topology. For this purpose, it is usually required for us to show that a convergence theorem is applicable to $\Im f(\lambda + iy)$. However, there are some functions such that we can confirm the validity of its integral representation only using a simple computation, for instance

$$DL(z) := \frac{z \text{Log}z}{z-1} = \frac{\pi}{4} + \int_{-\infty}^{0} \left(\frac{1}{\lambda - z} - \frac{\lambda}{\lambda^2 + 1}\right) \frac{\lambda}{\lambda - 1} d\lambda$$

Note that a "real" function DL(x) can be extended continuously to $[0,\infty)$ by DL(1) = 1 and DL(0) = 0. This function is also known as the representing function of the dual of the logarithmic mean ([6]). In [6], we proved that the imaginary part of DL(z) satisfies

$$0 < \Im DL(re^{i\theta}) < \theta$$

for $z = re^{i\theta} \in \mathbb{C}^+$, where θ is an "argument" of z. Hence $\exp\{DL(x)\}$ is operator monotone on $(0,\infty)$.

The 1-parameter family of functions $\{P_{\alpha}(x)\}_{\alpha \in [-1,1]}$;

$$P_{\alpha}(x) = \left(\frac{x^{\alpha} + 1}{2}\right)^{\frac{1}{\alpha}} \ (-1 \leqslant \alpha \leqslant 1)$$

is one of the most famous family of operator monotone functions, and also known as the representing function of the Power mean [7]. When we confirm operator monotonicity of $P_{\alpha}(x)$, we usually show that $P_{\alpha}(x)$ has a holomorphic branch, which maps the upper half plane into itself, by checking their "argument" θ . This technique is very simple and useful, but, in its proof, there is no information about an explicit form of holomorphic branch $P_{\alpha}(z)$. If we want to find an integral representation of $P_{\alpha}(x+iy)$ by the above way, then we have to describe its real part $\Re P_{\alpha}(x+iy)$ and imaginary part $\Im P_{\alpha}(x+iy)$ concretely. In Section 2, we give a "device" to express this real and imaginary parts, and we obtain an explicit form of $P_{\alpha}(x+iy)$ in Section 3. Lastly, in Section 4, we obtain an integral representation of $P_{\alpha}(z)$.

2.
$$Tan^{-1}(x, y)$$

As mentioned in the Section 1, it is well-known that a real function $g_{\alpha}(x) = x^{\alpha}$, which is continuous and increasing on $[0,\infty)$, is operator monotone for $\alpha \in (0,1]$. $g_{\alpha}(x)$ has a holomorphic branch

$$g_{\alpha}(z) := r^{\alpha} e^{i\alpha\theta},$$

where $z = re^{i\theta}$ $(r > 0, -\pi < \theta < \pi)$, and is also known as a Pick function. This form is described by an "argument" θ , and thus it is difficult to express like $g_{\alpha}(x + iy) = u(x,y) + iv(x,y)$. We remark that

$$P_{\alpha}(x) = g_{\frac{1}{\alpha}} \left(\frac{g_{\alpha}(x) + 1}{2} \right) \quad (x > 0).$$

In [3] F. Hansen gave imaginary part and real part of $g_{\frac{1}{\alpha}}(g_{\alpha}(z)+1) = (z^{\alpha}+1)^{\frac{1}{\alpha}}$ by using "argument" θ , but their form was not explicit. So we consider introducing a two variable function which is substituted for an argument θ to express concrete real and imaginary part of $g_{\alpha}(x+iy)$.

DEFINITION 1. Let $\mathbb{A} := \mathbb{R}^2 \setminus \{(a,b) \in \mathbb{R}^2 | -\infty < a \leq 0, b = 0\}$. We define the two variable function $\operatorname{Tan}^{-1} : \mathbb{A} \to (-\pi, \pi) \in \mathbb{R}$ as the following;

$$\operatorname{Tan}^{-1}(x,y) := \begin{cases} \tan^{-1}\left(\frac{y}{x}\right) + \pi & (x < 0, y > 0) \\ \frac{\pi}{2} & (x = 0, y > 0) \\ \tan^{-1}\left(\frac{y}{x}\right) & (x > 0) \\ -\frac{\pi}{2} & (x = 0, y < 0) \\ \tan^{-1}\left(\frac{y}{x}\right) - \pi & (x < 0, y < 0). \end{cases}$$

Clearly, $\operatorname{Tan}^{-1}(x, y)$ is continuous on \mathbb{A} . On the other hand, next proposition determines how to treat $\operatorname{Tan}^{-1}(x, y)$ for the case y = 0.

PROPOSITION 1. (1)
$$\lim_{x < 0, y \searrow 0} \operatorname{Tan}^{-1}(x, y) = \lim_{y > 0, x \to -\infty} \operatorname{Tan}^{-1}(x, y) = \pi$$

(2) $\lim_{x < 0, y \nearrow 0} \operatorname{Tan}^{-1}(x, y) = \lim_{y < 0, x \to -\infty} \operatorname{Tan}^{-1}(x, y) = -\pi$,
(3) $\lim_{x \to \infty} \operatorname{Tan}^{-1}(x, y) = 0$.

Proof. (1) When x < 0 and y > 0, $\operatorname{Tan}^{-1}(x, y) = \operatorname{tan}^{-1}\left(\frac{y}{x}\right) + \pi$. So we have

$$\lim_{x < 0, y \searrow 0} \operatorname{Tan}^{-1}(x, y) = \lim_{y \to 0} \tan^{-1}\left(\frac{y}{x}\right) + \pi = \pi,$$

$$\lim_{y>0,x\to-\infty} \operatorname{Tan}^{-1}(x,y) = \lim_{x\to-\infty} \operatorname{tan}^{-1}\left(\frac{y}{x}\right) + \pi = \pi$$

(2) We can prove similar to the case (1).

(3) For x > 0,

$$\lim_{x \to \infty} \operatorname{Tan}^{-1}(x, y) = \lim_{x \to \infty} \operatorname{tan}^{-1}\left(\frac{y}{x}\right) = 0. \quad \Box$$

From the Definition 1, we can easily find that a two variable function $Tan^{-1}(x, y)$ defined above has many properties that an argument θ satisfies. We introduce some of these without proof in the following. These properties will often appear as useful tools.

PROPOSITION 2. (1) For a > 0, $\operatorname{Tan}^{-1}(ax, ay) = \operatorname{Tan}^{-1}(x, y)$, (2) For b < 0, (i) $y > 0 \implies \operatorname{Tan}^{-1}(bx, by) = \operatorname{Tan}^{-1}(x, y) - \pi$, (ii) $y < 0 \implies \operatorname{Tan}^{-1}(bx, by) = \operatorname{Tan}^{-1}(x, y) + \pi$ LEMMA 1. (1) For y > 0 and $x_1 > x_2$, $\operatorname{Tan}^{-1}(x_1, y) < \operatorname{Tan}^{-1}(x_2, y)$, (2) For y < 0 and $x_1 > x_2$, $\operatorname{Tan}^{-1}(x_1, y) > \operatorname{Tan}^{-1}(x_2, y)$, (3) For x > 0 and $y_1 > y_2$, $\operatorname{Tan}^{-1}(x, y_1) > \operatorname{Tan}^{-1}(x, y_2)$, (4) For x < 0 and $y_1 > y_2 > 0 > y_3 > y_4$, $\operatorname{Tan}^{-1}(x, y_2) > \operatorname{Tan}^{-1}(x, y_1) > \operatorname{Tan}^{-1}(x, y_4) > \operatorname{Tan}^{-1}(x, y_3)$. LEMMA 2. (1) Let x > 0 and y > 0. Then (i) $\operatorname{Tan}^{-1}(-x, y) = -\operatorname{Tan}^{-1}(x, y) + \pi$, (ii) $\operatorname{Tan}^{-1}(-x, -y) = \operatorname{Tan}^{-1}(x, y) - \pi$, (2) $\operatorname{Tan}^{-1}(x, -y) = -\operatorname{Tan}^{-1}(x, y)$, (3) (i) y > 0 implies $\operatorname{Tan}^{-1}(-x, y) = -\operatorname{Tan}^{-1}(x, y) + \pi$,

(*ii*)
$$y < 0$$
 implies $\operatorname{Tan}^{-1}(-x, y) = -\operatorname{Tan}^{-1}(x, y) - \pi$.

Next proposition asserts that $Tan^{-1}(x, y)$ can be substituted for an argument θ .

PROPOSITION 3.

$$\sin(\operatorname{Tan}^{-1}(x,y)) = \frac{y}{\sqrt{x^2 + y^2}}, \ \cos(\operatorname{Tan}^{-1}(x,y)) = \frac{x}{\sqrt{x^2 + y^2}}.$$

Proof. When x < 0 and y > 0,

$$\frac{\sin(\operatorname{Tan}^{-1}(x,y))}{\cos(\operatorname{Tan}^{-1}(x,y))} = \tan\left(\operatorname{Tan}^{-1}(x,y)\right)$$
$$= \tan\left(\tan^{-1}\left(\frac{y}{x}\right) + \pi\right)$$
$$= \tan\left(\tan^{-1}\left(\frac{y}{x}\right)\right) = \frac{y}{x}.$$
 (*)

From this, we have

$$x^{2}\sin^{2}(\operatorname{Tan}^{-1}(x,y)) = y^{2}\cos^{2}(\operatorname{Tan}^{-1}(x,y)) = y^{2}(1 - \sin^{2}(\operatorname{Tan}^{-1}(x,y))),$$

and therefore

$$(x^{2} + y^{2})\sin^{2}(\operatorname{Tan}^{-1}(x, y)) = y^{2}.$$

Since y > 0 and $sin(Tan^{-1}(x, y)) > 0$,

$$\sqrt{x^2 + y^2} \sin\left(\operatorname{Tan}^{-1}(x, y)\right) = y.$$

By this fact and (*) we obtain

$$\sin(\operatorname{Tan}^{-1}(x,y)) = \frac{y}{\sqrt{x^2 + y^2}}, \ \cos(\operatorname{Tan}^{-1}(x,y)) = \frac{x}{\sqrt{x^2 + y^2}}.$$

By Proposition 3, we can immediately have

$$x + iy = \sqrt{x^2 + y^2} \Big(\cos \big(\operatorname{Tan}^{-1}(x, y) \big) + i \sin \big(\operatorname{Tan}^{-1}(x, y) \big) \Big).$$

From this, it is expected that $\operatorname{Tan}^{-1}(x, y)$ will be able to express real and imaginary part of $g_{\alpha}(x+iy)$ as an explicit form, instead of θ .

PROPOSITION 4. *Define the function* \mathbb{G}_{α} : $\mathbb{R} \times \mathbb{C} \setminus (-\infty, 0] \to \mathbb{C}$ *by*

$$\mathbb{G}_{\alpha}(x+iy) := \left(x^2 + y^2\right)^{\frac{\alpha}{2}} \left\{ \cos\left(\alpha \operatorname{Tan}^{-1}(x,y)\right) + i \sin\left(\alpha \operatorname{Tan}^{-1}(x,y)\right) \right\}$$

Then the following hold;

(1) G_α(x+iy) is holomorphic on C \ (-∞,0],
 (2) If α ∈ (0,1), then G_α(C⁺) ⊂ C⁺, where C⁺ = {z ∈ C | ℑz > 0}.

Proof. (1) We verify that \mathbb{G}_{α} satisfies the Cauchy-Riemann equations. Put $\Re \mathbb{G}_{\alpha}(x+iy) = R(x,y), \Im \mathbb{G}_{\alpha}(x+iy) = I(x,y)$. Since

$$\frac{\partial}{\partial x}$$
Tan⁻¹ $(x,y) = -\frac{y}{x^2 + y^2}, \quad \frac{\partial}{\partial y}$ Tan⁻¹ $(x,y) = \frac{x}{x^2 + y^2},$

we obtain

$$\frac{\partial}{\partial x}R(x,y) = \frac{\partial}{\partial y}I(x,y), \ \frac{\partial}{\partial y}R(x,y) = -\frac{\partial}{\partial x}I(x,y).$$

(2) Take y > 0. Then $\operatorname{Tan}^{-1}(x, y) \in (0, \pi)$, and we have $\alpha \operatorname{Tan}^{-1}(x, y) \in (0, \alpha \pi) \subset (0, \pi)$. Accordingly,

 $\sin\bigl(\alpha \mathrm{Tan}^{-1}(x,y)\bigr) > 0$

holds and it implies I(x, y) > 0. \Box

For $x + iy \in \mathbb{C}^+$, it is clear that $\mathbb{G}_{\alpha}(x + iy) \to x^{\alpha}$ as $y \searrow 0$. From this we find that $\mathbb{G}_{\alpha}(x + iy)$ is an analytic continuation of $g_{\alpha}(x)$ such that $\mathbb{G}_{\alpha}(\mathbb{C}^+) \subset \mathbb{C}^+$. Furthermore, this holomorphic branch will play an important role when we construct an explicit form of $P_{\alpha}(x + iy)$. Also, we find that \mathbb{G}_{α} has some properties which a real power function satisfies.

LEMMA 3. (1) For
$$\alpha \in (0,1)$$
,
 $\operatorname{Tan}^{-1} \Big(\cos \big(\alpha \operatorname{Tan}^{-1}(x,y) \big), \sin \big(\alpha \operatorname{Tan}^{-1}(x,y) \big) \Big) = \alpha \operatorname{Tan}^{-1}(x,y).$
(2) $\operatorname{Tan}^{-1} \Big(\cos \big(\operatorname{Tan}^{-1}(x,y) \big), -\sin \big(\operatorname{Tan}^{-1}(x,y) \big) \Big) = -\operatorname{Tan}^{-1}(x,y).$

Proof. If
$$x < 0$$
, $y > 0$, then $\frac{\pi}{2} < \alpha \operatorname{Tan}^{-1}(x, y) < \pi$. So
 $\operatorname{Tan}^{-1}\left(\cos\left(\alpha \operatorname{Tan}^{-1}(x, y)\right), \sin\left(\alpha \operatorname{Tan}^{-1}(x, y)\right)\right) = \alpha \operatorname{Tan}^{-1}(x, y),$
 $\operatorname{Tan}^{-1}\left(\cos\left(\operatorname{Tan}^{-1}(x, y)\right), -\sin\left(\operatorname{Tan}^{-1}(x, y)\right)\right) = -\operatorname{Tan}^{-1}(x, y).$

PROPOSITION 5. $\mathbb{G}_{-\alpha}(z) = \frac{1}{\mathbb{G}_{\alpha}(z)} = \mathbb{G}_{\alpha}(z^{-1})$

PROPOSITION 6. (1) $\mathbb{G}_{\alpha}(z)\mathbb{G}_{\beta}(z) = \mathbb{G}_{\beta}(z)\mathbb{G}_{\alpha}(z) = \mathbb{G}_{\alpha+\beta}(z),$ (2) If $\alpha, \beta \in (-1, 1)$, then $\mathbb{G}_{\alpha}(\mathbb{G}_{\beta}(z)) = \mathbb{G}_{\beta}(\mathbb{G}_{\alpha}(z)) = \mathbb{G}_{\alpha\beta}(z).$

REMARK 1. Proposition 6.(2) doesn't hold for if $|\alpha| > 1$ or $|\beta| > 1$. For example, we put z = -1 + i, $\alpha = 2$ and $\beta = \frac{1}{2}$. Then

$$\mathbb{G}_2(\mathbb{G}_{\frac{1}{2}}(z)) = -1 + i = z, \ \mathbb{G}_{\frac{1}{2}}(\mathbb{G}_2(z)) = 1 - i = -z.$$

3. An explicit form of P_{α}

In this section, we define an explicit form of P_{α} anew by applying \mathbb{G}_{α} which is determined in the previous section.

Firstly, let $\alpha \in (0,1)$. For a "real " x > 0, $P_{\alpha}(x)$ is described as

$$P_{\alpha}(x) = \left(\frac{x^{\alpha}+1}{2}\right)^{\frac{1}{\alpha}} = g_{\frac{1}{\alpha}}\left(\frac{g_{\alpha}(x)+1}{2}\right)$$

by "real function" $g_{\alpha}(x) = x^{\alpha}$. From this relation, we define a "complex function" \mathbb{P}_{α} as

$$\mathbb{P}_{\alpha}(z) = \mathbb{G}_{\frac{1}{\alpha}}\left(\frac{\mathbb{G}_{\alpha}(z)+1}{2}\right).$$

Then $\lim_{x>0,y\searrow 0} \mathbb{P}_{\alpha}(x+iy) = \left(\frac{x^{\alpha}+1}{2}\right)^{\frac{1}{\alpha}}$ is clear. By Proposition 4, \mathbb{G}_{α} is holomorphic on $\mathbb{C}\setminus(-\infty,0]$. Since the set of all holomorphic functions is closed under composition, \mathbb{P}_{α} is also holomorphic. For z = x + iy (y > 0),

$$\mathbb{P}_{\alpha}(x+iy) = \left(R_{\alpha}(x,y)^{2} + I_{\alpha}(x,y)^{2}\right)^{\frac{1}{2\alpha}} \times \left\{\cos\left(\frac{1}{\alpha}\operatorname{Tan}^{-1}\left(R_{\alpha}(x,y),I_{\alpha}(x,y)\right)\right) + i\sin\left(\frac{1}{\alpha}\operatorname{Tan}^{-1}\left(R_{\alpha}(x,y),I_{\alpha}(x,y)\right)\right)\right\},\$$

where

$$R_{\alpha}(x,y) = \frac{\left(x^{2} + y^{2}\right)^{\frac{\alpha}{2}}\cos\left(\alpha \operatorname{Tan}^{-1}(x,y)\right) + 1}{2}, I_{\alpha}(x,y) = \frac{\left(x^{2} + y^{2}\right)^{\frac{\alpha}{2}}\sin\left(\alpha \operatorname{Tan}^{-1}(x,y)\right)}{2}.$$

Since y > 0, $\alpha \operatorname{Tan}^{-1}(x, y) \in (0, \pi)$. Hence $\operatorname{Tan}^{-1}(R_{\alpha}(x, y), I_{\alpha}(x, y)) > 0$. By Proposition 2, Lemma 1 and Lemma 3,

$$0 < \frac{1}{\alpha} \operatorname{Tan}^{-1} \left(R_{\alpha}(x, y), I_{\alpha}(x, y) \right)$$

= $\frac{1}{\alpha} \operatorname{Tan}^{-1} \left(\left(x^{2} + y^{2} \right)^{\frac{\alpha}{2}} \cos\left(\alpha \operatorname{Tan}^{-1}(x, y) \right) + 1, \left(x^{2} + y^{2} \right)^{\frac{\alpha}{2}} \sin\left(\alpha \operatorname{Tan}^{-1}(x, y) \right) \right)$
< $\frac{1}{\alpha} \operatorname{Tan}^{-1} \left(\cos\left(\alpha \operatorname{Tan}^{-1}(x, y) \right), \sin\left(\alpha \operatorname{Tan}^{-1}(x, y) \right) \right)$
= $\frac{1}{\alpha} \left(\alpha \operatorname{Tan}^{-1}(x, y) \right) = \operatorname{Tan}^{-1}(x, y) < \pi.$

Since

$$\Im \mathbb{P}_{\alpha}(x+iy) = \left(R_{\alpha}(x,y)^2 + I_{\alpha}(x,y)^2\right)^{\frac{1}{2\alpha}} \sin\left(\frac{1}{\alpha} \operatorname{Tan}^{-1}\left(R_{\alpha}(x,y), I_{\alpha}(x,y)\right)\right),$$

we see that \mathbb{P}_{α} is a Pick function for any $\alpha \in (0,1)$.

Next we consider the case $\alpha \in (-1,0)$. For real function $P_{\alpha}(x)$,

$$P_{\alpha}(x) = \left(\frac{x^{\alpha} + 1}{2}\right)^{\frac{1}{\alpha}} = \left(\frac{2x^{|\alpha|}}{x^{|\alpha|} + 1}\right)^{\frac{1}{|\alpha|}} = g_{\frac{1}{|\alpha|}}\left(2 - \frac{2}{g_{|\alpha|}(x) + 1}\right)$$

holds, and we determine a complex function \mathbb{Q}_{α} , similar to the case $\alpha \in (0,1)$, as the following;

$$\mathbb{Q}_{\alpha}(z) = \mathbb{G}_{\frac{1}{\alpha}} \left(2 - \frac{2}{\mathbb{G}_{\alpha}(z) + 1} \right) \ \left(\alpha \in (0, 1) \right).$$

Clearly, $\lim_{x>0,y\searrow 0} \mathbb{Q}_{\alpha}(x+iy) = \left(\frac{2x^{\alpha}}{x^{\alpha}+1}\right)^{\alpha}$. For $z = x+iy \in \mathbb{C}^+$

$$\mathbb{Q}_{\alpha}(x+iy) = \left(S_{\alpha}(x,y)^{2} + J_{\alpha}(x,y)^{2}\right)^{\frac{1}{2\alpha}} \times \left\{\cos\left(\frac{1}{\alpha}\operatorname{Tan}^{-1}\left(S_{\alpha}(x,y), J_{\alpha}(x,y)\right)\right) + i\sin\left(\frac{1}{\alpha}\operatorname{Tan}^{-1}\left(S_{\alpha}(x,y), J_{\alpha}(x,y)\right)\right)\right\},\$$

where

$$S_{\alpha}(x,y) = \frac{2\left\{ \left(x^{2} + y^{2}\right)^{\alpha} + \left(x^{2} + y^{2}\right)^{\frac{\alpha}{2}} \cos\left(\alpha \operatorname{Tan}^{-1}(x,y)\right) \right\}}{\left(x^{2} + y^{2}\right)^{\alpha} + 2\left(x^{2} + y^{2}\right)^{\frac{\alpha}{2}} \cos\left(\alpha \operatorname{Tan}^{-1}(x,y)\right) + 1},$$

$$J_{\alpha}(x,y) = \frac{2\left(x^{2} + y^{2}\right)^{\frac{\alpha}{2}} \sin\left(\alpha \operatorname{Tan}^{-1}(x,y)\right)}{\left(x^{2} + y^{2}\right)^{\alpha} + 2\left(x^{2} + y^{2}\right)^{\frac{\alpha}{2}} \cos\left(\alpha \operatorname{Tan}^{-1}(x,y)\right) + 1}.$$

Similarly to \mathbb{P}_{α} , we can easily obtain

$$0 < \frac{1}{\alpha} \operatorname{Tan}^{-1} \left(S_{\alpha}(x, y), J_{\alpha}(x, y) \right) < \pi$$

Consequently, we have $\mathbb{Q}_{\alpha}(\mathbb{C}^+) \subset \mathbb{C}^+$.

From the above, we have obtained next two theorems;

THEOREM 1. Define the function $\mathbb{P}_{\alpha} : \mathbb{R} \times \mathbb{C} \setminus (-\infty, 0] \to \mathbb{C}$ by

$$\mathbb{P}_{\alpha}(z) = \mathbb{G}_{\frac{1}{\alpha}}\left(\frac{\mathbb{G}_{\alpha}(z)+1}{2}\right).$$

Then $\mathbb{P}_{\alpha}(z)$ *is a Pick function for* $\alpha \in (0,1)$ *, and for* $x + iy \in \mathbb{C}^+$

$$\lim_{x>0,y\searrow 0} \mathbb{P}_{\alpha}(x+iy) = P_{\alpha}(x).$$

THEOREM 2. Define the function $\mathbb{Q}_{\alpha} : \mathbb{R} \times \mathbb{C} \setminus (-\infty, 0] \to \mathbb{C}$ by

$$\mathbb{Q}_{\alpha}(z) = \mathbb{G}_{\frac{1}{\alpha}}\left(2 - \frac{2}{\mathbb{G}_{\alpha}(z) + 1}\right).$$

Then $\mathbb{Q}_{\alpha}(z)$ *is a Pick function for* $\alpha \in (0,1)$ *, and for* $x + iy \in \mathbb{C}^+$

$$\lim_{x>0,y\searrow 0} \mathbb{Q}_{\alpha}(x+iy) = P_{-\alpha}(x).$$

REMARK 2. $P_{\alpha}(x)$ can be extended naturally to $[0,\infty)$ for $\alpha \in (0,\infty)$, and so \mathbb{P}_{α} and \mathbb{Q}_{α} can be extended naturally to $\mathbb{C} \setminus (0,\infty)$. Thus the representing measure of them have no mass on $[0,\infty)$.

REMARK 3. It follows from their definitions that both \mathbb{P}_{α} and \mathbb{Q}_{α} are continuous in $\alpha \in (0,1)$. Namely, for fixed $z \in \mathbb{C} \setminus (0,\infty]$ and any sequence δ_n which converges to δ , we can confirm that the following equations

$$\lim_{n \to \infty} \mathbb{P}_{\delta_n}(z) = \mathbb{P}_{\delta}(z), \ \lim_{n \to \infty} \mathbb{Q}_{\delta_n}(z) = \mathbb{Q}_{\delta}(z)$$

are satisfied.

From Theorem 1, Theorem 2 and the identity theorem, we could obtain an explicit form of $P_{\alpha}(z)$ for $\alpha \in (-1,0) \cup (0,1)$. But we have left a question that how \mathbb{P}_{α} (or \mathbb{Q}_{α}) is treated for $\alpha = 0$. Thus we haven't complete to get an explicit form of $P_{\alpha}(z)$, and we must solve this question. For the case of a "real function", $P_{\alpha}(x)$ converges pointwise to $x^{\frac{1}{2}}$ as $\alpha \to 0$. We shall show that this relation is satisfied for "complex functions" $\mathbb{P}_{\alpha}(x+iy)$ and $\mathbb{Q}_{\alpha}(x+iy)$ from definitions of them, and we will treat $\mathbb{P}_{0}(x+iy)$ and $\mathbb{Q}_{0}(x+iy)$ as these results.

Lemma 4.

$$\mathbb{G}_{\alpha}(\overline{z}) = \overline{\mathbb{G}_{\alpha}(z)}, \ \mathbb{P}_{\alpha}(\overline{z}) = \overline{\mathbb{P}_{\alpha}(z)}, \ \mathbb{Q}_{\alpha}(\overline{z}) = \overline{\mathbb{Q}_{\alpha}(z)}.$$

Proof. For z = x + iy, we have $\overline{z} = x - iy$. Firstly we consider \mathbb{G}_{α} . By Lemma 2, $\operatorname{Tan}^{-1}(x, -y) = -\operatorname{Tan}^{-1}(x, y)$. This yields $\cos(\alpha \operatorname{Tan}^{-1}(x, -y)) = \cos(\alpha \operatorname{Tan}^{-1}(x, y))$, $\sin(\alpha \operatorname{Tan}^{-1}(x, -y)) = -\sin(\alpha \operatorname{Tan}^{-1}(x, y))$. Accordingly,

$$\mathbb{G}_{\alpha}(\overline{x+iy}) = (x^2 + (-y)^2)^{\frac{\alpha}{2}} \left\{ \cos(\alpha \operatorname{Tan}^{-1}(x,-y)) + i\sin(\alpha \operatorname{Tan}^{-1}(x,-y)) \right\}$$
$$= (x^2 + y^2)^{\frac{\alpha}{2}} \left\{ \cos(\alpha \operatorname{Tan}^{-1}(x,y)) - i\sin(\alpha \operatorname{Tan}^{-1}(x,y)) \right\} = \overline{\mathbb{G}_{\alpha}(x+iy)}.$$

Next we consider \mathbb{P}_{α} . From the definition of \mathbb{P}_{α} ,

$$\mathbb{P}_{\alpha}(x-iy) = \left(R_{\alpha}(x,-y)^{2} + I_{\alpha}(x,-y)^{2}\right)^{\frac{1}{2\alpha}} \times \left\{\cos\left(\frac{1}{\alpha}\operatorname{Tan}^{-1}\left(R_{\alpha}(x,-y),I_{\alpha}(x,-y)\right)\right) + i\sin\left(\frac{1}{\alpha}\operatorname{Tan}^{-1}\left(R_{\alpha}(x,-y),I_{\alpha}(x,-y)\right)\right)\right\}.$$

Applying the above relations, we have $R_{\alpha}(x, -y) = R_{\alpha}(x, y)$, $I_{\alpha}(x, -y) = -I_{\alpha}(x, y)$. This fact and Lemma 2 yield

$$\operatorname{Tan}^{-1}(R_{\alpha}(x,-y),I_{\alpha}(x,-y)) = -\operatorname{Tan}^{-1}(R_{\alpha}(x,y),I_{\alpha}(x,y)).$$

Therefore,

$$\cos\left(\frac{1}{\alpha}\operatorname{Tan}^{-1}\left(R_{\alpha}(x,-y),I_{\alpha}(x,-y)\right)\right) = \cos\left(\frac{1}{\alpha}\operatorname{Tan}^{-1}\left(R_{\alpha}(x,y),I_{\alpha}(x,y)\right)\right),$$
$$\sin\left(\frac{1}{\alpha}\operatorname{Tan}^{-1}\left(R_{\alpha}(x,-y),I_{\alpha}(x,-y)\right)\right) = -\sin\left(\frac{1}{\alpha}\operatorname{Tan}^{-1}\left(R_{\alpha}(x,y),I_{\alpha}(x,y)\right)\right).$$

From the above

$$\mathbb{P}_{\alpha}(x-iy) = \overline{\mathbb{P}_{\alpha}(x+iy)}.$$

For \mathbb{Q}_{α} , we can also obtain $S_{\alpha}(x, -y) = S_{\alpha}(x, y), J_{\alpha}(x, -y) = -J_{\alpha}(x, y)$ and hence get a desired assertion. \Box

THEOREM 3. For families of functions $\{\mathbb{P}_{\alpha}(z)\}_{\alpha\in(0,1)}$ and $\{\mathbb{Q}_{\alpha}(z)\}_{\alpha\in(0,1)}$

$$\lim_{\alpha\searrow 0} \mathbb{P}_{\alpha}(z) = \lim_{\alpha\searrow 0} \mathbb{Q}_{\alpha}(z) = \mathbb{G}_{\frac{1}{2}}(z) \quad \left(z \in \mathbb{C} \setminus (-\infty, 0]\right)$$

holds, namely, $\{\mathbb{P}_{\alpha}(z)\}_{\alpha\in(0,1)}$ and $\{\mathbb{Q}_{\alpha}(z)\}_{\alpha\in(0,1)}$ converge pointwise to $\mathbb{G}_{\frac{1}{2}}(z)$ when $\alpha\searrow 0$.

Proof. Firstly we consider $\mathbb{P}_{\alpha}(x+iy)$. It is clear for the case $z \in (0,\infty)$ from Theorem 1. It is sufficient to show the case $z \in \mathbb{C}^+$, because if we can prove that $\lim_{\alpha \searrow 0} \mathbb{P}_{\alpha}(z) = \mathbb{G}_{\frac{1}{2}}(z) \ (z \in \mathbb{C}^+)$, then

$$\lim_{\alpha \searrow 0} \mathbb{P}_{\alpha}(\overline{z}) = \lim_{\alpha \searrow 0} \overline{\mathbb{P}_{\alpha}(z)} = \overline{\mathbb{G}_{\frac{1}{2}}(z)} = \mathbb{G}_{\frac{1}{2}}(\overline{z})$$

by Lemma 4. Put $z = x + iy \in \mathbb{C}^+$. For any x + iy there exists a sufficiently small $\alpha > 0$ such that $\alpha \operatorname{Tan}^{-1}(x, y) \in \left(0, \frac{\pi}{2}\right)$. Therefore we can assume that $\cos\left(\alpha \operatorname{Tan}^{-1}(x, y)\right) > 0$. We easily get

$$\left(R_{\alpha}(x,y)^{2} + I_{\alpha}(x,y)^{2}\right)^{\frac{1}{2\alpha}} = \left(\frac{\left(x^{2} + y^{2}\right)^{\alpha} + 2\left(x^{2} + y^{2}\right)^{\frac{\alpha}{2}}\cos(\alpha \operatorname{Tan}^{-1}(x,y)) + 1}{4}\right)^{\frac{1}{2\alpha}}$$

Applying l'Hospital's theorem, we have

$$\lim_{\alpha \searrow 0} \log \left(R_{\alpha}(x,y)^2 + I_{\alpha}(x,y)^2 \right)^{\frac{1}{2\alpha}} = \frac{\log(x^2 + y^2)}{4}$$

Accordingly, $\lim_{\alpha \searrow 0} \left(R_{\alpha}(x,y)^2 + I_{\alpha}(x,y)^2 \right)^{\frac{1}{2\alpha}} = (x^2 + y^2)^{\frac{1}{4}}$. We apply l'Hospital's theorem again and get

$$\lim_{\alpha \searrow 0} \frac{\operatorname{Tan}^{-1} \left(R_{\alpha}(x, y), I_{\alpha}(x, y) \right)}{\alpha} = \frac{1}{2} \operatorname{Tan}^{-1}(x, y).$$

From the above, $\lim_{\alpha \searrow 0} \mathbb{P}_{\alpha}(x+iy) = \mathbb{G}_{\frac{1}{2}}(x+iy)$ holds for $x+iy \in \mathbb{C}^+$. Next we consider $\mathbb{Q}_{\alpha}(x+iy)$. We easily obtain

$$\left(S_{\alpha}(x,y)^{2} + J_{\alpha}(x,y)^{2}\right)^{\frac{1}{2\alpha}} = \left(\frac{4(x^{2} + y^{2})^{\alpha}}{(x^{2} + y^{2})^{\alpha} + 2(x^{2} + y^{2})^{\frac{\alpha}{2}}\cos(\alpha \operatorname{Tan}^{-1}(x,y)) + 1}\right)^{\frac{1}{2\alpha}}$$

So we can similarly get

$$\left(S_{\alpha}(x,y)^{2}+J_{\alpha}(x,y)^{2}\right)^{\frac{1}{2\alpha}} \rightarrow \left(x^{2}+y^{2}\right)^{\frac{1}{4}}, \ \frac{\operatorname{Tan}^{-1}\left(S_{\alpha}(x,y),J_{\alpha}(x,y)\right)}{\alpha} \rightarrow \frac{1}{2}\operatorname{Tan}^{-1}(x,y)$$

when $\alpha \searrow 0$. Therefore $\lim_{\alpha \searrow 0} \mathbb{Q}_{\alpha}(x+iy) = \mathbb{G}_{\frac{1}{2}}(x+iy)$. \Box

4. Integral representations of $P_{\alpha}(z)$

In this section, we shall find an integral representation of $P_{\alpha}(z)$. $P_{\alpha}(z)$ is treated by divided it into three parts, namely $\mathbb{P}_{\alpha}(z)$ when $\alpha \in (0,1)$, $\mathbb{Q}_{\alpha}(z)$ when $\alpha \in (-1,0)$ and $\mathbb{G}_{\frac{1}{2}}(z)$ when $\alpha = 0$, as before. But, we have already known that $\mathbb{G}_{\frac{1}{2}}$ has an integral representation

$$\mathbb{G}_{\frac{1}{2}}(z) = \frac{1}{\sqrt{2}} + \int_{-\infty}^{0} \left(\frac{1}{\lambda - z} - \frac{\lambda}{\lambda^2 + 1}\right) \frac{\sqrt{|\lambda|}}{\pi} d\lambda$$

(see [1, p. 27]). Therefore we only have to consider \mathbb{P}_{α} and \mathbb{Q}_{α} .

THEOREM 4. Let $0 < \alpha < 1$. Then $\mathbb{P}_{\alpha}(z)$ has an integral representation

$$\left(\frac{1}{2}\right)^{\frac{1}{\alpha}} z + \left(\frac{\cos\left(\frac{\alpha}{2}\pi\right) + 1}{2}\right)^{\frac{1}{2\alpha}} \cos\left(\frac{1}{\alpha}\tan^{-1}\left(\frac{\sin\left(\frac{\alpha}{2}\pi\right)}{\cos\left(\frac{\alpha}{2}\pi\right) + 1}\right)\right) + \int_{-\infty}^{0} \left(\frac{1}{\lambda - z} - \frac{\lambda}{\lambda^{2} + 1}\right) p_{\alpha}(\lambda) d\lambda,$$

where

$$p_{\alpha}(\lambda) = \frac{1}{\pi} \left(\frac{|\lambda|^{2\alpha} + 2|\lambda|^{\alpha} \cos \alpha \pi + 1}{4} \right)^{\frac{1}{2\alpha}} \sin \left(\frac{\operatorname{Tan}^{-1}(|\lambda|^{\alpha} \cos \alpha \pi + 1, |\lambda|^{\alpha} \sin \alpha \pi)}{\alpha} \right).$$

Proof. From Theorem 1, we know that $\mathbb{P}_{\alpha}(z)$ is a Pick function for $0 < \alpha < 1$. Thus \mathbb{P}_{α} has an integral representation

$$\mathbb{P}_{\alpha}(z) = \boldsymbol{\alpha}_{\alpha} z + \boldsymbol{\beta}_{\alpha} + \int_{-\infty}^{\infty} \left(\frac{1}{\lambda - z} - \frac{\lambda}{\lambda^2 + 1} \right) d\mu_{\alpha}(\lambda),$$

where $\boldsymbol{\alpha}_{\alpha}, \boldsymbol{\beta}_{\alpha}$ and $\mu_{\alpha}(\lambda)$ are constants and measure which depend on α , respectively. In the following we find $\boldsymbol{\alpha}_{\alpha}, \boldsymbol{\beta}_{\alpha}$ and $\mu_{\alpha}(\lambda)$. Put $z = \lambda + iy \in \mathbb{C}^+$.

$$\frac{\mathbb{P}_{\alpha}(iy)}{iy} = \left(\frac{y^{2\alpha} + 2y^{\alpha}\cos\left(\frac{\alpha}{2}\pi\right) + 1}{4y^{2\alpha}}\right)^{\frac{1}{2\alpha}} \times \left\{\sin\left(\frac{\operatorname{Tan}^{-1}\left(R_{\alpha}(0, y), I_{\alpha}(0, y)\right)}{\alpha}\right) - i\cos\left(\frac{\operatorname{Tan}^{-1}\left(R_{\alpha}(0, y), I_{\alpha}(0, y)\right)}{\alpha}\right)\right\}.$$

From Definition 1, $R_{\alpha}(0,y) = \frac{y^{\alpha}\cos\left(\frac{\alpha}{2}\pi\right) + 1}{2}$, $I_{\alpha}(0,y) = \frac{y^{\alpha}\sin\left(\frac{\alpha}{2}\pi\right)}{2}$. Since $0 < \frac{\alpha}{2}\pi < \frac{\pi}{2}$, we have $\cos\left(\frac{\alpha}{2}\pi\right)$, $\sin\left(\frac{\alpha}{2}\pi\right) \in (0,1)$ and then $R_{\alpha}(0,y)$, $I_{\alpha}(0,y) > 0$. Therefore

$$\lim_{y \to \infty} \operatorname{Tan}^{-1} \left(R_{\alpha}(0, y), I_{\alpha}(0, y) \right) = \lim_{y \to \infty} \operatorname{tan}^{-1} \left(\frac{\sin\left(\frac{\alpha}{2}\pi\right)}{\cos\left(\frac{\alpha}{2}\pi\right) + y^{-\alpha}} \right) = \frac{\alpha}{2} \pi.$$

By this fact,

$$\lim_{y\to\infty}\sin\left(\frac{\operatorname{Tan}^{-1}(R_{\alpha}(0,y),I_{\alpha}(0,y))}{\alpha}\right) = 1, \lim_{y\to\infty}\cos\left(\frac{\operatorname{Tan}^{-1}(R_{\alpha}(0,y),I_{\alpha}(0,y))}{\alpha}\right) = 0.$$

We thus find $\lim_{y\to\infty} \frac{\mathbb{P}_{\alpha}(iy)}{iy} = \left(\frac{1}{2}\right)^{\frac{1}{\alpha}}$. By putting $\lambda = 0, y = 1$ we also find

$$\Re\{\mathbb{P}_{\alpha}(i)\} = \left(\frac{\cos\left(\frac{\alpha}{2}\pi\right) + 1}{2}\right)^{\frac{1}{2\alpha}} \cos\left(\frac{1}{\alpha}\tan^{-1}\left(\frac{\sin\left(\frac{\alpha}{2}\pi\right)}{\cos\left(\frac{\alpha}{2}\pi\right) + 1}\right)\right).$$

Lastly, we find $\mu_{\alpha}(\lambda)$. We have already known that

$$\Im \left\{ \mathbb{P}_{\alpha}(\lambda + iy) \right\} = \left(R_{\alpha}(\lambda, y)^{2} + I_{\alpha}(\lambda, y)^{2} \right)^{\frac{1}{2\alpha}} \sin \left(\frac{\operatorname{Tan}^{-1} \left(R_{\alpha}(\lambda, y), I_{\alpha}(\lambda, y) \right)}{\alpha} \right).$$

From Theorem 1, $\mathbb{P}_{\alpha}(\lambda) \in \mathbb{R}$ when $\lambda \ge 0$. Therefore $\Im \{\mathbb{P}_{\alpha}(\lambda + iy)\} \to 0$ $(\lambda \ge 0, y \searrow 0)$. Since $\lim_{\lambda < 0, y \searrow 0} \operatorname{Tan}^{-1}(\lambda, y) = \pi$, $R_{\alpha}(\lambda, y) \to \frac{|\lambda|^{\alpha} \cos \alpha \pi + 1}{2}$ and $I_{\alpha}(\lambda, y) \to |\lambda|^{\alpha} \sin \alpha \pi$

 $\frac{|\lambda|^{\alpha} \sin \alpha \pi}{2}$ hold when $\lambda < 0, y \searrow 0$. By Proposition 2, we get

$$\lim_{\lambda < 0, y \searrow 0} \sin\left(\frac{\operatorname{Tan}^{-1}(R_{\alpha}(\lambda, y), I_{\alpha}(\lambda, y))}{\alpha}\right) = \sin\left(\frac{\operatorname{Tan}^{-1}(|\lambda|^{\alpha} \cos \alpha \pi + 1, |\lambda|^{\alpha} \sin \alpha \pi)}{\alpha}\right)$$

and also have $\left(R_{\alpha}(\lambda, y)^{2} + I_{\alpha}(\lambda, y)^{2}\right)^{\frac{1}{2\alpha}} \rightarrow \left(\frac{|\lambda|^{2\alpha} + 2|\lambda|^{\alpha}\cos\alpha\pi + 1}{4}\right)^{\frac{1}{2\alpha}}$ when $\lambda < 0, y \searrow 0$. Accordingly, we can find that $\Im \{\mathbb{P}_{\alpha}(\lambda + iy)\}$ converges pointwise to $\pi p_{\alpha}(\lambda)$ as $\lambda < 0, y \searrow 0$. Moreover, when we put $y = \frac{1}{n}$ $(n \in \mathbb{N})$,

$$\frac{\left(\lambda^{2} + \frac{1}{n^{2}}\right)^{\alpha} + 2\left(\lambda^{2} + \frac{1}{n^{2}}\right)^{\frac{\alpha}{2}}\cos\left(\alpha \operatorname{Tan}^{-1}(\lambda, \frac{1}{n})\right) + 1}{4} \leqslant \frac{\left(\lambda^{2} + 1\right)^{\alpha} + 2\left(\lambda^{2} + 1\right)^{\frac{\alpha}{2}} + 1}{4}$$

holds. Thus we get

$$\Im\left\{\mathbb{P}_{\alpha}\left(\lambda+i\frac{1}{n}\right)\right\} \leqslant \left(\frac{\left(\lambda^{2}+1\right)^{\frac{\alpha}{2}}+1}{2}\right)^{\frac{1}{\alpha}} \leqslant \frac{\left(\lambda^{2}+1\right)^{\frac{1}{2}}+1}{2} \leqslant \frac{\lambda^{2}+4}{4}.$$

Since $\frac{\lambda^2 + 4}{4}$ is integrable on $(-\infty, 0)$, we see that dominated convergence theorem is applicable. Let $\phi(\lambda)$ be a nonnegative continuous function and assume that its support is compact. From the assumption, support is contained in closed interval [-K, K] for K > 0. By dominated convergence theorem,

$$\int_{-K}^{K} \phi(\lambda) \Im \left\{ \mathbb{P}_{\alpha}\left(\lambda + i\frac{1}{n}\right) \right\} d\lambda \longrightarrow \int_{-K}^{K} \phi(\lambda) \pi p_{\alpha}(\lambda) d\lambda \ (n \to \infty).$$

Therefore, we conclude that $\Im \left\{ \mathbb{P}_{\alpha} \left(\lambda + i \frac{1}{n} \right) \right\}$ converges $\pi p_{\alpha}(\lambda)$ in the vague topology, and thus $d\mu_{\alpha}(\lambda) = p_{\alpha}(\lambda) d\lambda$. \Box

THEOREM 5. Let $0 < \alpha < 1$. Then $\mathbb{Q}_{\alpha}(z)$ has an integral representation

$$\left(\frac{2}{1+\cos(\frac{\alpha}{2}\pi)}\right)^{\frac{1}{2\alpha}}\cos\left(\frac{1}{\alpha}\tan^{-1}\left(\frac{\sin(\frac{\alpha}{2}\pi)}{\cos(\frac{\alpha}{2}\pi)+1}\right)\right) + \int_{-\infty}^{0}\left(\frac{1}{\lambda-z}-\frac{\lambda}{\lambda^{2}+1}\right)q_{\alpha}(\lambda)d\lambda,$$

where

$$q_{\alpha}(\lambda) = \frac{1}{\pi} \left(\frac{4|\lambda|^{2\alpha}}{|\lambda|^{2\alpha} + 2|\lambda|^{\alpha} \cos \alpha \pi + 1} \right)^{\frac{1}{2\alpha}} \sin \left(\frac{\operatorname{Tan}^{-1} \left(|\lambda|^{\alpha} + \cos \alpha \pi, \sin \alpha \pi \right)}{\alpha} \right).$$

Proof. We find $\boldsymbol{\alpha}_{\alpha}, \boldsymbol{\beta}_{\alpha}$ and $d\mu_{\alpha}(\lambda)$ similar to a proof of Theorem 4. For $z = \lambda + iy \in \mathbb{C}^+$,

$$\frac{\mathbb{Q}_{\alpha}(iy)}{iy} = \left(\frac{4}{y^{2\alpha} + 2y^{\alpha}\cos\left(\frac{\alpha}{2}\pi\right) + 1}\right)^{\frac{1}{2\alpha}} \times \left\{\sin\left(\frac{\operatorname{Tan}^{-1}\left(S_{\alpha}(0, y), J_{\alpha}(0, y)\right)}{\alpha}\right) - i\cos\left(\frac{\operatorname{Tan}^{-1}\left(S_{\alpha}(0, y), J_{\alpha}(0, y)\right)}{\alpha}\right)\right\}.$$

It is easy to find

$$S_{\alpha}(0,y) = \frac{2\left(y^{2\alpha} + y^{\alpha}\cos\left(\frac{\alpha}{2}\pi\right)\right)}{y^{2\alpha} + 2y^{\alpha}\cos\left(\frac{\alpha}{2}\pi\right) + 1} > 0, \quad J_{\alpha}(0,y) = \frac{2y^{\alpha}\sin\left(\frac{\alpha}{2}\pi\right)}{y^{2\alpha} + 2y^{\alpha}\cos\left(\frac{\alpha}{2}\pi\right) + 1} > 0$$

since $\cos\left(\frac{\alpha}{2}\pi\right), \sin\left(\frac{\alpha}{2}\pi\right) \in (0,1)$. From this relation, we obtain

$$\lim_{y\to\infty} \operatorname{Tan}^{-1} \left(S_{\alpha}(0,y), J_{\alpha}(0,y) \right) = \frac{\alpha}{2} \pi$$

Therefore $\lim_{y\to\infty} \frac{\mathbb{Q}_{\alpha}(iy)}{iy} = 0$. Putting $\lambda = 0, y = 1$, we also have

$$\Re\{\mathbb{Q}_{\alpha}(i)\} = \left(\frac{2}{\cos\left(\frac{\alpha}{2}\pi\right) + 1}\right)^{\frac{1}{2\alpha}} \cos\left(\frac{1}{\alpha}\tan^{-1}\left(\frac{\sin\left(\frac{\alpha}{2}\pi\right)}{\cos\left(\frac{\alpha}{2}\pi\right) + 1}\right)\right)$$

Lastly we find $d\mu_{\alpha}(\lambda)$. We can assume that $\lambda < 0$ and y > 0 similar to a proof of Theorem 4. Then

$$\lim_{y\searrow 0} S_{\alpha}(\lambda, y) = \frac{2(|\lambda|^{2\alpha} + |\lambda|^{\alpha} \cos \alpha \pi)}{|\lambda|^{2\alpha} + 2|\lambda|^{\alpha} \cos \alpha \pi + 1}, \quad \lim_{y\searrow 0} J_{\alpha}(\lambda, y) = \frac{2|\lambda|^{\alpha} \cos \alpha \pi}{|\lambda|^{2\alpha} + 2|\lambda|^{\alpha} \cos \alpha \pi + 1}.$$

By Proposition 2,

$$\lim_{\lambda<0,y\searrow 0}\sin\left(\frac{\operatorname{Tan}^{-1}(S_{\alpha}(\lambda,y),J_{\alpha}(\lambda,y))}{\alpha}\right)=\sin\left(\frac{\operatorname{Tan}^{-1}(|\lambda|^{\alpha}+\cos\alpha\pi,\sin\alpha\pi)}{\alpha}\right).$$

It follows from this fact that $\Im \{\mathbb{Q}_{\alpha}(\lambda + iy)\}$ converges pointwise to $\pi q_{\alpha}(\lambda)$ as $\lambda < 0, y \searrow 0$. In the following we show that dominated convergence theorem is applicable to $\Im \{\mathbb{Q}_{\alpha}(\lambda + iy)\}$. Since $0 < \alpha \operatorname{Tan}^{-1}(\lambda, y) < \pi, -1 < \cos(\alpha \operatorname{Tan}^{-1}(\lambda, y)) < 1$. Thus $0 < \cos^2(\alpha \operatorname{Tan}^{-1}(\lambda, y)) < 1$. From this fact we can choose a constant $C_{\alpha} > 4$, which

depends on only α , such that $\cos^2(\alpha \operatorname{Tan}^{-1}(\lambda, y)) < \frac{C_{\alpha} - 4}{C_{\alpha}} < 1$. For this constant $C_{\alpha} > 4$

$$\frac{4(\lambda^2+y^2)^{\alpha}}{(\lambda^2+y^2)^{\alpha}+2(\lambda^2+y^2)^{\frac{\alpha}{2}}\cos(\alpha \operatorname{Tan}^{-1}(\lambda,y))+1} < C_{\alpha}$$

holds. Accordingly, $\Im \left\{ \mathbb{Q}_{\alpha} \left(\lambda + \frac{i}{n} \right) \right\} < C_{\alpha}^{\frac{1}{2\alpha}}$ for any $n \in \mathbb{N}$. From the above, we see that dominated convergence theorem is applicable. \Box

REFERENCES

- [1] W. DONOGHUE, Monotone Matrix Functions and Analytic Continuation, Springer, Berlin, 1974,
- [2] F. HANSEN, The fast track to Löwner's theorem, Linear Algebra Appl., 438 (2013), 4557–4571.
- [3] F. HANSEN, Trace functions with applications in quantum physics, J. Stat. Phys., 154 (2014), 807– 818.
- [4] E. HEINZ, Beiträge zur Störungstheorie der Spektralzerlegung, Math. Ann., 123 (1951), 415–438.
- [5] K. LÖWNER, Über monotone Matrixfunktionen, Math. Z., 38 (1934), 177-216.
- [6] Y. UDAGAWA, Operator monotonicity of a 2-parameter family of functions and $\exp{f(x)}$ related to the Stolarsky mean, Oper. Matrices., **11–2** (2017), 519–532.
- [7] Y. UDAGAWA, S. WADA, T. YAMAZAKI AND M. YANAGIDA, On a family of operator means involving the power difference means, Linear Algebra Appl., 485 (2015), 124–131.

(Received May 27, 2019)

Yoichi Udagawa Department of Mathematical Sciences Ritsumeikan University Kusatsu, Shiga, 525-8577, Japan 1414701@alumni.tus.ac.jp

Operators and Matrices www.ele-math.com oam@ele-math.com