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MATRIX ∗–SUBALGEBRAS WITH SCALAR DIAGONALS
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M. OMLADIČ 2 AND H. RADJAVI

(Communicated by E. Poon)

Abstract. We characterize those unital, self-adjoint algebras of complex n×n matrices that are
simultaneously unitarily similar to algebras in which every member has a scalar diagonal.

1. Introduction

This short paper is concerned with the structure of the set of diagonal entries of
complex matrices in an algebra, group or semigroup. More specifically, we are inter-
ested in characterising those ∗ -subalgebras A of Mn(C) for which there exists an
orthonormal basis with respect to which each element A ∈ A admits a diagonal, all of
whose entries are equal. We shall say that such an algebra has scalar diagonals.

The question “What can we say about the diagonal of a matrix up to unitary simi-
larity?” has a rich history; below we only mention a few highlights. This short note is,
as far as we know, the first to explore a related question for collections of matrices. In
our setting we restrict ourselves exclusively to the finite-dimensional setting. When we
say a matrix, we always mean a matrix of finite dimensions with complex entries.

A well-known fact about any single matrix A is that it is unitarily similar to a ma-
trix with scalar diagonal (see, for example, page 109 of [3]); i.e, for some unitary matrix
U , the matrix U∗AU has all of its diagonal entries equal, or Diag(U∗AU) = λ I (with
λ = 1

n tr(A) , where n is the size of A). This result also has infinite-dimensional gen-
eralizations [1]. If general similarities are allowed, then every sequence (x1,x2, . . . ,xn)
satisfying tr(A) = ∑n

k=1 xk occurs as the sequence of diagonal entries in some matrix
similar to A . (See, e.g., [5] or [2], where the statement is proved for matrices over an
arbitrary field.)

We also mention the interesting characterisation of diagonals of various types of
matrices. For example, Horn [4] shows that the real sequence (d1,d2, . . . ,dn) is the
diagonal of a rotation matrix of order n (i.e., a real orthogonal n× n matrix of deter-
minant 1) if and only if it is in the convex hull of those sequences (±1,±1, . . . ,±1)
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in which −1 occurs an even number of times (possibly zero times). The same paper
shows that if di � 0 for all i , then (d1,d2, . . . ,dn) is the diagonal of a rotation matrix
if and only if it is the diagonal of a doubly stochastic matrix: whence the well-known
Schur-Horn Theorem follows. (That theorem states that there exists a complex n× n
hermitian matrix with eigenvalues λ1 � . . . � λn and diagonal entries d1 � . . . � dn

if and only if for each i = 1, . . . ,n− 1 we have that d1 + · · ·+ di � λ1 + · · ·+ λi and
d1 + · · ·+dn = λ1 + · · ·+λn . Analogous result also holds for real orthogonal matrices.)

We are interested in collections of matrices with scalar diagonals. Perhaps the
simplest example of a (non-trivial, multiplicative) group of matrices with this property
is that generated by a cyclic permutation matrix, where the diagonal of each member
consists of either zeros or ones. With a little care, one can actually show that if A is any
invertible normal matrix, there is a unitary matrix U such that the group generated by
U∗AU consists of matrices with scalar diagonals. In fact, it is a special case of our main
result that every commutative, self-adjoint group of matrices (or the algebra generated
by such a group) has the scalar-diagonal property after a suitable unitary similarity.

We wish to characterise, up to unitary similarity, those self-adjoint subalgebras
(equivalently, semigroups) of Mn(C) , every member of which has a scalar diagonal.
Such an algebra A will necessarily have non-trivial invariant subspaces (if n > 1).
This is a consequence of Burnside’s Theorem, which states that the only subalgebra of
Mn(C) without non-trivial invariant subspaces is Mn(C) itself. Clearly Mn(C) does
not admit scalar diagonals.

One can in fact show that, under the hypothesis, the number of mutually orthogo-
nal invariant subspaces for A is no less than

√
n . But our characterisation will imply

more: A is unitarily similar to a direct sum of algebras Mmi(C)⊗ Iki , where mi � ki

for each i .
Since a unital, self-adjoint semigroup S , e.g. a group of unitary matrices, has the

scalar-diagonal property if and only if the algebra generated by it does, the main result
has an easy corollary for such semigroups.

We take the opportunity to thank Leo Livshits, who graciously organised the meet-
ing that led to this work, but could not attend it himself. We would also thank the
unnamed referees for their helpful suggestions.

2. Notation and preliminary observations

We use the convention whereby we start counting at 0. In particular, we enu-
merate rows and columns of an n× n matrix by the integers 0,1, . . . ,(n− 1) with the
convention that the row and column indices are taken modulo n . For example, if n = 3
and

A = (ai, j)
n−1
i, j=0 =

⎛⎝1 2 3
4 5 6
7 8 9

⎞⎠ ∈ M3(C),

then a0,0 = a3,0 = 1, a1,2 = a7,−1 = 6, the 0-row of A is (1 2 3) , and the 1-column

of A is (2,5,8) :=

⎛⎝2
5
8

⎞⎠ . For an integer n � 1, we consider elements of the vector
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space Cn to be column vectors; we often use the usual comma-delimited row notation
for them (as at the end of the preceding sentence).

For a strictly positive integer n , we use ωn = e2π i/n to denote a fixed primitive
n -th root of 1 and we use Fn to denote the n× n discrete Fourier transform (DFT)
matrix

Fn =
1√
n

(
ω jk

n

)n−1

j,k=0
∈ Mn(C).

For example

F1 = (1), F2 =
1√
2

(
1 1
1 −1

)
, F3 =

1√
3

⎛⎝1 1 1
1 ω3 ω2

3
1 ω2

3 ω3

⎞⎠ .

It is well known (and easy to see) that Fn is a unitary matrix.
The space of all n×n matrices with scalar diagonal is denoted by S Dn , i.e.,

S Dn =
{(

a j,k
)n−1

j,k=0 ∈ Mn(C) : a0,0 = a1,1 = . . . = an−1,n−1

}
⊆ Mn(C).

The space of all n× n matrices whose non-main-diagonal circulant sums are 0
(we call the sum in the definition below a circulant sum) is denoted by Z C S n , i.e.,

Z CS n =

{(
a j,k

)n−1
j,k=0 ∈ Mn(C) : ∀m ∈ {1, . . . ,n−1},

n−1

∑
j=0

a j, j+m = 0

}
⊆ Mn(C).

We use Z DS n to denote the space of all matrices whose non-main-diagonal
diagonal sums are 0, i.e.,

Z DS n =

{(
a j,k

)n−1
j,k=0 : ∀m ∈ {1, . . . ,n−1},

n−m

∑
j=0

a j, j+m = 0 =
n−m

∑
j=0

a j+m, j

}
⊆Mn(C).

In the proof of the main result of the paper we will use the fact that Z DS n ⊆Z CS n

and the following lemma.

LEMMA 2.1. Fn(Z CS n)F∗
n = S Dn.

Proof. Since each of the spaces Z CS n,Fn(Z C S n)F∗
n and S Dn has dimen-

sion n2−n+1, it is sufficient to prove that Fn(Z CS n)F∗
n ⊆S Dn. Let A = (ai, j)n−1

i, j=0

∈ Z CS n . That is, for all k ∈ {1, . . . ,n− 1} we have that ∑n−1
i=0 ai,i+k = 0. We now

compute bi,i , the (i, i)-entry of B = FnAF∗
n . If ζ = ω i

n , then (recall that we are taking
indices modulo n ):

nbi,i =
(
1 ζ . . . ζ n−1

)
A

⎛⎜⎜⎜⎜⎝
1
ζ
...

ζ
n−1

⎞⎟⎟⎟⎟⎠
=

(
∑n−1

j=0 ζ ja j,0 ∑n−1
j=0 ζ ja j,1 . . . ∑n−1

j=0 ζ ja j,n−1

)
⎛⎜⎜⎜⎜⎝

1
ζ
...

ζ
n−1

⎞⎟⎟⎟⎟⎠
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=
n−1

∑
k=0

n−1

∑
j=0

ζ ja j,kζ
k
=

n−1

∑
j=0

n−1

∑
k=0

ζ j−ka j,k

r=k− j
=

n−1

∑
j=0

n−1

∑
r=0

ζ−ra j, j+r =
n−1

∑
r=0

n−1

∑
j=0

ζ−ra j, j+r

=
n−1

∑
r=0

ζ−r
n−1

∑
j=0

a j, j+r =
n−1

∑
j=0

a j, j +
n−1

∑
r=1

ζ−r
n−1

∑
j=0

a j, j+r

=
n−1

∑
j=0

a j, j +
n−1

∑
r=1

ζ−r ·0 =
n−1

∑
j=0

a j, j = tr(A). �

Throughout the paper we use the canonical isomorphism Mn1(C)⊗Mn2(C) ∼→
Mn1n2(C) given by identifying A⊗B with the n2×n2 block matrix whose (i, j)-block
is the n1 × n1 matrix bi, jA . In particular, we identify A⊗ In with the block diagonal
matrix diag(A, . . . ,A) .

We use 〈−,−〉 to denote the standard inner product on Cn , i.e., for column vectors
x = (x0, . . . ,xn−1) and y = (y0, . . . ,yn−1) , here written in the comma-delimited row no-
tation, we have 〈x,y〉 = ∑n−1

i=0 xiyi . If X ⊆ Cn , then X⊥ = {y ∈ Cn : ∀x ∈ X ,〈x,y〉 = 0}
denotes its orthogonal complement. We employ the same notations 〈−,−〉 and (−)⊥
to denote the standard inner product and orthogonal complement on Mn(C) . That is,
if A = (ai, j)

n−1
i, j=0 and B = (bi, j)

n−1
i, j=0 , then

〈A,B〉 = tr(AB∗) =
n−1

∑
i, j=0

ai, jbi, j.

If L ⊆ Mn(C) , then L ⊥ = {A ∈ Mn(C) : ∀X ∈ Mn(C),〈A,X〉 = 0} .
We use e0, . . . ,en−1 to denote the standard basis of Cn . We use Ci : Mn(C) →

Cn , i ∈ {0, . . . ,n− 1} to denote the projection to column i , i.e., if A ∈ Mn(C) , then
Ci(A) = Aei . We use Qi : C

n → Mn(C) , i = 0, . . . ,n− 1 to denote the injection into
the column i , i.e., for a column vector x ∈ Cn we have Qi(x) = xe∗i .

3. Matrix ∗ -algebras that have scalar diagonal

LEMMA 3.1. Let D be a diagonal matrix of trace 0 and let A ⊆ Mn(C) be a
unital ∗ -algebra. If A ⊆ S Dn , then A D ⊆ A ⊥ .

Proof. Let A,X ∈ A . Since A is a ∗ -algebra we have that A∗X ∈ A ⊆ S Dn ,
hence A∗X has a scalar diagonal, and therefore 0 = tr(D∗(A∗X)) = 〈X ,AD〉 . �

LEMMA 3.2. Let A ⊆ Mn(C) be a ∗ -algebra. If A ⊆ S Dn , then for each
i = 0, . . . ,n−1 we have that dimA = dimCi(A ) .

Proof. We will prove that dimA = dimC0(A ) . The claim of the lemma then
follows from the fact that the condition A ⊆S Dn is invariant under any permutational
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similarity. Indeed, if A ⊆ S Dn and P is the permutation matrix corresponding to the
transposition that switches 0 and j , then PA P ⊆ S Dn and C0(PA P) = P(Cj(A )) .

For i = 0, . . . ,n− 1 let Ci = Ci(A ) , let ki = dimCi , and let Qi = Qi(C⊥
i ) . It is

clear that for all i we have that Qi ⊆ A ⊥ .
Let

X = Span{AD : A ∈ A ,D diagonal, tr(D) = 0} .

By Lemma 3.1 we have that X ⊆ A ⊥ . We claim that dimX � ∑n−1
i=1 ki . To this

end let, for i = 1, . . . ,n− 1, C̃i : Ci → A denote a fixed right linear inverse of the
surjective linear map Ci|A : A → Ci (e.g., find Ci -pre-images of a basis of Ci and
extend by linearity). Also note that for Di = −e0e∗0 + eie∗i , we have that MDi , the right
multiplication by Di , is equal to −Q0C0 +QiCi . Using this fact it is easy to see that the
linear map

F : C1 × . . .×Cn−1 → X

given by

F(x1, . . . ,xn−1) :=
n−1

∑
i=1

MDi(C̃i(xi)) =
(−∑n−1

i=1 Q0C0C̃i(xi) x1 . . . xn−1
) ∈ X ,

is a well-defined linear injection; so ∑n−1
i=1 ki = dim(C1 × . . .×Cn−1) � dimX .

Since the spaces X ,Q0, . . . ,Qn−1 , are pairwise orthogonalwe therefore have that

dimA ⊥ � dim(X +Q0 + . . .+Qn−1)

= dimX +
n−1

∑
i=0

dimQi

�
n−1

∑
i=1

ki +
n−1

∑
i=0

(n− ki) = n2− k0.

Hence

dimA = n2−dimA ⊥ � n2− (n2− k0) = k0 = dimC0(A ) � dimA ,

and thus dimA = dimC0(A ) . �

LEMMA 3.3. Let A = Mm ⊗ In ⊕ 0p ⊆ Mmn+p . If A is unitarily similar to a
subset of S Dmn+p , then m � n.

Proof. Let U be a unitary matrix such that UA U∗ ⊆ S Dmn+p .
Since A has a common range of of dimension mn , we have that dimC0(UA U∗)�

mn . In more detail: let X ⊆ Cmn+p be the subspace spanned by the first mn basis
vectors e0, . . . ,emn−1 . Then for each f ∈ Cmn+p , the space A f is contained in X .
Therefore C0(UA U∗) = U(A (U∗e0)) is contained in U(X ) .

Hence by Lemma 3.2 we have that

m2 = dimA = dim(UA U∗) = dimC0(UA U∗) � mn,

and therefore m � n . �



44 G. MACDONALD, L. W. MARCOUX, M. MASTNAK, M. OMLADIČ AND H. RADJAVI

LEMMA 3.4. Let A = Mm(C)⊗In ⊆Mmn(C) with m � n. Let Dm,n = diag(1,ωn,

. . . ,ωm−1
n )∈Mm(C) and let D̃m,n = diag

(
Im,Dm,n, . . . ,Dn−1

m,n

)∈Mmn . Then D̃m,nA D̃∗
m,n

⊆ Z DS mn .

Proof. Let A = (ai, j)m−1
i, j=0 ∈ Mm(C) , let B = (bi, j)mn−1

i, j=0 = D̃m,n(A⊗ In)D̃∗
m,n . We

will prove that all strictly upper diagonal sums ∑mn−1−k
i=0 bi,i+k , k ∈ {1, . . . ,mn−1} are

zero (the proof of the fact that all strictly lower diagonal sums are zero is symmetric).
Let k ∈ {1, . . . ,mn−1} . Note that for p ∈ {0, . . . ,m−1} , and q ∈ {0, . . . ,n−1} , we
have that

bmq+p,mq+p+k =

{
ω−kq

n ap,p+k if k � m−1− p

0 if k > m−1− p
.

Hence for k > m− 1− p we clearly have that ∑mn−1−k
i=0 bi,i+k = 0. Now assume that

k � m−1− p . Since m � n we have ωk
n �= 1 and thus ∑n−1

q=0 ω−kq = 0. Therefore

mn−1−k

∑
i=0

bi,i+k =
m−1−k

∑
p=0

n−1

∑
q=0

bmq+p,mq+p+k

=
m−1−k

∑
p=0

n−1

∑
q=0

ω−kq
n ap,p+k

=
m−1−k

∑
p=0

ap,p+k

n−1

∑
q=0

ω−kq
n = 0. �

THEOREM 3.5. Let A be a unital ∗ -subalgebra of Mn(C) . Then A is unitarily
similar to a subspace of S Dn if and only if up to unitary similarity we have that
A =

⊕k
i=1 Mmi ⊗ Ini with mi � ni for i = 1, . . . ,k .

Proof. We assume, with no loss of generality, that A =
⊕k

i=1 Mmi ⊗ Ini for some
natural numbers k , m1, . . . ,mk , n1, . . . ,nk .

( =⇒ ) : Assume that A is unitarily similar to a subspace of S Dn . For each
i ∈ {1, . . . ,k} , A has a subalgebra Ai unitarily similar to Mmi ⊗ Ini ⊕ 0n−mini . Since
each Ai is also unitarily similar to a subspace of S Dn we have, by Lemma 3.3, that
mi � ni for all i .

(⇐= ) : Assume that for all i = 1, . . . ,k we have that mi � ni . Let D = diag(D̃m1,n1 ,

. . . ,D̃mk ,nk) . By Lemma 3.4 we have that DA D∗ ⊆Z DS n . Since Z DS n ⊆Z CS n

we therefore have, by Lemma 2.1, that FnDA D∗F∗
n ⊆ S Dn . �

COROLLARY 3.6. Every unital, commutative, self-adjoint semigroup of matrices
– in particular, every commutative group of unitaries – is unitarily similar to a semi-
group of matrices with scalar diagonal.

Proof. Let S be a unital, commutative, self-adjoint semigroup of matrices. We
can assume with no loss of generality that S consists of diagonal matrices. Then so
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does the algebra A generated by S . Just note that A is a direct sum of algebras of
the form Mmi ⊗ Ini with mi = 1 for all i . �

The corollary above also follows from Lemma 2.1 which gives an explicit formula
for the unitary similarity in question.
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