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(Communicated by F. Kittaneh)

Abstract. Let A,B be n× n matrices such that A is positive semi-definite and B is Hermitian.
In this note, it is shown, among other inequalities, the following determinantal inequality

det(Ak +(AB)2) � det(Ak +A2B2)

for all k ∈ [1,∞[ .

1. Introduction

Audenaert [2] proved the following determinantal inequality, for n× n positive
semi-definite matrices A and B ,

det(A2 + |BA|) � det(A2 +AB). (1)

M. Lin [6] generalized Audenaert’s result by proving

det(A2 + |BA|p) � det(A2 +ApBp) 0 � p � 2,

and also complemented (1) by proving that

det(A2 + |AB|) � det(A2 +AB).

In [1], the authors gave a further generalization of (1) by proving:

det(Akp + |BA|p) � det(Akp +ApBp) k � 1, 0 � p � 2,

and in addition, they formulated the following conjecture.

CONJECTURE 1. Let A,B be two n×n positive semi-definite matrices. Then for
any k ∈ [1,∞[ ,

det(Ak +(AB)2) � det(Ak +A2B2). (2)
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The main purpose of this paper is to confirm this conjecture in a slightly more gen-
eral setting; namely in the case where A is positive semi-definite and B is Hermitian.
It is worthy to note that inequality (2) turned into equality when k = 1.

To proceed, we shall first fix some notation. Let Mn be the space of all n× n
complex matrices where its identity matrix is denoted by In . The modulus of a complex
matrix X is defined as |X | = (X∗X)1/2 . As usual, we shall write X > 0 (resp. X � 0)
to indicate that X is positive definite (resp. positive semi-definite). For Hermitian
matrices X ,Y ∈ Mn , by X � Y we mean that X −Y is positive semi-definite matrix.
If the eigenvalues λ1(X),λ2(X), . . . ,λn(X) of a matrix X are real, then without loss of
generality we shall always assume that they are arranged in decreasing order, that is

λ1(X) � λ2(X) � . . . � λn(X).

For a Hermitian matrix X ∈Mn , we shall denote by λ (X) to be the real vector of order
n defined by

λ (X) = (λ1(X),λ2(X), . . . ,λn(X))t .

If, in addition, X � 0, then we define λ
1
2 (X) :=

(
λ

1
2
1 (X),λ

1
2
2 (X), . . . ,λ

1
2
n (X)

)t

.

Majorization relations are great tools for deriving determinantal inequalities, see,
for example, [10, Chapter 10] for details on this subject. If λ (A) , λ (B) ∈ R

n, then

1. by λ (A) ≺w λ (B) we mean that A is weakly majorized by B , that is

k

∑
i=1

λi(A) �
k

∑
i=1

λi(B) for all k = 1,2, . . . ,n. (3)

Moreover, we shall say that A is majorized by B and we will write λ (A)≺ λ (B)
if (3) is true and equality holds for k = n .

2. By λ (A) ≺wlog λ (B) , we mean that A is weakly log-majorized by B , that is

k

∏
i=1

λi(A) �
k

∏
i=1

λi(B) for all k = 1,2, . . . ,n. (4)

In addition, we shall write λ (A)≺log λ (B) and we will say that A is log-majorized
by B if (4) is true and equality holds for k = n .

The antisymmetric tensor product technique is very powerful in deriving log-
majorization inequalities. The kth antisymmetric tensor product of an n× n matrix
A is denoted by ∧kA for all k = 1,2, . . . ,n (see for example [3] for details on this
topic). The following are some essential properties of this product where the first one
is known as the Binet-Cauchy formula.

1. ∧k(AB) = ∧kA∧k B .

2. (∧kA)−1 = ∧kA−1 in case A is invertible.
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3. (∧kA)p = ∧kAp for every A � 0 and p > 0.

4. If A is positive semi-definite or Hermitian matrix then so is ∧kA .

5. If A � 0, then λ1(∧kA) =
k
∏
i=1

λi(A) .

It is worthy to mention here that a common practice for proving a log-majorization
inequality such as λ (X) ≺log λ (Y ) where X ,Y � 0, is to prove that

λ1(X) � λ1(Y ) and det(X) = det(Y ).

The rest of the paper is organized as follows. In Section 2, we shall present our
main result which is the proof of Conjecture 1. In addition, we will show that (2) is
reversed when k ∈ [0,1] . In the third section, we study some inequalities for larger
classes of matrices A and B . In last section, we conclude with some remarks and an
open problem.

2. Main results

As mentioned earlier, there is a close connection between majorization and de-
terminantal inequalities. We shall start with the following lemma which shows the
existence of such a link and can be found in [6].

LEMMA 1. Let A and B be two complex n-square matrices. Then the following
holds.

1. If λ (A),λ (B) ∈ R
n
+ \ {0} such that λ (A) ≺ λ (B) then det(A) � det(B).

2. If λ (A),λ (B) ∈ R
n
+ such that λ (A) ≺wlog λ (B) then

det(In +A) � det(In +B).

The following majorization inequality given in the next lemma, stands for a larger
set of matrices than the one originally proved by L. Plevnik in [8]. The steps in the
proof are essentially the same, but we include them here for the sake of completeness
and also to assert our claim that it is valid for a wider class of matrices.

LEMMA 2. Let X ,Y be in Mn . If either one of the following two conditions

1. X is Hermitian, Y � 0 and p, q ∈ [0,∞[ , or

2. X , Y are Hermitian and p, q are even positive integers,

is satisfied, then it holds that

λ (XY pXYq) ≺wlog λ (X2Y p+q).
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Proof. By appealing to a standard argument (anti-symmetric tensor product), then
it suffices to prove that

λ1(XY pXYq) � λ1(X2Y p+q).

Without loss of generality, we shall assume that X is invertible as the general
case can be done by continuity argument. In addition, we shall assume that p > q and
λ1(X2Y p+q) = 1. Now, obviously proving our claim is equivalent to showing that

λ1(XY pXYq) � 1.

The fact that the largest eigenvalue of the matrix X2Y p+q is equal to 1, clearly
implies that

λ j(X2Y p+q) � 1 for all 1 � j � n.

But this is equivalent to XY p+qX � In which in turn gives

Y p+q � (X−1)2. (5)

Next, applying the well-known Löwner-Heinz inequality (see, for example [10, p.
211]) on (5) for a power p

p+q < 1, yields

(Y p+q)
p

p+q � ((X−1)2)
p

p+q .

Obviously, for both cases in the lemma we see that (Y p+q)
p

p+q =Y p , and here it is

worthy to draw the attention to the fact that ((X−1)2)
p

p+q is defined since (X−1)2 > 0.
Thus, we obtain

Y p � ((X−1)2)
p

p+q . (6)

Again, taking a power q
p < 1 in both sides of (6), we get

(Y p)
q
p �

(
((X−1)2)

p
p+q

) q
p
.

As before, in both cases of the lemma we have

Yq �
(
(X−1)2) q

p+q =
(
(X2)

q
p+q

)−1
.

Hence,
(X2)

q
p+q � Y−q. (7)

Therefore,

λ1(XY pXYq) = λ1

(
Yq/2XY pXYq/2

)
� λ1

(
Yq/2X((X−1)2)

p
p+q XYq/2

)
Using (6)

= λ1

(
(Yq/2(X2)

q
p+qY q/2

)
� λ1

(
Yq/2Y−qY q/2

)
Using (7)

= λ1(In)
= 1.
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Thus, the proof is complete. �
Next, we need the following lemma whose proof can be found in [10, p. 352].

LEMMA 3. Let M =
(

A B
B∗ C

)
where A, B and C are n-square complex matri-

ces. If M � 0 then

|λ (B)| ≺wlog λ
1
2 (A)◦λ

1
2 (C),

where ◦ is the componentwise product. In particular, we have

|λ1(B)| � λ
1
2
1 (A) ·λ

1
2
1 (C).

Now, we prove the following lemma which is also essential for our main results.

LEMMA 4. Let K,L be in Mn . If either one of the following two conditions

1. K is Hermitian, L > 0 , p′,q′ ∈ [0,∞[ and p′ � 2q′ or

2. K,L are Hermitian, q′ and p′ � 2q′ are even positive integers,

is satisfied, then we have

λ (K2Lp′−q′) ≺wlog λ (KLp′KL−q′).

Proof. By Schur’s complement, we know that

M =

[
L

p′
2 KL−q′KL

p′
2 L

p′
2 K2L

p′
2 −q′

L
p′
2 −q′K2L

p′
2 L

p′
2 −q′KLq′KL

p′
2 −q′

]
� 0.

Now in view of Lemma 3, we can write

λ1(Lp′KL−q′K) ·λ1(Lp′−2q′KLq′K) � λ1(K2Lp′−q′)2. (8)

Taking X = K , Y = L , q = q′ and p = p′ −2q′ � 0 in Lemma 2, and keeping in
mind that either Condition 1 or 2 is satisfied, we obtain

λ (KLp′−2q′KLq′) ≺wlog λ (K2Lp′−q′),

which is certainly implies that

λ1(Lp′−2q′KLq′K) � λ1(K2Lp′−q′).

Therefore, using (8) we conclude that

λ1(Lp′KL−q′K)λ1(Lp′−2q′KLq′K) � λ1(K2Lp′−q′)2 � λ1(K2Lp′−q′)λ1(Lp′−2q′KLq′K).

Thus,

λ1

(
Lp′KL−q′K

)
� λ1

(
K2Lp′−q′

)
.

Finally, by a standard antisymmetric tensor product argument, the proof is achieved. �
As a result, we have the following theorem.
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THEOREM 1. Let A be a positive semi-definite matrix and B be a Hermitian ma-
trix. Then

1. det(Ak + |AB|2) � det(Ak +A2B2), k ∈ [0,1].

2. det(Ak + |AB|2) � det(Ak +A2B2), k ∈ [4,∞[ .

3. If A invertible, then det(Ak + |AB|2) � det(Ak +A2B2), k ∈ ]−∞,0].

Proof. For the first two inequalities, we shall assume first that A is invertible and
then the general case follows easily by a continuity argument.

1. k ∈ [0,1] :

Replacing K with B , L with A , q′ with k , and p′ with 2 � 2k in Lemma 4 gives

λ (B2A2−k) ≺wlog λ (BA2BA−k).

Now using Part 2 of Lemma 1 yields

det(In +B2A2−k) � det(In +BA2BA−k).

By multiplying both sides by det(Ak) > 0, we obtain the result.

2. k ∈ [4,∞[ :

Taking K = B , L = A−1 , q′ = 2, and p′ = k � 2 ·2 = 4 in Lemma 4 gives

λ
(
B2(A−1)k−2

)
≺wlog λ

(
B(A−1)−2B(A−1)k

)
.

Again using first Part 2 of Lemma 1 which yields

det(In +B2A2−k) � det(In +BA2BA−k),

and then multiplying both sides by det(Ak) > 0, will prove the result.

3. k ∈]−∞,0] :

Replacing X with B , Y with A , p with −k � 0 and q = 2 > 0 in Lemma 2
gives

λ (A−kBA2B) ≺wlog λ (A2−kB2). (9)

Similarly, using Part 2 of Lemma 1 for (9) yields this time

det(In +A−kBA2B) � det(In +A2−kB2).

Multiplying both sides with det(Ak) > 0, leads to the result. �

For our purposes, we need the next two lemmas.
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LEMMA 5. Let A and B be in Mn such that A is positive semi-definite and B is
Hermitian, and let α1 and β1 be any two real numbers. If, for all k ∈ [α1,β1] ,

det(Ak + |AB|2) � det(Ak +A2B2), (10)

then,
det(Ak′ +(AB)2) � det(Ak′ +A2B2),

for all k′ ∈ [α2,β2] with α2 = α1
2 +1 and β2 = β1

2 +1 .

Proof. Let k′ ∈ [α1
2 +1, β1

2 +1] , then 2(k′ −1) ∈ [α1,β1] . Replacing A with A1/2

and k with 2(k′ −1) in (10) gives

det
(
(A1/2)2(k′−1) + |A1/2B|2

)
� det

(
(A1/2)2(k′−1) + (A1/2)2B2

)
. (11)

On the other hand, we can write

det(Ak′ +(AB)2) = det(Ak′ +ABAB)

= det(A) ·det(Ak′−1 +BAB)

= det(A) ·det
(
(A1/2)2(k′−1) + |A1/2B|2

)
� det(A) ·det

(
(A1/2)2(k′−1) + (A1/2)2B2

)
Using (11)

= det(A) ·det(Ak′−1 +AB2)

= det(Ak′ +A2B2). �

LEMMA 6. Let A and B be in Mn such that A � 0 and B is Hermitian, and let
α and β be any two positive real numbers. If

det(Ak +(AB)2) � det(Ak +A2B2)

is true for k ∈ [α,β ] , then

det(Ak + |AB|2) � det(Ak +(AB)2) � det(Ak +A2B2)

is also true for k ∈ [α,β ] .

Proof. Using Schur’s complement, we know that (see also [9, Theorem 5.12])[ |BA|2 (AB)2

(BA)2 |AB|2
]

� 0 and

[
Ak Ak

Ak Ak

]
� 0.

So, [
Ak + |BA|2 Ak +(AB)2

Ak +(BA)2 Ak + |AB|2
]

� 0,
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and then [
det(Ak + |BA|2) det(Ak +(AB)2)
det(Ak +(BA)2) det(Ak + |AB|2)

]
� 0.

Using the fact that det(Ak +(AB)2) = det(Ak +(BA)2) , we conclude that

det(Ak + |BA|2) ·det(Ak + |AB|2) � det(Ak +(AB)2)2.

As det(Ak + |BA|2) = det(Ak +A2B2) � det(Ak +(AB)2) for all k ∈ [α,β ] , then
we obtain

det(Ak + |AB|2) � det(Ak +(AB)2).

Thus, for all real numbers k ∈ [α,β ] , we have that

det(Ak + |AB|2) � det(Ak +(AB)2) � det(Ak +A2B2). �

Now we are ready to prove one of the main results of this paper.

THEOREM 2. Let A and B be in Mn such that A is positive semi-definite and B
is Hermitian. Then, for k ∈ [0,∞[ , we have that

det(Ak + |AB|2) � det(Ak +A2B2). (12)

Proof. For the proof, we distinguish between the two cases: k ∈ [2,∞[ and k ∈
[0,2] .

Case 1: k ∈ [2,∞[ :
We construct a recursive sequence (αn)n�1 with α1 = 4, and αi+1 = αi

2 +1. Then,
in view of Part 2 in Theorem 1, we know that (12) is true for all k ∈ [α1,∞[ . Next, we
shall show in two steps the validity of inequality (12) for k ∈ [α2,∞[ ⊃ [α1,∞[ .

Step 1: Combining Part 2 of Theorem 1 and Lemma 5, implies that for all k ∈
[α2,∞[ where α2 = α1

2 +1 = 3, we have

det(Ak +(AB)2) � det(Ak +A2B2).

Step 2: Making use of Lemma 6, we first conclude that (12) is true for all k ∈
[α2,∞[ .

Repeating the same process as before, we see that inequality (12) is true for all

k ∈ [α3,∞[ ,

(
α3 =

α1

22 +
1
2

+1 =
5
2

)

k ∈ [α4,∞[ ,

(
α4 =

α1

23 +
1
22 +

1
2

+1 =
9
4

)
...

k ∈ [αn+2,∞[ ,

(
αn+2 =

α1

2n+1 +
1
2n +

1
2n−1 + . . .+

1
2

+1 = 2+
1
2n

)
.
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As n approaches +∞ , the sequence (αn)n tends to 2. Therefore, (12) is true for
k ∈ [2,∞[ .

Case 2: k ∈ [0,2] :
Here we construct another recursive sequence (αn)n�1 with α1 = 0, and αi+1 =

αi
2 +1. Again, Part 2 of Theorem 1 says that (12) is true for all k ∈ [α1,α2] .

Using a similar argument as earlier, we conclude that inequality (12) is valid for
all

k ∈ [α2,α3],
(

α3 = 1+
1
2

)

k ∈ [α3,α4],
(

α4 = 1+
1
2

+
1
22

)

k ∈ [α4,α5],
(

α5 = 1+
1
2

+
1
22 +

1
23

)
...

k ∈ [αn−1,αn],
(

αn = 1+
1
2

+
1
22 + . . .+

1
2n = 2− 1

2n

)
.

As n approaches +∞ , the sequence αn also tends to 2. Thus, for all A � 0, B
Hermitian matrix and for k ∈ [0,2] , we have that

det(Ak + |AB|2) � det(Ak +A2B2). �

Consequently, we have the following corollary.

COROLLARY 1. Let A be a positive semi-definite matrix and B be a Hermitian
matrix. Then

1. det(Ak + |AB|2) � det(Ak +(AB)2) � det(Ak +A2B2), k ∈ [1,∞[ .

2. det(Ak + |AB|2) � det(Ak +A2B2) � det(Ak +(AB)2), k ∈ [0,1].

3. For k ∈]−∞,0] and in the event of A being invertible, we have that

• det(Ak +A2B2) � det(Ak + |AB|2), and

• det(Ak +A2B2) � det(Ak +(AB)2).

3. Further remarks

In this section, we are tempted to study inequality (2) for a larger class of matrices,
and to see when it might fail. In fact, we have the following theorem.

THEOREM 3. Let A and B be two Hermitian matrices. Then for all positive even
integers k ,

det(Ak + |AB|2) � det(Ak +A2B2).
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Proof. The proof for even integers k � 4 is similar to that of Part 1 in Theorem
1; we just need to apply the second case of Lemma 3 when A and B are Hermitian
matrices and p , q are even integers. To close the proof, we still have to show the
inequality for k = 0 and k = 2. However, for k = 0, it is easy to see that

det(In + |AB|2) = det(In +A2B2).

Next, for k = 2, assume first that A and B are invertible matrices. Observe that
in this case A2 +BA2B > 0 and A2 +AB2A > 0 for all A and B invertible Hermitian
matrices. So that

λ (A2 +BA2B), λ (A2 +AB2A) ∈ R
n
+ \ {0}.

From [7], we know that the following majorization inequality

λ (XX∗+YY ∗) ≺ λ (X∗X +Y ∗Y )

is valid for X , Y ∈ Mn with X∗Y Hermitian. Replacing X and Y with A and BA
respectively gives

λ (A2 +BA2B) ≺ λ (A2 +AB2A). (13)

Now applying Part 1 of Lemma 1 on (13) yields

det(A2 + |AB|2) � det(A2 +AB2A) = det(A2 +A2B2).

Finally, by a continuity argument, the proof is complete. �

REMARK 1. It is worthy to note the following.

1. For Hermitian matrices A and B and for positive odd integers k , the inequality

det(Ak + |AB|2) � det(Ak +A2B2)

as well as its reverse, are not true in general. This can be easily seen by taking

A =

⎡
⎣−3 0 0

0 1 0
0 0 4

⎤
⎦ and B =

⎡
⎣ 2 1 0

1 2 −1
0 −1 −1

⎤
⎦ , and then a simple check shows that

• for k = 1, det(A1 +A2B2) = 4872 < det(A1 + |AB|2) = 5766, and

• for k = 3, det(A3 +A2B2) = −1872 > det(A3 + |AB|2) = −10650.

2. On the other hand, for Hermitian matrices A and B , the following inequality

det(Ak +(AB)2) � det(Ak +A2B2)

may also fail for even integers k � 0. This can be easily seen by taking first
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A =

⎡
⎣−1 0 0

0 −2 0
0 0 −3

⎤
⎦ and B =

⎡
⎣−1 2 3

2 0 −i
3 i 2

⎤
⎦ . A simple inspection shows that k =

2, we have

det(A2 +(AB)2) = 14082 > det(A2 +A2B2) = 12708.

Secondly, if A =

⎡
⎣−1 0 0

0 2 0
0 0 − 1

2

⎤
⎦ and B =

⎡
⎣ 0 0 3

0 0 −i
3 i 2

⎤
⎦ , then again for k = 2, a

simple check shows that

det(A2 +(AB)2) = 82.75 < det(A2 +A2B2) = 125.

4. An open problem

Recall that in [1], it has been proven that for all k ∈ [1,∞[ and p ∈ [0,2] ,

det(Akp + |BA|p) � det(Akp +ApBp). (14)

So, Theorem 2 can be thought of as a complement of (14) for p = 2. We can also
find another complement of (14) for p = 1 as the following theorem shows.

THEOREM 4. Let A and B be two positive semi-definite matrices. Then for all
k ∈ [1,∞[ , we have that

det(Ak + |AB|) � det(Ak +AB).

Proof. As mentioned earlier, we know that[ |BA| AB
BA |AB|

]
� 0 and

[
Ak Ak

Ak Ak

]
� 0.

So that [
Ak + |BA| Ak +AB
Ak +BA Ak + |AB|

]
� 0,

and then [
det(Ak + |BA|) det(Ak +AB)
det(Ak +BA) det(Ak + |AB|)

]
� 0.

As a result, we obtain

det(Ak + |BA|) ·det(Ak + |AB|) � det(Ak +AB)2.

Now the required determinantal inequality follows easily by noting that for all
k ∈ [1,∞[ ,

det(Ak + |BA|) � det(Ak +AB). �

Finally, we conclude the paper with the following open question.
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CONJECTURE 2. Let A,B be two positive semi-definite matrices. Then for all
k ∈ [1,∞[ , we have that

det(Akp + |AB|p) � det(Akp +ApBp), 0 � p � 2. �

At the end, it is worthy to note that it appears that the methods used here do not
seem to work for this conjecture even for the case k = 2

p .
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