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WEAK SUBNORMALITY OF INFINITE 4–BANDED MATRICES

IN SUNG HWANG, IN HYOUN KIM AND SUMIN KIM

(Communicated by F. Kittaneh)

Abstract. In this paper, we consider a class of operators whose matrix representations comprise
4-banded matrices, i.e., sparse matrices whose non-zero entries are confined to four diagonals.
In particular, we focus on the hyponormality and weak subnormality when each diagonal forms
a hyponormal weighted shift.

1. Introduction

Let H and K be complex Hilbert spaces and B(H ,K ) be the algebra of
all bounded linear operators from H to K , and write B(H ) ≡ B(H ,H ) . For
T ∈ B(H ) , the self-commutator of T is defined by

[T ∗,T ] := T ∗T −TT ∗.

An operator T ∈B(H ) is said to be normal if [T ∗,T ] = 0, hyponormal if [T ∗,T ] � 0,
and subnormal if T has a normal extension, i.e., T = N|H , where N is a normal
operator on some Hilbert space K ⊇ H such that H is invariant for N . Thus the
operator T is subnormal if and only if there exist operators A and B such that T̂ :=(

T A
0 B

)
is normal, i.e., ⎧⎪⎨⎪⎩

[T ∗,T ] = AA∗

A∗T = BA∗

[B∗,B]+A∗A = 0.

(1)

An operator T ∈ B(H ) is said to be weakly subnormal if there exist operators A ∈
B(H ′,H ) and B ∈ B(H ′) such that the first two conditions in (1) hold, or equiva-
lently, there is an extension T̂ of T such that

T̂ ∗T̂ h = T̂ T̂ ∗h for all h ∈ H .
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The operator T̂ is said to be a partially normal extension of T . Clearly,

subnormal =⇒ weakly subnormal =⇒ hyponormal.

The class of weakly subnormal operators has been studied in an attempt to bridge the
gap between subnormality and hyponormality ([2], [3], [4]).

Let {en : n = 0,1,2, · · ·} be an orthonormal basis for H and let S be a weighted
shift with positive weight sequence {wn} , that is,

Sen = wnen+1 for n � 0.

Then for k � 1, S∗kSk and SkS∗k are both diagonal operators such that

S∗kSken = w2
n · · ·w2

n+k−1en for n � 0,

SkS∗ken = 0 for 0 � n < k,

SkS∗ken = w2
n−k · · ·w2

n−1en for n � k.

(2)

Observe that S is hyponormal if and only if {wn} is increasing. Let S be a weighted
shift and let M and N be positive integers. Write

T ≡ aSM +bSN + cS∗M +dS∗N,

where a,b,c,d are nonzero complex numbers such that ab = cd . In this case, the
matrix of T forms a 4-banded matrix. The hyponormality of this type of operators has
been studied in [5], [6], [7]. Since ab = cd , a direct calculation shows that

[T ∗,T ] =
(|a|2−|c|2)[S∗M,SM]− (|d|2−|b|2)[S∗N ,SN ]. (3)

Thus T is normal if and only if |a| = |c| . From this viewpoint, we will assume that
|a| �= |c| , to avoid the triviality of our argument. In this note, we consider a class
of operators whose matrix representations comprise 4-banded matrices. In particular,
we focus on the hyponormality and weak subnormality when each diagonal forms a
hyponormal weighted shift.

2. The main results

We first observe:

THEOREM 2.1. (Propagation phenomenon) Suppose S is a hyponormalweighted
shift and N > M. Let

T := aSM +bSN + cS∗M +dS∗N (ab = cd with |a| > |c|).

If T is hyponormal, then S has no 2M-consecutive equal weights. In particular, if
M = 1 , then the weight sequence of S is strictly increasing.
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Proof. Let S be a hyponormalweighted shift with positive weight sequence {wn} .
Then it follows from (3) that

[T ∗,T ] =
(|a|2−|c|2)[S∗M,SM]− (|d|2−|b|2)[S∗N ,SN ].

Put
α := |a|2−|c|2 and β := |d|2−|b|2.

Then it follows from (2) that [T ∗,T ] is a diagonal operator whose diagonal entries μn

are given by

μn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α ∏M−1

k=0 ω2
n+k −β ∏N−1

k=0 ω2
n+k if 0 � n � M−1

α
(
∏M−1

k=0 ω2
n+k −∏M−1

k=0 ω2
n−M+k

)−β ∏N−1
k=0 ω2

n+k if M � n � N−1

α
(
∏M−1

k=0 ω2
n+k −∏M−1

k=0 ω2
n−M+k

)−β
(
∏N−1

k=0 ω2
n+k −∏N−1

k=0 ω2
n−N+k

)
if N � n.

(4)
Hence [T ∗,T ] � 0 if and only if μn � 0 for all n = 0,1,2, · · · . Suppose that n0 is
the smallest integer such that ωn0 = ωn0+1 = · · · = ωn0+2M−1 . There are two cases to
consider.

Case 1: If 0 � n0 � N−M−1, then it follows from (4) that

−β
N−1

∏
k=0

w2
n0+M+k � 0.

Thus we have β = 0, so that |a| = |c| , a contradiction.

Case 2: If N−M � n0 , then it follows from (4) that

−β
(N−1

∏
k=0

ω2
n0+M+k −

N−1

∏
k=0

ω2
n0+M−N+k

)
� 0.

But since {wn} is increasing and β �= 0, it follows that ωn0+M−N = ωn0+M−N+1 =
· · · = ωn0+M+N−1 , a contradiction. The second assertion follows at once from the first
assertion. This completes the proof. �

REMARK 2.2. The condition “ |a| > |c|” is essential in Theorem 2.1. For exam-
ple, if |a| < |c| , then we may have a hyponormal operator T for a flat-subnormal shift
S . Indeed, let S be a unilateral shift and

T := SM +2SN +2S∗M +S∗N (M < N).

Then it follows from (3) that

[T ∗,T ] = 3
(
[S∗N ,SN ]− [S∗M,SM]

)
.

Thus T is hyponormal. Observe that

ker[T ∗,T ] =
∨
{e0,e1, · · · ,eM−1,eN ,eN+1, · · ·},
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where
∨

denotes the closed linear span. Thus T (ker[T ∗,T ]) is not contained in
ker[T ∗,T ] . But since ker[T ∗,T ] is always invariant for every weakly subnormal op-
erator T (cf. [4]), we see that T is not weakly subnormal.

THEOREM 2.3. Let S be a weighted shift and

T := aSM +bSN + cS∗M +dS∗N (ab = cd and M < N ).

If ker[T ∗,T ] is invariant for T , then ker[T ∗,T ] reduces T .

Proof. Suppose S is a weighted shift with weight sequence {ωn} and ker[T ∗,T ]
is an invariant subspace for T . If ker[T ∗,T ] = {0} , this is trivial. Let ker[T ∗,T ] �= {0} .
Note that [T ∗,T ] is a diagonal operator with respect to the standard bases {en} . Write

[T ∗,T ] ≡ diag(μ0,μ1,μ2, · · ·).

Then it suffices to show that

μn0 �= 0 ⇒ Ten0 ∈ ran[T ∗,T ].

Let μn0 �= 0. If n0 � N , then

Ten0 = aen0+M +ben0+N + cen0−M +den0−N .

Suppose Ten0 /∈ ran[T ∗,T ] . Then at least one of the following is zero:

μn0+M, μn0+N , μn0−M, μn0−N .

If μn0+M = 0, then en0+M ∈ ker[T ∗,T ] , so that Ten0+M ∈ ker[T ∗,T ] . Thus en0 ∈
ker[T ∗,T ] , and hence μn0 = 0, a contradiction. Similarly, we can prove the rest of
the cases. This completes the proof. �

THEOREM 2.4. Let S be a weighted shift with strictly increasing weight sequence.
Put

T := aSM +bSN + cS∗M +dS∗N (ab = cd and M < N ).

If ker[T ∗,T ] is invariant for T , then ker[T ∗,T ] = {0} .

Proof. Suppose S is a weighted shift with strictly increasing weight sequence
{ωn} . Put

α := |a|2−|c|2 and β := |d|2−|b|2.
Then by the proof of Theorem 2.1, we have that

[T ∗,T ] = diag(μ0,μ1,μ2, · · ·),



WEAK SUBNORMALITY OF INFINITE 4-BANDED MATRICES 121

where the μn are given by the equation (4). Suppose that ker[T ∗,T ] is invariant for
T and ker[T ∗,T ] �= {0} . Then there exists 0 � n0 � M− 1 such that μn0 = 0. Since
ker[T ∗,T ] is invariant for T , we have μn0+N = 0. It thus follows from (4) that

α
β

=
N−1

∏
k=M

ω2
n0+k =

∏N−1
k=0 ω2

n0+N+k −∏N−1
k=0 ω2

n0+k

∏M−1
k=0 ω2

n0+N+k −∏M−1
k=0 ω2

n0+N−M+k

,

or equivalently,

N−1

∏
k=M

ω2
n0+k

(
M−1

∏
k=0

ω2
n0+N+k −

M−1

∏
k=0

ω2
n0+N−M+k +

M−1

∏
k=0

ω2
n0+k

)
=

N−1

∏
k=0

ω2
n0+N+k.

But since M < N and {ωn} is strictly increasing, it follows that

M−1

∏
k=0

ω2
n0+k <

M−1

∏
k=0

ω2
n0+N−M+k.

We thus have that

N−1

∏
k=M

ω2
n0+k

(
M−1

∏
k=0

ω2
n0+N+k

)
>

N−1

∏
k=0

ω2
n0+N+k,

a contradiction. This completes the proof. �

We would like to ask the following questions.

QUESTION 2.5. For which hyponormal weighted shift S , is

T := aSM +bSN + cS∗M +dS∗N (ab = cd �= 0 and M < N )

weakly subnormal?

For Question 2.5, a good candidate for S is the Cowen and Long’s shift [1], i.e.,
the weight sequence {wk} of S is given by

wk =

(
k

∑
j=0

γ2 j

) 1
2

(k = 0,1,2, · · · ;0 < γ < 1).

LEMMA 2.6. ([3, Lemma 2.1]) If T ∈ B(H ) is weakly subnormal then T has
a partially normal extension T̂ on K of the form

T̂ =
(

T [T ∗,T ]
1
2

0 B

)
on K := H ⊕H .

We are ready for:
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THEOREM 2.7. Let S be the weighted shift with weight sequence

wk =

(
k

∑
j=0

γ2 j

) 1
2

(k = 0,1,2, · · · ;0 < γ < 1).

Let
T := aSM +bSN + cS∗M +dS∗N (ab = cd �= 0 and M < N ).

Then T is weakly subnormal if and only if T is hyponormal and ker[T ∗,T ] = {0} .

Proof. Put
α := |a|2−|c|2 and β := |d|2−|b|2.

Then by the proof of Theorem 2.1, we have that

[T ∗,T ] = dia(μ0,μ1,μ2, · · ·),
where the μn are given by the equation (4). Suppose that T is a hyponormal with
ker[T ∗,T ] = {0} . Then it follows from Lemma 2.6 that T is weakly subnormal if and
only if T has a partially normal extension T̂ on K of the form

T̂ =
(

T [T ∗,T ]
1
2

0 B

)
on K := H ⊕H .

It thus follows that T is weakly subnormal if and only if there exist B ∈ B(H ) such
that

[T ∗,T ]
1
2 T = B[T ∗,T ]

1
2 .

Since ker[T ∗,T ]
1
2 = ker[T ∗,T ] = {0} , it follows that

[T ∗,T ]
1
2 T = B[T ∗,T ]

1
2 ⇐⇒ B = [T ∗,T ]

1
2 T [T ∗,T ]−

1
2 .

Thus T is weakly subnormal if and only if

[T ∗,T ]
1
2 T [T ∗,T ]−

1
2 is bouned. (5)

Now we will show that

lim
n→∞

√μn+1√μn
= γ. (6)

It follows from (4) that for n � N ,

μn =
α

(1− γ2)M

(
M

∏
k=1

(
1− γ2(n+k)

)
−

M

∏
k=1

(
1− γ2(n−M+k)

))

− β
(1− γ2)N

(
N

∏
k=1

(
1− γ2(n+k)

)
−

N

∏
k=1

(
1− γ2(n−N+k))).

(7)
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Let

f (x) :=
M

∏
k=1

(
1− γ2(x+k)

)
−

M

∏
k=1

(
1− γ2(x−M+k)

)
.

Then we have that

f ′(x) = 2γ2xlogγ

(
M

∑
k=1

γ2(k−M) ·
M

∏
i=1,i�=k

(1− γ2(x−M+i))−
M

∑
k=1

γ2k ·
M

∏
i=1,i�=k

(1− γ2(x+i))

)
.

Thus

lim
x→∞

f (x+1)
f (x)

= lim
x→∞

f ′(x+1)
f ′(x)

= γ2,

and hence

lim
n→∞

∏M
k=1

(
1− γ2(n+k+1)

)
−∏M

k=1

(
1− γ2(n−M+k+1)

)
∏M

k=1

(
1− γ2(n+k)

)
−∏M

k=1

(
1− γ2(n−M+k)

) = γ2. (8)

Similarly, we also have that

lim
n→∞

∏N
k=1

(
1− γ2(n+k+1)

)
−∏N

k=1

(
1− γ2(n−N+k+1)

)
∏N

k=1

(
1− γ2(n+k)

)
−∏N

k=1

(
1− γ2(n−N+k)

) = γ2. (9)

It thus follows from (7), (8) and (9) that

lim
n→∞

μn+1

μn
= γ2,

which proves (6). Thus, by (6), we have that∣∣∣∣[T ∗,T ]
1
2 T [T ∗,T ]−

1
2
∣∣∣∣� |a|∣∣∣∣[T ∗,T ]

1
2 SM[T ∗,T ]−

1
2
∣∣∣∣+ |b|∣∣∣∣[T ∗,T ]

1
2 SN [T ∗,T ]−

1
2
∣∣∣∣

+ |c|∣∣∣∣[T ∗,T ]
1
2 S∗M[T ∗,T ]−

1
2
∣∣∣∣+ |d|∣∣∣∣[T ∗,T ]

1
2 S∗N [T ∗,T ]−

1
2
∣∣∣∣

< ∞,

which gives (5). Thus T is weakly subnormal. For the converse, suppose that T is
weakly subnormal. Then T is hyponormal and ker[T ∗,T ] is invariant for T . But since
{ωn} is strictly increasing, it follows from Theorem 2.4 that ker[T ∗,T ] = {0} . This
completes the proof. �

We now have:

COROLLARY 2.8. Let S be the weighted shift with weight sequence

wk =

(
k

∑
j=0

γ2 j

) 1
2

(k = 0,1,2, · · · ;0 < γ < 1).
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Let

T := λSM +SN +S∗M + λS∗N (λ ∈ C and M < N ).

Then the following are equivalent:

(a) T is hyponormal;

(b) T is weakly subnormal;

(c) |λ | � 1 .

Proof. (a) ⇔ (c): Observe that

[T ∗,T ] =
(|λ |2−1

)
diag(δ0,δ1,δ2, · · ·), (10)

where the δn are given by

δn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∏M−1

k=0 ω2
n+k −∏N−1

k=0 ω2
n+k if 0 � n � M−1

∏M−1
k=0 ω2

n+k −∏M−1
k=0 ω2

n−M+k −∏N−1
k=0 ω2

n+k if M � n � N−1

∏M−1
k=0 ω2

n+k −∏M−1
k=0 ω2

n−M+k −∏N−1
k=0 ω2

n+k + ∏N−1
k=0 ω2

n−N+k if N � n.

Thus for 0 � n � N−1,

δn �
M−1

∏
k=0

ω2
n+k −

N−1

∏
k=0

ω2
n+k < 0,

and for n � N ,

δn =
N−1

∏
k=0

ω2
n−N+k −

M−1

∏
k=0

ω2
n−M+k −

N−1

∏
k=0

ω2
n+k +

M−1

∏
k=0

ω2
n+k

<
M−1

∏
k=0

ω2
n−M+k

(
N−1

∏
k=M

ω2
n−M+k −1

)
−

M−1

∏
k=0

ω2
n+k

(
N−1

∏
k=M

ω2
n+k −1

)

<
M−1

∏
k=0

ω2
n+k

(
N−1

∏
k=M

ω2
n−M+k −

N−1

∏
k=M

ω2
n+k

)
< 0.

Thus it follows from (10) that T is hyponormal if and only if |λ | � 1.
(c) ⇒ (b): Suppose that |λ | � 1. If |λ | = 1 then by (10), [T ∗,T ] = 0, so that T

is normal, and hence weakly subnormal. Let |λ | < 1. Then it follows from (10) that T
is hyponormal and ker [T ∗,T ] = {0} . Thus by Theorem 2.7, we have that T is weakly
subnormal.

(b) ⇒ (a): Clear. �
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