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EXPLICIT CONSTRUCTION OF TIGHT NONUNIFORM

FRAMELET PACKETS ON LOCAL FIELDS
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Abstract. The main objective of this paper is to provide the explicit construction of nonuniform
tight framelet packets on local fields via wavelet spaces and NUMRA spaces.

1. Introduction

The theory and applications of frames have been developed nicely during the last
sixty years. This development turns out to be an active research area dealing with a
generalization of the concept of an orthonormal basis. The idea comes by having an
additional lower bound of the Bessel sequences. Frames were introduced in 1952 by
Duffin and Schaeffer in the context of nonharmonic Fourier series [12]. They used
frames as a tool in the study of nonharmonic Fourier series. Almost 30 years later,
Young wrote his book [23] in 1980, which contains a beautiful development of abstract
frames and their applications to nonharmonic Fourier series. In 1986, Daubechies,
Grossmann and Meyer constructed frames for L2(R) based on time frequency or time-
scale translates of functions [11]. These developments and others spurred a dramatic
advancement of wavelet and frame theory in the following years.

Recently there has been an interest in the applications of redundant dyadic wavelet
systems. Although many applications of wavelets use wavelet bases, other types of ap-
plications work better with redundant wavelet families, of which tight wavelet frames
are the easiest to use. Tight wavelet frames are different from orthonormal wavelet
bases in one important respect; they are (in general) redundant systems but with the
same fundamental structure as wavelet systems.The most common method to construct
tight wavelet frames relies on the so-called extension principles. The resulting tight
wavelet frames are based on a multiresolution analysis, and the generators are often
called mother framelets. Wavelet frames provide poor frequency localization in appli-
cations.For instance, in context of signal processing, the pyramid-structured framelet
transform decomposes the signal into a set of frequency channels that have narrower
bandwidths in the lower frequency region. The transform is suitable for a signal whose
main information is concentrated in the low frequency regions. But it may not be suit-
able for information whose domain frequency channels are focused on the middle fre-
quency region. To overcome this disadvantage, the concept of wavelet frames must be
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generalized to include a library of wavelet frames, called framelet packets. Coifman,
Meyer and Wickerhauser [8, 9] introduced the concept of framelet packets where or-
thonormal wavelet packets were considered and then lots of results on wavelet packets
emerged [5, 6, 7, 10, 15, 21].

On the other hand, the past decade has also witnessed a tremendous interest in the
problem of constructing wavelet bases and frames on various spaces other than R . For
example, R. L. Benedetto and J. J. Benedetto [3] developed a wavelet theory for local
fields and related groups. They did not develop the multiresolution analysis (MRA)
approach, their method is based on the theory of wavelet sets and only allows the con-
struction of wavelet functions whose Fourier transforms are characteristic functions of
some sets. Jiang et al. [13] pointed out a method for constructing orthogonal wavelets
on local field K with a constant generating sequence and derived necessary and suffi-
cient conditions for a solution of the refinement equation to generate a multiresolution
analysis of L2(K) . Subsequently, tight wavelet frames on local fields of positive char-
acteristic were constructed by Shah and Debnath [18] using extension principles. Also
the concept of nonuniform multiresolution analysis (NUMRA) on local fields of posi-
tive characteristic given by Shah and Abdullah [16]. For more about frames and frames
on local fields, we refer to [1, 2, 4, 14, 17, 19, 20]. In this paper we introduce the notion
of tight nonuniform framelet packets on local fields. We provide the method of con-
structing nonuniform tight framelet packets via wavelet spaces and NUMRA spaces.

The remainder of the paper is structured as follows. In Section 2, we discuss the
notations and basic facts on local fields. In Section 3, we provide the construction
of tight nonuniform framelet packets on local fields by splitting wavelet spaces. We
provide the construction of tight nonuniform framelet packets on local fields by decom-
posing NUMRA spaces in section section 4.

2. Notations and basic facts on local fields

A local field K is a locally compact, non-discrete and totally disconnected field. If
it is of characteristic zero, then it is a field of p -adic numbers Qp or its finite extension.
If K is of positive characteristic, then K is a field of formal Laurent series over a finite
field GF(pc) . If c = 1, it is a p -series field, while for c �= 1, it is an algebraic extension
of degree c of a p -series field. Let K be a fixed local field with the ring of integers
D = {x ∈ K : |x| � 1} . Since K+ is a locally compact Abelian group, we choose a Haar
measure dx for K+ . The field K is locally compact, non-trivial, totally disconnected
and complete topological field endowed with non–Archimedean norm | · | : K → R+

satisfying
(a) |x| = 0 if and only if x = 0;
(b) |xy| = |x||y| for all x,y ∈ K ;
(c) |x+ y|� max{|x|, |y|} for all x,y ∈ K .
Property (c) is called the ultrametric inequality. Let B = {x ∈ K : |x| < 1} be the

prime ideal of the ring of integers D in K . Then, the residue space D/B is isomorphic
to a finite field GF(q) , where q = pc for some prime p and c ∈ N . Since K is totally
disconnected and B is both prime and principal ideal, so there exist a prime element
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p of K such that B = 〈p〉 = pD . Let D∗ = D \B = {x ∈ K : |x| = 1} . Clearly, D∗
is a group of units in K∗ and if x �= 0, then can write x = pny,y ∈ D∗. Moreover,
if U = {am : m = 0,1, . . . ,q−1} denotes the fixed full set of coset representatives of
B in D , then every element x ∈ K can be expressed uniquely as x = ∑∞

�=k c� p
� with

c� ∈ U . Recall that B is compact and open, so each fractional ideal Bk = pkD ={
x ∈ K : |x| < q−k

}
is also compact and open and is a subgroup of K+ . We use the

notation in Taibleson’s book [22]. In the rest of this paper, we use the symbols N,N0

and Z to denote the sets of natural, non-negative integers and integers, respectively.
Let χ be a fixed character on K+ that is trivial on D but non-trivial on B−1 .

Therefore, χ is constant on cosets of D so if y ∈ Bk , then χy(x) = χ(y,x),x ∈ K.
Suppose that χu is any character on K+ , then the restriction χu|D is a character
on D . Moreover, as characters on D,χu = χv if and only if u− v ∈ D . Hence, if
{u(n) : n ∈ N0} is a complete list of distinct coset representative of D in K+ , then, as
it was proved in [22], the set

{
χu(n) : n ∈ N0

}
of distinct characters on D is a complete

orthonormal system on D .
We now impose a natural order on the sequence {u(n)}∞

n=0 . We have D/B ∼=
GF(q) where GF(q) is a c-dimensional vector space over the field GF(p) . We choose

a set {1 = ζ0,ζ1,ζ2, . . . ,ζc−1} ⊂ D∗ such that span
{

ζ j
}c−1

j=0
∼= GF(q) . For n ∈ N0

satisfying

0 � n < q, n = a0 +a1p+ . . .+ac−1pc−1, 0 � ak < p, and k = 0,1, . . . ,c−1,

we define
u(n) = (a0 +a1ζ1 + . . .+ac−1ζc−1)p−1. (2.1)

Also, for n = b0 + b1q+ b2q2 + . . .+ bsqs, n ∈ N0, 0 � bk < q,k = 0,1,2, . . . ,s ,
we set

u(n) = u(b0)+u(b1)p−1 + . . .+u(bs)p−s. (2.2)

This defines u(n) for all n ∈ N0 . In general, it is not true that u(m+n) = u(m)+
u(n) . But, if r,k ∈ N0 and 0 � s < qk , then u(rqk + s) = u(r)p−k + u(s). Further, it
is also easy to verify that u(n) = 0 if and only if n = 0 and {u(�)+ u(k) : k ∈ N0} =
{u(k) : k ∈ N0} for a fixed � ∈ N0. Hereafter we use the notation χn = χu(n), n � 0.

Let the local field K be of characteristic p > 0 and ζ0,ζ1,ζ2, . . . ,ζc−1 be as above.
We define a character χ on K as follows:

χ(ζμp− j) =
{

exp(2π i/p), μ = 0 and j = 1,
1, μ = 1, . . . ,c−1 or j �= 1.

(2.3)

The Fourier transform of f ∈ L1(K) is denoted by f̂ (ξ ) and defined by

F
{

f (x)
}

= f̂ (ξ ) =
∫

K
f (x)χξ (x)dx. (2.4)

It is noted that

f̂ (ξ ) =
∫

K
f (x)χξ (x)dx =

∫
K

f (x)χ(−ξ x)dx.
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The properties of Fourier transforms on local field K are much similar to those
of on the classical field R . In fact, the Fourier transform on local fields of positive
characteristic have the following properties:

• The map f → f̂ is a bounded linear transformation of L1(K) into L∞(K) , and∥∥ f̂
∥∥

∞ �
∥∥ f

∥∥
1 .

• If f ∈ L1(K) , then f̂ is uniformly continuous.

• If f ∈ L1(K)∩L2(K) , then
∥∥ f̂

∥∥
2 =

∥∥ f
∥∥

2 .

The Fourier transform of a function f ∈ L2(K) is defined by

f̂ (ξ ) = lim
k→∞

f̂k(ξ ) = lim
k→∞

∫
|x|�qk

f (x)χξ (x)dx, (2.5)

where fk = f Φ−k and Φk is the characteristic function of Bk . Furthermore, if f ∈
L2(D) , then we define the Fourier coefficients of f as

f̂
(
u(n)

)
=

∫
D

f (x)χu(n)(x)dx. (2.6)

The series ∑n∈N0
f̂
(
u(n)

)
χu(n)(x) is called the Fourier series of f . From the stan-

dard L2 -theory for compact Abelian groups, we conclude that the Fourier series of f
converges to f in L2(D) and Parseval’s identity holds:

∥∥ f
∥∥2

2 =
∫

D

∣∣ f (x)∣∣2dx = ∑
n∈N0

∣∣ f̂ (u(n)
)∣∣2 . (2.7)

For an integer N � 1 and an odd integer r with 1 � r � qN− 1 such that r and
N are relatively prime, we define

Λ =
{

0,
u(r)
N

}
+Z .

where Z = {u(n) : n ∈ N0} . It is easy to verify that Λ is not a group on local field K ,
but is the union of Z and a translate of Z . Following is the definition of nonuniform
multiresolution analysis (NUMRA) on local fields of positive characteristic given by
Shah and Abdullah [16].

DEFINITION 2.1. For an integer N � 1 and an odd integer r with 1 � r � qN−1
such that r and N are relatively prime, an associated NUMRA on local field K of
positive characteristic is a sequence of closed subspaces

{
Vj : j ∈ Z

}
of L2(K) such

that the following properties hold:
(a) Vj ⊂Vj+1 for all j ∈ Z;
(b)

⋃
j∈ZVj is dense in L2(K);

(c)
⋂

j∈ZVj = {0};
(d) f (·) ∈Vj if and only if f (p−1N·) ∈Vj+1 for all j ∈ Z;
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(e) There exists a function φ in V0 such that {φ(·−λ ) : λ ∈ Λ} , is an orthonor-
mal basis for V0 .

It is worth noticing that, when N = 1, one recovers from the definition above
the definition of an MRA on local fields of positive characteristic p > 0 [13]. When,
N > 1, the dilation is induced by p−1N and |p−1| = q ensures that qNΛ ⊂ Z ⊂ Λ .

As in the standard scheme, one expects the existence of qN − 1 number of func-
tions so that their translation by elements of Λ and dilations by the integral powers of
p−1N form an orthonormal basis for L2(K) .

Let us define the spaces

l2(Λ) =
{

z : Λ → C : ∑
λ∈Λ

∣∣z(λ )
∣∣2 < ∞

}

and

L2(Ω) =
{

f : Ω → C :
∫

Ω

∣∣ f (ξ )
∣∣2dξ < ∞

}
,

where Ω is a Lebesgue measurable subset of K with finite positive measure. These
spaces are Hilbert spaces with the inner products defined by

〈z,w〉 = ∑
λ∈Λ

z(λ )w(λ ) for z,w ∈ l2(Λ)

and

〈 f ,g〉 =
∫

Ω
f (ξ )g(ξ )dξ for f ,g ∈ L2(Ω),

respectively.

DEFINITION 2.2. The Fourier transform on l2(Λ) is a map ∧ : l2(Λ) → L2(Ω)
defined by

ẑ(ξ ) = ∑
λ∈Λ

z(λ )χλ (ξ ), z ∈ l2(λ )

and its inverse is given by

f∨(λ ) =
〈

f ,χλ (ξ )
〉

=
∫

Ω
f (ξ )χλ (ξ )dξ , f ∈ L2(Ω).

For all z,w ∈ l2(Λ) , the Parseval and Plancherel formulae are respectively, given
by

〈z,w〉 = ∑
λ∈Λ

z(λ )w(λ ) =
∫

Ω
f (ξ )g(ξ )dξ = 〈ẑ, ŵ〉,

∣∣∣∣z∣∣∣∣2 = ∑
λ∈Λ

∣∣z(λ )
∣∣2 =

∫
Ω

∣∣ẑ(ξ )
∣∣2dξ =

∣∣∣∣ẑ∣∣∣∣2.
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For λ ∈ Λ , we define the translation operator TqNλ : l2(Λ) → l2(Λ) by

TqNλ z(σ) = z(σ −qNλ ), ∀σ ∈ Λ.

Then, it can be easily verified that for z,w ∈ l2(Λ) , we have(
TqNλ z

)∧(ξ ) = χqNλ (ξ )ẑ(ξ ) and
〈
TqNλ z,TqNσ w

〉
=

〈
TqN(λ−σ)z,w

〉
.

DEFINITION 2.3. For given Ψ :=
{

ψ1, . . . ,ψqN−1
} ⊂ L2(K) . A system of the

form

F (Ψ,λ ) =
{

ψ�, j,λ := (qN) j/2ψ�

(
(p−1N) jx−λ

)
, j ∈ Z,λ ∈ Λ,1 � � � qN−1

}
.

(2.8)
is called a nonuniform wavelet system on local field K , where p is prime and ψ is
called the generator of the system.

DEFINITION 2.4. The nonuniform wavelet system F (Ψ,λ ) defined by (2.8) is
called a non uniform wavelet frame, if there exist positive numbers 0 < A � B < ∞ such
that for all f ∈ L2(K)

A
∥∥ f

∥∥2
2 �

qN−1

∑
�=1

∑
j∈Z

∑
λ∈Λ

∣∣〈 f ,ψ�, j,λ
〉∣∣2 � B

∥∥ f
∥∥2

2. (2.9)

The largest A and the smallest B for which (2.9) holds are called nonuniform wavelet
frame bounds. A wavelet frame is a tight nonuniform wavelet frame if A and B are
chosen such that A = B and then the generators

{
ψ1,ψ2, . . . ,ψqN−1

}
are often referred

as tight nonuniform framelets. If only the right-hand inequality in (2.8) holds, then
F (Ψ,λ ) is called a Bessel sequence.

Next, we give a brief account of the NUMRA-based wavelet frames generated by
the wavelet masks on local fields. Following the unitary extension principle, one often
starts with a refinable function or even with a refinement mask to construct desired
wavelet frames. A function ϕ ∈ L2(K) is called a nonuniform refinable function, if it
satisfies an equation of the type

ϕ(x) =
√

qN ∑
λ∈Λ

aλ ϕ
(
(p−1N)x−λ

)
, (2.10)

where
{
aλ : λ ∈ Λ

}∈ l2(Λ). In the frequency domain, equation (2.9) can be written as

ϕ̂
(
ξ
)

= m0

(
pξ
N

)
ϕ̂
(

pξ
N

)
, (2.11)

where

m0(ξ ) =
1√
qN ∑

λ∈Λ
aλ χλ (ξ ), (2.12)

is an integral periodic function in L2(D) and is often called the refinement mask of ϕ .
Observe that χk(0) = φ̂ (0) = 1. By letting ξ = 0 in equations (2.10) and (2.11), we
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obtain ∑
λ∈Λ

aλ = 1. Further, it is proved in [18] that a function ϕ ∈ L2(K) generates an

NUMRA in L2(K) if and only if

∑
λ∈Λ

∣∣ϕ̂(
ξ + λ

)∣∣2 = 1, for a.e. ξ ∈ D, and ϕ̂(0) = lim
ξ→0

ϕ̂(ξ ) = 1, ξ ∈ K. (2.13)

Suppose Ψ =
{

ψ1, . . . ,ψqN−1
}

is a set of NUMRA functions derived from

ψ̂�(ξ ) = m�

(
pξ
N

)
ϕ̂
(

pξ
N

)
, (2.14)

where

m�(ξ ) =
1√
qN ∑

λ∈Λ
a�

λ χλ (ξ ), 1 � � � qN−1 (2.15)

are the integral periodic functions in L2(D) and are called the nonuniform framelet
symbols or nonuniform wavelet masks. With m�(ξ ),0 � � � qN − 1 as the wavelet
masks, we formulate the matrix M (ξ ) as

M (ξ ) =

⎛
⎜⎜⎜⎝

m0(ξ ) m0
(
ξ +pu(1)

)
. . . m0

(
ξ +pu(s−1)

)
m1(ξ ) m1

(
ξ +pu(1)

)
. . . m1

(
ξ +pu(s−1)

)
...

...
. . .

...
mqN−1(ξ ) mqN−1

(
ξ +pu(1)

)
. . . mqN−1

(
ξ +pu(s−1)

)

⎞
⎟⎟⎟⎠ . (2.16)

The so-called unitary extension principle (UEP) provides a sufficient condition on
Ψ =

{
ψ1,ψ2. . . . ,ψqN−1

}
such that the nonuniform wavelet system F (Ψ,λ ) given by

(2.8) constitutes a tight frame for L2(K) .
The construction of nonuniform framelet systems often starts with the construction

of NUMRA, which is built on nonuniform refinable functions. A function ϕ ∈ L2(K) is
called refinable if it satisfies a refinement equation given by (2.10) The so-called unitary
extension principle (UEP) provides a sufficient condition on Ψ = {ψ1, . . . ,ψqN−1} such
that the resulting nonuniform wavelet system F (Ψ,λ ) forms a tight frame of L2(K) .
In this connection, Shah and Debnath [18] gave an explicit construction scheme for the
construction of tight framelets on local fields using unitary extension principles in the
following way.

THEOREM 2.1. Suppose that the refinable function φ and the framelet symbols
m�, 0 � � � qN−1 satisfy equations (2.11)–(2.13) . Define ψ1, . . . ,ψqN−1 by equation
(2.14) . Let M (ξ ) be the modulation matrix such that

M (ξ )M ∗(ξ ) = Iq, for a.e. ξ ∈ σ(V0) (2.17)

where
σ(V0) :=

{
ξ ∈ D : ∑

λ∈Λ
|φ̂(

ξ + λ
)|2 �= 0

}
,
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then the wavelet system F (Ψ,λ ) given by equation (2.7) constitutes a normalized
tight wavelet frame for L2(K) .

Moreover, if the nonuniform framelet symbols m�, 0 � � � qN − 1, satisfy the
UEP condition (2.17). Then, for any ξ ∈ K , we have

qN−1

∑
k=0

∣∣∣m�

( p

N
(ξ +u(k))

)∣∣∣2 � 1, (2.18)

and

qN−1

∑
�=0

m�

( p

N
(ξ +u(r))

)
m�

( p

N
(ξ +u(s))

)
= δr,s, 0 � r,s � qN−1. (2.19)

For each j ∈ Z , we define the spaces

Vj = span
{

φ j,λ : λ ∈ Λ
}
,

and
Wj,� = span

{
ψ�, j,λ : λ ∈ Λ

}
, 0 � � � qN−1.

Therefore, in view of tight frame decomposition algorithm, we can write

Vj = Vj−1 +
qN−1

∑
�=1

W�, j−1. (2.20)

It immediately follows from the above decomposition that these qN spaces are in gen-
eral not orthogonal. Therefore, by the repeated applications of (2.20), we can further
split the Vj spaces as:

Vj = Vj−1 +
qN−1

∑
�=1

W�, j−1 = Vj−2 +
j−1

∑
r= j−2

qN−1

∑
�=1

W�,r

= . . . = Vj0 +
j−1

∑
r= j0

qN−1

∑
�=1

W�,r =
j−1

∑
r=−∞

qN−1

∑
�=1

W�,r.

3. Construction of tight nonuniform framelet packets via wavelet space

This section is devoted to the construction of tight nonuniform framelet packets
on local field spaces by splitting the wavelet spaces W�, j . We start this section with the
following lemma which will be useful for obtaining main result.

LEMMA 3.1. Let g∈ L2(K) and
{
g j,λ : λ ∈ Λ

}
be a Bessel’s sequence in L2(K)

i.e.,

∑
λ∈Λ

∣∣ĝ(ξ + λ
)∣∣2 � B, ξ ∈ K (3.1)
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for any fixed j ∈ Z . Let m�, 0 � � � qN − 1 be the nonuniform framelet masks as-
sociated with the nonuniform refinable function ϕ and the tight nonuniform framelets
ψ�, 1 � � � qN−1 satisfying the UEP condition (2.17) . Suppose

g�(x) = qN ∑
λ∈Λ

m�

(
λ
)
g
(
p−1Nx−λ

)
, (3.2)

G� = span
{
g�, j−1,λ : λ ∈ Λ

}
, (3.3)

and G = span
{
g j,λ : λ ∈ Λ

}
, for 0 � � � qN−1 . Then

1. For 0 � � � qN−1 , each set
{
g�, j−1,λ : λ ∈ Λ

}
forms a Bessel’s sequence with∥∥g�

∥∥2
2 � B and

∥∥g
∥∥2

2 � B.

2. For any sequence z ∈ l2(Z ) , there exists qN sequences
{
z�
}qN−1

�=0 defined by

z�
(
u(k)

)
=
√

qN ∑
k∈N0

m�

(
λ −p−1Nu(k)

)
z
(
λ
)
, λ ∈ Λ (3.4)

such that ∥∥z
∥∥2

l2(Z ) =
qN−1

∑
�=0

∥∥z�
∥∥2

, (3.5)

and

∑
λ∈Λ

z
(
λ
)
g j,λ =

qN−1

∑
�=0

∑
λ∈Λ

z�
(
λ
)
g�, j−1,λ . (3.6)

3. In particular for any f ∈ L2(K) , let z
(
λ
)

= 〈 f ,g j,λ 〉, λ ∈ Λ , then z ∈ l2(Z )
and equations (3.4)–(3.6) gives

z�
(
λ
)

=
〈
f ,g�, j−1,λ

〉
, λ ∈ Λ, 0 � � � qN−1, (3.7)

∑
λ∈Λ

∣∣〈 f ,g j,λ 〉
∣∣2 =

qN−1

∑
�=0

∑
λ∈Λ

∣∣〈 f ,g�, j−1,λ 〉
∣∣2 , (3.8)

and

∑
λ∈Λ

〈 f ,g j,λ 〉g j,λ =
qN−1

∑
�=0

∑
λ∈Λ

〈
f ,g�, j−1,λ

〉
g�, j−1,λ , (3.9)

respectively.

4. G has the decomposition

G =
qN−1

∑
i=0

Gi.
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Proof. (a) By invoking Plancherel’s formula, we have

∥∥g
∥∥2

2 =
∥∥ĝ

∥∥2
2

=
∫
K

∣∣ĝ(ξ )χλ (ξ )
∣∣2dξ

=
∫
D

∑
λ∈Λ

∣∣ĝ(ξ + λ
)∣∣2∣∣χλ (ξ )

∣∣2dξ .

Using equation (3.1) and the fact that the set
{

χλ : λ ∈ Λ
}

is an orthonormal basis on

D , we obtain
∥∥g

∥∥2
2 � B .

On taking Fourier transform of equation (3.2), we obtain

ĝ�(ξ ) = m�

(
pξ
N

)
ĝ

(
pξ
N

)
. (3.10)

Using equations (2.18) and (3.1), we have

∑
λ∈Λ

∣∣ĝ�

(
ξ + λ

)∣∣2 = ∑
λ∈Λ

∣∣∣m�

( p

N
(ξ +u(λ ))

)∣∣∣2 ∣∣∣ĝ( p

N
(ξ +u(λ ))

)∣∣∣2

=
qN−1

∑
σ=0

∑
λ∈Λ

∣∣∣m�

( p

N
(ξ +u(qNλ + σ))

)∣∣∣2 ∣∣∣ĝ( p

N
(ξ +u(kqNλ + σ))

)∣∣∣2

=
qN−1

∑
σ=0

∣∣∣m�

( p

N
(ξ +u(σ)

)∣∣∣2 ∑
λ∈Λ

∣∣∣ĝ( p

N
(ξ +u(qNλ + σ))

)∣∣∣2

=
q−1

∑
σ=0

∣∣∣m�

( p

N
(ξ +u(σ))

)∣∣∣2 ∑
λ∈Λ

∣∣∣ĝ( p

N
(ξ +u(σ))+u(λ )

)∣∣∣2

� B
qN−1

∑
σ=0

∣∣∣( p

N
(ξ +u(σ))

)∣∣∣2
� B, for � = 0,1, . . . ,L.

(b) For each 0 � � � qN−1, the Fourier transform of equation (3.4) gives

ẑ�(ξ ) = (qN)−1/2
qN−1

∑
σ=0

m�

( p

N
(ξ +u(σ))

)
ẑ
( p

N
(ξ +u(σ))

)
. (3.11)

By summing equation (3.11) over � = 0 to qN−1 and using (2.19), we obtain

qN−1

∑
�=0

∣∣ẑ�(ξ )
∣∣2 = (qN)−1

qN−1

∑
�=0

qN−1

∑
r,σ=0

m�

( p

N
(ξ +u(r))

)
ẑ
( p

N
(ξ +u(r))

)

×m�

( p

N
(ξ +u(σ))

)
ẑ
( p

N
(ξ +u(σ))

)
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= (qN)−1
qN−1

∑
r,σ=0

ẑ
( p

N
(ξ +u(r))

)
ẑ
( p

N
(ξ +u(σ))

)

×
qN−1

∑
�=0

m�

( p

N
(ξ +u(σ))

)
m�

( p

N
(ξ +u(r))

)

= (qN)−1
qN−1

∑
r,σ=0

ẑ
( p

N
(ξ +u(σ))

)
ẑ
( p

N
(ξ +u(r))

)
δr,σ

= (qN)−1
qN−1

∑
r=0

∣∣∣ẑ( p

N
(ξ +u(r))

)∣∣∣2 .

Therefore

qN−1

∑
�=0

∥∥ẑ�
∥∥2

�2(Z ) =
qN−1

∑
�=0

∑
λ∈Λ

∣∣ẑ�(λ
)∣∣2

=
qN−1

∑
�=0

∫
D

∣∣ẑ�(λ
)∣∣2dξ

=
∫
D

qN−1

∑
�=0

∣∣ẑ�(λ
)∣∣2dξ

= (qN)−1
∫
D

qN−1

∑
r=0

∣∣∣ẑ( p

N
(ξ +u(r))

)∣∣∣2 dξ

=
∫
D

∣∣ẑ(ξ )
∣∣2dξ

=
∫
D

∣∣∣∣∣ ∑
σ∈Λ

z
(
σ
)
χσ (ξ )

∣∣∣∣∣
2

dξ

= ∑
σ∈Λ

∣∣z(σ
)∣∣2

=
∥∥ẑ

∥∥2
�2(Z ).

In frequency domain, (3.6) can be written as:

(qN)− j/2ẑ
(
(p−1N)− jξ

)
ĝ
(
(p−1N)− jξ

)
= (qN)

1− j
2

qN−1

∑
�=0

ẑ�
(
(p−1N)1− jξ

)
ĝ�

(
(p−1N)1− jξ

)
. (3.12)
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Thus, in order to show that (3.6) holds, it suffices to verify only the equality (3.12).

R.H.S. = (qN)
1− j
2

qN−1

∑
�=0

ẑ�
(
(p−1N)1− jξ

)
ĝ�

(
(p−1N)1− jξ

)

= (qN)
1− j
2

qN−1

∑
�=0

ẑ�
(
(p−1N)1− jξ

)
m�

(
(p−1N)− jξ

)
ĝ�

(
(p−1N)− jξ

)

= (qN)
1− j
2 ĝ�

(
(p−1N)− jξ

)qN−1

∑
�=0

[
(qN)−1

qN−1

∑
r=0

ẑ
( p

N
(ξ +u(r))

)

×m�

( p

N
(ξ +u(r))

)]
m�

(
(p−1N)− jξ

)
= (qN)− j/2ĝ

(
(p−1N)− jξ

)qN−1

∑
r=0

ẑ
( p

N
(ξ +u(r))

)

×
qN−1

∑
�=0

[
m�

( p

N
(ξ +u(r))

)
m�

(
(p−1N)− jξ

)]

= (qN)− j/2ĝ
(
(p−1N)− jξ

)qN−1

∑
r=0

ẑ
( p

N
(ξ +u(r))

)
δr,0

= (qN)− j/2ĝ
(
(p−1N)− jξ

)
ẑ
(
(p−1N)− jξ

)
= L.H.S.

(c). For the proof of the part (c) of the lemma, it is sufficient to verify equation
(3.7) only. The equations (3.8) and (3.9) are direct consequences of equations (3.5) and
(3.6) which have been proved. Moreover, from equation (3.4), we have

z�
(
λ
)

= (qN)1/2 ∑
σ∈Λ

m�

(
σ −p−1Nλ

)
z
(
λ
)

= (qN)1/2 ∑
σ∈Λ

m�

(
σ −p−1Nλ

)〈
f ,g j,σ

〉

=

〈
f ,(qN)1/2 ∑

σ∈Λ
m�

(
σ −p−1Nλ

)
g j,σ

〉

=
〈
f ,g�, j−1,λ

〉
, 0 � � � qN−1.

(d). This is immediate from equations (3.2) and (3.3).
Now we proceed to construct tight nonuniform framelet packets for L2(K) via

NUMRA generated by the nonuniform framelet symbols . To do this, let {ψ�,m�}qN−1
�=0

satisfy the conditions of the unitary extension principle and ω0 = φ . Define the func-
tions Γn(x) , n = 0,1,2, . . . , associated with the refinable function ϕ recursively by

Γ̂n(ξ ) = ω̂qNr+�(ξ ) = m�

(
(p−1N)−1ξ

)
Γr

(
(p−1N)−1ξ

)
, 0 � � � qN−1, r ∈ N0.

(3.13)
Note that for r = 0 and 0 � � � qN−1, we have

ω̂�(ξ ) = m�

(
(p−1N)−1ξ

)
ω0

(
(p−1N)−1ξ

)
= m�

(
(p−1N)−1ξ

)
ϕ
(
(p−1N)−1ξ

)
(3.14)
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which shows that Γ�(x) = ψ�(x), 0 � � � qN−1.
For n ∈ N0 , define a family of subspaces of L2(K) by

Un = span
{

Γn,0,λ : λ ∈ Λ
}
. (3.15)

Clearly U0 =V0 and U� =W�,0 , for 1 � � � qN−1. Since F (Ψ,λ ) is a tight nonuni-
form wavelet frame constructed via UEP in an NUMRA generated by ϕ . Therefore,
we have

∑
λ∈Λ

∣∣Γ̂0
(
ξ + λ

)∣∣2 � 1, ξ ∈ K.

By invoking Lemma 3.1, for n = 1,2, . . . , we obtain

∑
λ∈Λ

∣∣Γ̂n
(
ξ + λ

)∣∣2 � 1, U1
n =

(qN)(n+1)−1

∑
t=qNn

Ut ,

and for any f ∈ L2(K) ,

∑
λ∈Λ

∣∣〈 f ,Γn,1,λ 〉
∣∣2 =

(qN)(n+1)−1

∑
t=qNn

∑
λ∈Λ

∣∣〈 f ,Γt,0,λ 〉
∣∣2.

A repeated application of the Splitting Lemma 3.1 for j = 1,2, . . . , yields

U j
n =

(qN) j(n+1)−1

∑
t=(qN) jn

Ut (3.16)

and for any f ∈ L2(K)

∑
λ∈Λ

∣∣〈 f ,Γn, j,λ 〉
∣∣2 =

(qN) j(n+1)−1

∑
t=(qN) jn

∑
λ∈Λ

∣∣〈 f ,Γt,0,λ 〉
∣∣2. (3.17)

Substituting n = 0 in equations (3.16) and (3.17), we get

Vj =
(qN) j−1

∑
t=0

Ut (3.18)

and

∑
λ∈Λ

∣∣〈 f ,ϕ j,λ 〉
∣∣2 =

(qN) j−1

∑
t=0

∑
λ∈Λ

∣∣〈 f ,Γt,0,λ 〉
∣∣2 (3.19)

for any f ∈ L2(K) , respectively. Moreover, for n = � , where � = 1, . . . ,qN−1, equa-
tions (3.16) and (3.17) yield

W�, j = W j
�,0 = U j

� =
(qN) j(�+1)−1

∑
t=(qN) j�

Ut , (3.20)
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and for any f ∈ L2(K)

∑
λ∈Λ

∣∣〈 f ,ψ�, j,λ 〉
∣∣2 = ∑

λ∈Λ

∣∣〈 f ,Γ�, j,λ 〉
∣∣2 =

(qN) j(�+1)−1

∑
t=(qN) j�

∑
λ∈Λ

∣∣〈 f ,Γt,0,λ 〉
∣∣2. (3.21)

From equation (3.21), it follows that each wavelet space W�, j, j ∈ N0,1 � � � qN −1
can be further splitted into (qN) j subspaces Ut , t ∈ [(qN) j�,(qN) j(�+ 1)− 1] . If we
keep the parameter j fixed, say J > 0, we will obtain

L2(K) =
(qN)J−1

∑
t=0

Ut +
qN−1

∑
�=1

∑
j�J

W�, j. � (3.22)

THEOREM 3.1. Let F (Ψ,λ ) be a tight wavelet frame constructed via UEP in
an NUMRA and m1,m2, . . . ,mqN−1 are the nonuniform framelet symbols satisfying the
UEP condition (2.17) . Let {Γn : n ∈ N0} be defined as in (3.13) . Then for any fixed
J > 0 , the family of functions

G =
{

Γn,0,λ : 0 � n � (qN)J −1, λ ∈ Λ
}⋃{

ψ�, j,λ : 1 � � � qN−1, j � J, λ ∈ Λ
}

forms a tight frame for L2(K) .

Proof. By Theorem 2.1, the nonuniform wavelet system F (Ψ,λ ) constitutes a
tight nonuniform wavelet frame for L2(K) . Therefore by equation (3.18), we have for
any f ∈ L2(K)

∥∥ f
∥∥2

2 = ∑
λ∈Λ

∣∣〈 f ,ϕ0,λ 〉
∣∣2 +

qN−1

∑
�=1

∑
j∈Z

∑
λ∈Λ

∣∣〈 f ,ψ�, j,λ
〉∣∣2

= ∑
λ∈Λ

∣∣〈 f ,ϕJ,λ 〉
∣∣2 +

qN−1

∑
�=1

∑
j�J

∑
λ∈Λ

∣∣〈 f ,ψ�, j,λ
〉∣∣2

=
(qN)J−1

∑
n=0

∑
n∈N0

∣∣〈 f ,Γn,0,λ 〉
∣∣2 +

qN−1

∑
�=1

∑
j�J

∑
λ∈Λ

∣∣〈 f ,ψ�, j,λ
〉∣∣2 .

This completes the proof of the theorem. �

DEFINITION 3.1. The functions {Γn : n ∈ N0} are called as the basic nonuniform
framelet packets on the local field associated with the refinable function ϕ ..

Now we proceed to construct a class of tight frames for L2(K) by choosing other
L2(K) space decompositions with the help of basiv nonuniform framelet packets. For
simplicity, let us consider a disjoint partition PJ of a finite set of non-negative integers

ΩJ =
{

r ∈ N0 : 0 � r � (qN)J −1
}

(3.23)
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into disjoint of the form

H j,n =
{

(qN) jn, . . . ,(qN) j(n+1)−1
}
, j,n ∈ N0,

i.e.,
PJ =

{
H j,n :

⋃
H j,n = ΩJ

}
, (3.24)

Then, it follows from equations (3.16) and (3.21) that

L2(K) =
(qN)J−1

∑
t=0

Ut +
qN−1

∑
�=1

∑
j�J

W�, j

= ∑
HJ,n∈PJ

(qN)J(n+1)−1

∑
t=(qN) j n

Ut +
qN−1

∑
�=1

∑
j�J

W�, j

= ∑
HJ,n∈PJ

U j
t +

qN−1

∑
�=1

∑
j�J

W�, j.

THEOREM 3.2. Suppose F (Ψ,λ ) is a tight nonuniform wavelet frame con-
structed via UEP in an NUMRA and m1,m2, . . . ,mqN−1 are the nonuniform framelet
symbols satisfying the UEP condition (2.17) . Let {Γn : n ∈ N0} be defined as in equa-
tion (3.13) . For any fixed J > 0 , PJ is a partition of ΩJ , where ΩJ and PJ are defined
in equations (3.23) and (3.24) , respectively. Then the family of functions

FPJ =
{

Γn,0,λ : HJ,n ∈ PJ, λ ∈ Λ
}⋃{

ψ�, j,λ : 1 � � � qN−1, j � J, λ ∈ Λ
}

constitutes a tight frame for L2(K) .

Proof. For any arbitrary f ∈ L2(K) , we have

∑
HJ,n∈PJ

∑
λ∈Λ

∣∣〈 f ,Γn, j,λ 〉
∣∣2 = ∑

HJ,n∈PJ

(qN) j(n+1)−1

∑
n=(qN) jn

∑
λ∈Λ

∣∣〈 f ,Γn,0,λ 〉
∣∣2

=
(qN)J−1

∑
n=0

∣∣〈 f ,Γn,0,λ 〉
∣∣2.

By invoking Theorem 3.1, we get the desired result. �

4. Construction of tight nonuniform framelet packets via NUMRA space

In this section, we construct tight nonuniform framelet packets by decomposing
the NUMRA space VJ directly for a fixed level J > 0 to the level 0 .

At the first level of decomposition, by Lemma 3.1, VJ is decomposed into the qN
spaces WJ−1,s,s ∈ Δ1 where

Δ1 =
{

s = (sJ ,sJ−1, . . . s1) : 0 � sJ � qN−1, sJ−1 = . . . = s1 = 0
}
.
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For this choice of s = (sJ ,sJ−1, . . . ,s1) , we define

s(n) = sn, n = 1,2, . . . ,J,

Γs(x) = (qN)1/2 ∑
σ∈Λ

hs(1)
σ ϕ

(
p−1Nx−σ

)
,

and
WJ−1,s := span

{
Γs,J−1,λ : λ ∈ Λ

}
.

Therefore, for any f ∈ L2(K) , we have

∑
λ∈Λ

∣∣〈 f ,ϕJ,λ 〉
∣∣2 = ∑

s∈Δ1

∑
λ∈Λ

∣∣〈 f ,Γs,J−1,λ
〉∣∣2 .

At the second level of decomposition, by Lemma 3.1, each space WJ−1,s ,s ∈ Δ1 is
decomposed with the constructed mask M into spaces WJ−2,s′ ,s′ ∈ Δs

2 , where Δs
2 is a

subset of Δ2 defined by

Δs
2 =

{
s′ ∈ Δ2 : s′(1) = s(1)

}
and Δ2 is a J -tuple index set defined by

Δ2 =
{

s = (sJ ,sJ−1, . . . ,s1) : 0 � sJ−1,sJ � qN−1, sJ−2 = . . . = s1 = 0
}
,

Γs′(x) = (qN)1/2 ∑
σ∈Λ

hs′(2)
σ ϕ

(
p−1Nx−σ

)
,

WJ−2,s′ := span
{

Γs′,J−2,λ : λ ∈ Λ
}
.

Thus, for any f ∈ L2(K) , we have

∑
λ∈Λ

∣∣〈 f ,ωs,J−1,λ 〉
∣∣2 = ∑

s′∈Δs
2

∑
λ∈Λ

∣∣〈 f ,ωs′ ,J−2,λ 〉
∣∣2.

Finally, at the m-th level (2 � m � J) of decomposition, by Lemma 3.1, each space
WJ−m+1,s, s∈Δm−1 is decomposedwith the constructedmask M into spaces WJ−m,s′ ,s′ ∈
Δs

m , where Δs
m is a subset of Δm defined by

Δs
m =

{
s′ ∈ Λm : s′(n) = s(n), for 1 � n � m−1

}
and Δm is a J -tuple index set defined by

Δm =
{

s = (sJ ,sJ−1, . . . ,s1) : 0 � sJ−m � qN−1, sJ−m = . . . = s1 = 0
}
,

Γs′(x) = (qN)1/2 ∑
σ∈Λ

hs′(m)
σ ϕ

(
p−1Nx−σ

)
,

WJ−m,s′ := span
{

Γs′,J−m,λ : λ ∈ Λ
}
.
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Therefore for any f ∈ L2(K) , we have

∑
λ∈Λ

∣∣〈 f ,Γs,J−m+1,λ
〉∣∣2 = ∑

s′∈Δs
m

∑
λ∈Λ

∣∣〈 f ,Γs′ ,J−m,λ
〉∣∣2 .

In particular, at the J -th level of decomposition, by Lemma 3.1, each space W1,s ,s ∈
ΔJ−1 is decomposed with M into spaces W0,s′ ,s′ ∈ Δs

J , where Δs
J is a subset of ΔJ

defined by

Δs
J =

{
s′ ∈ ΔJ : s′(n) = s(n), for 1 � n � J−1

}
and ΔJ is a J -tuple index set defined by

ΔJ =
{

s = (sJ ,sJ−1, . . . ,s1) : 0 � st � qN−1, 1 � t � J
}

, (4.1)

Γs′(x) = (qN)1/2 ∑
σ∈Λ

hs′(J)
σ ϕ

(
p−1Nx−σ

)
,

W0,s′ := span
{

Γs′,0,λ : λ ∈ Λ
}
.

Thus, for any f ∈ L2(K) , we have

∑
λ∈Λ

∣∣〈 f ,Γs,1,λ
〉∣∣2 = ∑

s′∈Λs
J

∑
λ∈Λ

∣∣〈 f ,Γs′ ,0,λ
〉∣∣2 .

Combining all the inner product equations in the above construction, we get

∑
λ∈Λ

∣∣〈 f ,ϕJ,λ 〉
∣∣2 = ∑

s∈ΛJ

∑
λ∈Λ

∣∣〈 f ,Γs,0,λ 〉
∣∣2, for any f ∈ L2(K). (4.2)

In other words, we obtain another representation of VJ as

VJ := span
{

Γs,0,λ : s ∈ ΔJ,λ ∈ Λ
}
.

THEOREM 4.1. Suppose F (Ψ,λ ) is a tight nonuniformwavelet frame constructed
via UEP in an NUMRA and M = [m0,m1, . . . ,mqN−1] is the combined mask satisfying
the UEP condition (2.17) . Then for any fixed J > 0 , the family of functions

F =
{

Γs,0,λ : s ∈ ΔJ

}⋃{
ψ�, j,λ : � = 1, . . . ,qN−1, j � J,λ ∈ Λ

}
forms a tight frame for L2(K) , where ΔJ is a index set defined in (4.1) .

Proof. Since F (Ψ,λ ) is a tight nonuniform wavelet frame of L2(K) , then by
(4.2), we have

∥∥ f
∥∥2

2 = ∑
λ∈Λ

∣∣〈 f ,φJ,λ 〉
∣∣2 +

qN−1

∑
�=1

∑
j�J

∑
λ∈Λ

∣∣〈 f ,ψ�, j,λ
〉∣∣2

= ∑
s∈ΔJ

∑
λ∈Λ

∣∣〈 f ,Γs,0,λ 〉
∣∣2 +

qN−1

∑
�=1

∑
j�J

∑
λ∈Λ

∣∣〈 f ,ψ�, j,k
〉∣∣2
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for any f ∈ L2(K). This completes the proof. �

Similar to the recursive construction of tight nonuniform framelet packets, we can
obtain tight nonuniform framelet packets by performing various disjoint partitions NJ

of ΔJ with each partition separating ΔJ into disjoint subsets of the form

S j,s =
{
(sJ , . . . ,s j+1,s

′
j, . . . ,s

′
1) ∈ ΔJ : s = (sJ, . . . ,s j+1,0, . . . ,0) ∈ ΔJ− j

}
,

i.e.,

NJ =
{

S j,s :
⋃

S j,s = ΔJ

}
. (4.3)

COROLLARY 4.1. Suppose F (Ψ,λ ) is a tight nonuniform wavelet frame con-
structed via UEP in an NUMRA and M = [m0,m1, . . . ,mqN−1] is the combined mask
satisfying the UEP condition (2.17) . Let NJ be a disjoint partition of ΔJ , where ΔJ

and NJ are defined in (4.1) and (4.3) , respectively. Then the collection

FNJ =
{

Γs, j,λ : S j,s ∈ NJ,λ ∈ Λ
}⋃{

ψ�, j,λ : � = 1, . . . ,qN−1, j � J ∈ Z, λ ∈ Λ
}

generates a tight nonuniform frame for L2(K) .

Proof. Since NJ is a disjoint partition of ΔJ , for any f ∈ L2(K) , we have

∑
S j,s∈NJ

∑
λ∈Λ

∣∣〈 f ,Γs, j,λ 〉
∣∣2 = ∑

S j,s∈NJ

∑
s′∈S j,s

∑
λ∈Λ

∣∣〈 f ,Γs′ ,0,λ
〉∣∣2

= ∑
s∈ΔJ

∑
λ∈Λ

∣∣〈 f ,Γs,0,λ 〉
∣∣2.

By applying Theorem 4.1, we obatin the desired result. �
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