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ISOMORPHISMS OF BV (σ) SPACES
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(Communicated by N.-C. Wong)

Abstract. In this paper we investigate the relationship between the properties of a compact set
σ ⊆ C and the structure of the space BV(σ) of functions of bounded variation (in the sense
of Ashton and Doust) defined on σ . For the subalgebras of absolutely continuous functions on
σ , it is known that for certain classes of compact sets one obtains a Gelfand–Kolmogorov type
result: the function spaces AC(σ1) and AC(σ2) are isomorphic if and only if the domain sets σ1
and σ2 are homeomorphic. Our main theorem is that in this case the isomorphism must extend
to an isomorphism of the BV(σ) spaces. An application is given to the spectral theory of AC(σ)
operators.

1. Introduction

Many of the central results in the spectral theory of linear operators involve the
extension of a homomorphism Φ : A → C between Banach algebras to a larger do-
main B ⊇A . Examples include the spectral theorem for normal operators on a Hilbert
space, where one extends a C(σ(T )) functional calculus for an operator T to a func-
tional calculus for the bounded Borel measurable functions Borel(σ(T )) , or the spec-
tral theorem for well-bounded operators on a reflexive Banach space, where one extends
an AC[a,b] functional calculus to BV [a,b] , the functions of bounded variation on [a,b] .

In some situations, special properties of the Banach algebras can be used to pro-
vide easy extension results. The classical Gelfand–Kolmogorov Theorem says that
two compact Hausdorff spaces K1 and K2 are homeomorphic if and only if the Ba-
nach algebras C(K1) and C(K2) are isomorphic (as Banach algebras). Every isomor-
phism Φ : C(K1) → C(K2) is of the form Φ( f ) = f ◦ h−1 for some homeomorphism
h : K1 → K2 . Conversely, every such homeomorphism clearly generates an algebra iso-
morphism Φ , and this map obviously extends to a Banach algebra isomorphism from
Borel(K1) to Borel(K2) .

In order to provide a general theory which includes both well-bounded and trigono-
metrically well-bounded operators, Ashton and Doust [3] introduced two new families
of Banach algebras of functions. Given a nonempty compact subset σ of the plane,
BV (σ) denotes the set of functions f : σ → C of bounded variation on σ , and AC(σ)
denotes the subalgebra of absolutely continuous functions. (Full definitions are given
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in Section 2.) A bounded operator on a Banach space X which admits an AC(σ) func-
tional calculus is called an AC(σ) operator. The properties of these operators were
studied in [5]. At least on reflexive spaces, the AC(σ) spaces play a corresponding role
in the spectral theory of AC(σ) operators to that played by C(σ) spaces in the theory
of normal operators on Hilbert space.

A natural question was to determine when two spaces AC(σ1) and AC(σ2) are iso-
morphic as Banach algebras. Doust and Leinert [9] showed that one gets one direction
of a Gelfand–Kolmogorov type theorem in the setting of these spaces. If Φ : AC(σ1)→
AC(σ2) is an algebra isomorphism, then there exists a homeomorphism h : σ1 → σ2

such that Φ( f ) = f ◦ h−1 . In general the converse is false. That is, not every home-
omorphism h : σ1 → σ2 generates an algebra isomorphism of the associated AC(σ)
spaces. One can however obtain positive results if one restricts the class of compact
sets that are considered. For example, if σ1 and σ2 are any two polygons (which we
take here to include their interiors) then AC(σ1) and AC(σ2) are isomorphic [9, Theo-
rem 6.3]. Similar theorems for other classes of subsets of the plane can be found in [8]
and [1].

In each of these papers, an intermediate step in showing that two AC(σ) spaces
were indeed isomorphic was to show that the corresponding BV (σ) spaces were in fact
isomorphic. One then needed to show that the isomorphism preserves the subalgebras
of absolutely continuous functions. The aim of this paper is to show that every isomor-
phism of AC(σ) spaces must be the restriction of an isomorphism of BV (σ) spaces.
Said another way, every Banach algebra isomorphism Φ : AC(σ1) → AC(σ2) extends
to an isomorphism from BV (σ1) to BV (σ2) .

It should be noted that even in the case that a homeomorphism h : σ1 → σ2 does
generate an isomorphism Φh of the associated BV (σ) spaces, this map need not pre-
serve the AC(σ) spaces. Examples illustrating some of the possible behaviour are given
is Sections 3 and 4.

In the final section we give an application which shows that for a class of sets σ ,
the functional calculus for every AC(σ) operator on a reflexive Banach space can be
extended to all the functions of bounded variation.

2. Preliminaries

In this section we shall briefly outline the definitions of the spaces AC(σ) and
BV (σ) . We shall follow a simplified development rather than the original one given
in [3]. Further details about the evolution of this definition of variation for functions
defined on subsets of the plane is given in the appendix.

For the remainder of the paper, unless otherwise specified, isomorphism will mean
a Banach algebra isomorphism, that is, a continuous algebra isomorphismwith a contin-
uous inverse. It is worth noting that the AC(σ) and BV (σ) spaces are always semisim-
ple Banach algebras. A consequence of this is that any algebra isomorphism between
say BV (σ) spaces is automatically a Banach algebra isomorphism. We shall write
A � B to denote that A is isomorphic to B . All algebras will consist of complex-
valued functions. We shall identify the plane as either C or R

2 as is notationally
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convenient. Given two distinct points xxxxx and yyyyy in the plane, xxxxxyyyyy will denote the closed
line segment joining them.

Suppose that σ is a nonempty compact subset of C and that f : σ → C . The
partitions which are used in the classical definition of variation are replaced here by
finite lists of points in the domain σ . The definition needs to take into account not
just the differences between the function values at points on the list, but also how these
points are positioned in the plane.

Let S = [xxxxx0,xxxxx1, . . . ,xxxxxn] be a finite ordered list of elements of σ , where, for the
moment, we shall assume that n � 1. Let γS denote the piecewise linear curve joining
the points of S in order. We shall usually assume that no two consecutive points are
equal, but otherwise we do not require that the elements of such a list are distinct.

The curve variation of f on the ordered set S is defined to be

cvar( f ,S) =
n

∑
i=1

| f (xxxxxi)− f (xxxxxi−1)| .

Associated to each list S is its variation factor vf(S) . Loosely speaking, this is the
greatest number of times that γS crosses any line in the plane. To make this more
precise we need the concept of a crossing segment.

DEFINITION 2.1. Suppose that � is a line in the plane and that S = [xxxxx0,xxxxx1, . . . ,xxxxxn] .
We say that the j th segment s j = xxxxx j xxxxx j+1 is a crossing segment of S on � if any one of
the following holds:

(i) xxxxx j and xxxxx j+1 lie on (strictly) opposite sides of � .

(ii) j = 0 and xxxxx j ∈ � .

(iii) xxxxx j 	∈ � and xxxxx j+1 ∈ � .

DEFINITION 2.2. Let vf(S, �) denote the number of crossing segments of S on � .
The variation factor of S is defined to be vf(S) = max

�
vf(S, �) .

Clearly 1 � vf(S)� n . For completeness, in the case that S = [xxxxx0] we set cvar( f , [xxxxx0])
= 0 and let vf([xxxxx0], �) = 1 whenever xxxxx0 ∈ � .

DEFINITION 2.3. The two-dimensional variation of a function f : σ → C is de-
fined to be

var( f ,σ) = sup
S

cvar( f ,S)
vf(S)

,

where the supremum is taken over all finite ordered lists of elements of σ .

The variation norm of such a function is

‖ f‖BV(σ) = ‖ f‖∞ +var( f ,σ)
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and the set of functions of bounded variation on σ is

BV (σ) = { f : σ → C : ‖ f‖BV(σ) < ∞}.
The space BV (σ) is a Banach algebra under pointwise operations [3, Theorem 3.8].

Let P2 denote the space of polynomials in two real variables of the form p(x,y) =
∑n,m cnmxnym , and let P2(σ) denote the restrictions of elements on P2 to σ (consid-
ered as a subset of R2 ). The algebra P2(σ) is always a subalgebra of BV(σ) [3,
Corollary 3.14].

DEFINITION 2.4. The set of absolutely continuous functions on σ ,
denoted AC(σ) , is the closure of P2(σ) in BV (σ) .

The set AC(σ) forms a closed subalgebra of BV (σ) and hence is a Banach alge-
bra.

It is an important but nonobvious fact that if σ = [a,b] these definitions reduce
to the classical ones [3, Proposition 3.6]. Indeed, if σ is any compact subset of the
line, then these are the same as the BV and AC spaces considered by Saks [11]. It is
clear that these spaces are preserved under affine transformations of the plane. That is,
if h : C → C , h(zzzzz) = αzzzzz+ β is a nontrivial affine map, then Φh( f ) = f ◦ h−1 defines
an isometric isomorphism from BV (σ) to BV(h(σ)) . In particular BV(xxxxxyyyyy)� BV [0,1]
for any distinct points xxxxx,yyyyy ∈ C .

More generally, if h : σ1 → σ2 is a bijection between two subsets of C , we shall
denote by Φh the map f �→ f ◦ h−1 which is always an isomorphism from the algebra
of complex functions on σ1 to the algebra of complex functions on σ2 . We shall use
the same notation for the restriction of this map to any subalgebra of functions on σ1 .

One can show that C1(σ) ⊆ AC(σ) ⊆C(σ) , where one interprets C1(σ) as con-
sisting of all functions for which there is a C1 extension to an open neighbourhood of
σ (see [10]). We will need the following simple results which are easy consequences
of the definition of BV (σ) and AC(σ) . The (restriction to σ of the) characteristic
function of a set A will be denoted χA .

LEMMA 2.5. For all zzzzz ∈ σ , χ{zzzzz} ∈ BV (σ) .

LEMMA 2.6. If f ∈ AC(σ) then Re f , Im f ∈ AC(σ) .

3. Isomorphisms of BV (σ) spaces

An obvious problem is to determine the nature of the possible algebra homomor-
phisms between two BV(σ) spaces. As noted in the introduction, every algebra iso-
morphism Φ : AC(σ1) → AC(σ2) is of the form Φ( f ) = f ◦ h−1 where h : σ1 → σ2 is
a homeomorphism. It is easy to see that this result does not extend to BV (σ) spaces.

EXAMPLE 3.1. Let σ1 = σ2 = [0,1] and define the bijection h : σ1 → σ2 ,

h(x) =

{
1
2 − x, if 0 � x � 1

2 ,

x, if 1
2 < x � 1.
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A simple rearrangement of the variation of Φh( f ) over [0,1] shows that

var(Φh( f ), [0,1]) � 2var( f , [0,1])

and so (noting that Φ−1
h = Φh ),

1
2
‖ f‖BV [0,1] � ‖Φh( f )‖BV [0,1] � 2‖ f‖BV [0,1] .

Thus Φh is a Banach algebra isomorphism from BV (σ1) to BV (σ2) . But of course the
map h is not a homeomorphism in this case.

In a positive direction we have the following.

THEOREM 3.2. Suppose that σ1 and σ2 are nonempty compact subsets of the
plane. If Φ : BV (σ1)→ BV (σ2) is an algebra isomorphism then there exists a bijection
h : σ1 → σ2 such that Φ( f ) = f ◦ h−1 for all f ∈ BV (σ1) .

Proof. Since Φ is an algebra isomorphism, it must map idempotents to idempo-
tents. Note that by Lemma 2.5, for all z ∈ σ1 , the function fz = χ{z} lies in BV (σ1)
and hence gz = Φ( fz) is an idempotent in BV (σ2) . Since Φ is one-to-one, gz is not the
zero function and hence the support of gz is a nonempty set τ ⊆ σ2 . If τ is more than
a singleton then we can choose w ∈ τ and write gz = χ{w} + χSτ\{w} as a sum of two
nonzero idempotents in BV (σ2) . But then fz = Φ−1(χ{w})+ Φ−1(χS\{w}) is the sum
of two nonzero idempotent in BV(σ1) which is impossible. It follows that gz is the
characteristic function of a singleton set and this clearly induces a map h : σ1 → σ2 so
that Φ( fz) = χ{h(z)} . Indeed, by considering Φ−1 it is clear that h must be a bijection
between the two sets. �

There are several questions one might ask concerning possible strengthening of
Theorem 3.2.

QUESTION 3.3. Suppose that h : σ1 → σ2 is a bijection. Does Φh map BV (σ1)
to BV (σ2)?

QUESTION 3.4. Suppose that σ1 and σ2 are homeomorphic. Is BV (σ1)�BV(σ2)?

QUESTION 3.5. Suppose that BV (σ1) � BV(σ2) . Is σ1 homeomorphic to σ2 ?

Questions 3.3 is easily disposed of.

EXAMPLE 3.6. Let σ1 = {0,1,−1, 1
2 ,− 1

2 , 1
3 ,− 1

3 , . . .} and let σ2 = {0,1, 1
2 , 1

3 , . . .} .
Define h : σ1 → σ2 by

h(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if x = 0,

1
2n−1 , if x = − 1

n < 0,

1
2n , if x = 1

n > 0.
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It is readily checked that h is a bijection (indeed a homeomorphism). If f is the char-
acteristic function of the positive elements of σ1 then f ∈ BV (σ1) but Φh( f ) is not in
BV (σ2) .

We can see from [8, Corollary 5.12] that in fact no bijection between the two
sets in Example 3.6 determines an isomorphism of the spaces of functions of bounded
variation, so this gives a negative answer to Question 3.4.

An examination of the proof of Theorem 3.1 in [9] shows that if h is any homeo-
morphism from the unit square to the closed unit disk, the map Φh must be unbounded
with respect to the BV norms, and hence this provides another counterexample to an-
swer Question 3.4.

Showing that the answer to Question 3.5 is also ‘no’ is a little harder.

EXAMPLE 3.7. Consider the two sets σ and τ shown in Figure 1. These sets are
clearly not homeomorphic. Let h be a bijection which maps the blue path from aaaaa to bbbbb
onto the closed line segment [ααααα ,βββββ ] and the half-open line segment from ccccc to ddddd onto
the half-open line segment from βββββ to δδδδδ .

Both σ and τ are examples of what are called linear graphs in [1]. The algebras
of functions of bounded variation on such sets admit an equivalent linear graph norm.
In this case if f : σ →C , then ‖ f‖LG(σ) = ‖ f‖∞ +var( f ,aaaaaccccc)+var( f ,cccccbbbbb)+var( f ,cccccddddd)
while if g : τ → C ,

‖g‖LG(τ) = ‖g‖∞ +var(g,ααααα δδδδδ ) = ‖g‖∞ +var(g,ααααα γγγγγ)+var(g,γγγγγ βββββ )+var(g,βββββ δδδδδ ).

The important fact proved in [1, Theorem 3] is that the linear graph norm is always
equivalent (as a Banach space norm) to the BV norm.

aaaaa bbbbb

ccccc

ddddd

σ

ααααα = h(aaaaa)

γγγγγ = h(ccccc)

βββββ = h(bbbbb) δδδδδ = h(ddddd)

τ

Figure 1: Two non-homeomorphic compact sets with BV (σ) � BV (τ) .
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Suppose that f ∈ BV (σ) and that g = Φh( f ) = f ◦ h−1 ∈ BV (τ) . It is clear that
‖ f‖∞ = ‖g‖∞ , that var( f ,aaaaaccccc) = var(g,ααααα γγγγγ) and that var( f ,cccccbbbbb) = var(g,γγγγγ βββββ ) . One
may verify that

var(g,βββββ δδδδδ ) � var( f ,cccccbbbbb)+var( f ,cccccddddd)

and consequently ‖g‖LG(τ) � 2‖ f‖LG(σ) . An analogous calculation also shows that
‖ f‖LG(σ) � 2‖g‖LG(τ) .

Using the fact that the LG norms are equivalent to the BV norms. this implies
that the algebra isomorphism Φh is continuous, with continuous inverse, from BV (σ)
to BV (τ) , and hence these spaces are isomorphic as Banach algebras.

Note that since σ is not homeomorphic to τ we know that AC(σ) 	� AC(τ) .

What really determines whether a bijection defines an isomorphism of the BV (σ)
spaces is what it does to the variation factors of lists of points.

DEFINITION 3.8. Suppose that h : σ1 → σ2 is a bijection.

1. If S = [xxxxx0,xxxxx1, . . . ,xxxxxn] is a finite list of elements of σ1 , we denote the correspond-
ing list of elements in σ1 by h(S) = [h(xxxxx0),h(xxxxx1), . . . ,h(xxxxxn)] .

2. The variation factor of h is

vf(h) = sup
S

vf(S)
vf(h(S))

.

Note that vf(h) is always at least 1 , and that vf(h) may be infinite.

LEMMA 3.9. Suppose that h : σ1 → σ2 is a bijection and that vf(h) = K < ∞ . If
f ∈ BV(σ1) then Φh( f ) ∈ BV (σ2) and

‖Φh( f )‖BV (σ2) � K ‖ f‖BV (σ1) .

Equivalently, if Φh is not bounded on BV(σ1) then vf(h) = ∞ .

Proof. Let Ŝ be a finite list of points in σ2 . As h is a bijection, there exists a finite
list S in σ1 such that Ŝ = h(S) . Then

cvar(Φh( f ), Ŝ)
vf(Ŝ)

=
cvar( f ,S)
vf(h(S))

� K cvar( f ,S)
vf(S)

� K var( f ,σ1).

Since ‖Φh( f )‖∞ = ‖ f‖∞ , the result follows. �

LEMMA 3.10. If vf(h) = ∞ then Φh is not bounded on BV (σ1) and hence Φh

does not map BV(σ1) onto BV(σ2) .
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Proof. Suppose that vf(h) = ∞ and that K > 1. Then there exists a finite list S =
[xxxxx0, . . . ,xxxxxn] in σ1 such that vf(S)

vf(h(S)) > K . Suppose that vf(S) = m , and note that m > 1.

Choose any line � such that vf(S, �) = vf(S) . This line determines two closed half-
planes whose intersection is � . By [3, Proposition 3.20], the characteristic functions of
these half planes, χ1 and χ2 , are of bounded variation on σ1 with ‖χi‖BV (σ1) � 2.

By definition, m of the segments in S are crossing segments of S on � . Of these, at
least m−1 must satisfy either rule (i) or rule (iii) of Definition 2.1. If xxxxx j xxxxx j+1 satisfies
rule (i), then |χi(xxxxx j+1)− χi(xxxxx j)| = 1 for each i . If xxxxx j xxxxx j+1 satisfies rule (iii), then
|χi(xxxxx j+1)−χi(xxxxx j)|= 1 for one value of i . Combining these facts shows that for at least
one of the value i = 1 or i = 2,

n

∑
j=1

|χi(xxxxx j)− χi(xxxxx j−1)| � m−1
2

. (3.1)

Fix i so that (3.1) holds. Then, as m > 1,

var(Φh( f )) � cvar(Φh( f ),h(S))
vf(h(S))

=
cvar( f ,S)
vf(h(S))

� m−1
2

· K
m

� K
4

.

Thus

‖Φh‖ �
‖Φh( f )‖BV (σ2)

‖ f‖BV (σ1)
� K +1

8
.

Since K was arbitrary, Φh is unbounded. The final conclusion of the lemma follows
from the Banach Isomorphism Theorem. �

THEOREM 3.11. Suppose that h : σ1 → σ2 is a bijection. Then Φh is a (Banach
algebra) isomorphism from BV (σ1) to BV (σ2) if and only if vf(h) and vf(h−1) are
both finite.

Proof. Φh is always an algebra isomorphism from the algebra of all complex-
valued functions on σ1 to the algebra of all functions on σ2 . By the previous lemmas,
the boundedness of Φh and Φ−1

h = Φh−1 is equivalent to the conditions that vf(h) and
vf(h−1) are finite. �

4. AC(σ) and BV (σ) spaces

The isomorphisms between pairs of AC(σ) spaces constructed in [1, 8, 9] are all
restrictions of isomorphisms of the corresponding BV (σ) spaces. As we have seen in
Example 3.7, not every isomorphism of BV (σ) spaces preserves the subalgebras of
absolutely continuous functions.

Two natural questions arise.

QUESTION 4.1. Suppose that BV (σ1) � BV(σ2) via the isomorphism Φh( f ) =
f ◦ h−1 where h : σ1 → σ2 is a homeomorphism. Does Φh map AC(σ1) to AC(σ2)?
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QUESTION 4.2. Suppose that Φh is an isomorphism from AC(σ1) to AC(σ2) .
Does Φh extend to an isomorphism from BV (σ1) to BV (σ2)?

Question 4.1 is easily dealt with.

LEMMA 4.3. Suppose that σ1,σ2 ⊆C and that h : σ1 →σ2 is a homeomorphism.
If Φh is an isomorphism from AC(σ1) to AC(σ2) then h ∈ AC(σ1) and h−1 ∈ AC(σ2) .

Proof. The map identity map f (xxxxx) = xxxxx is clearly in AC(σ1) and so Φh( f ) = h−1 ∈
AC(σ2) . The same argument applied to Φ−1 shows that h ∈ AC(σ1) . �

EXAMPLE 4.4. Let σ1 = σ2 = [0,1] . Let h : σ1 → σ2 be an increasing bijection
which is not absolutely continuous. (For example, h(x) = 1

2(x+C(x)) where C is the
Cantor function.) Then Φh is an isomorphism from BV (σ1) to BV (σ2) , but, by the
lemma, it does not map AC(σ1) to AC(σ2) . It follows that the answer to Question 4.1
is ‘no’.

The following fact will be needed in the proof of the main result, Theorem 4.6.

LEMMA 4.5. Suppose that σ1,σ2 ⊆C and that h : σ1 → σ2 is a homeomorphism
such that h−1 ∈ AC(σ2) . Then for any p ∈ P2(σ1) , Φh(p) ∈ AC(σ2) .

Proof. Let px(x,y) = x and py(x,y) = y . Then Φh(px) = px ◦h−1 = Reh−1 which
lies in AC(σ2) by Lemma 2.6. Similarly Φh(py) ∈ AC(σ2) and so the algebraic prop-
erties of Φh ensure that Φh(p) ∈ AC(σ2) for all p ∈ P2(σ1) . �

THEOREM 4.6. Suppose that AC(σ1) � AC(σ2) . Then BV (σ1) � BV (σ2) .

Proof. Let Φ : AC(σ1) → AC(σ2) be an algebra isomorphism from AC(σ1) to
AC(σ2) and let K = ‖Φ‖ . Then [9, Theorem 2.8] implies that there exists a homeo-
morphism h : σ1 → σ2 such that Φ( f ) = Φh( f ) = f ◦ h−1 for all f ∈ AC(σ1) .

Suppose that Φh is not bounded as a map on BV(σ1) . By Lemma 3.9 this means
that vf(h) = ∞ . We can therefore choose a list of points S ⊆ σ1 so that vf(S) >
8K vf(h(S)) . As in the proof of Lemma 3.10, we can choose a line � such that vf(S, �)=
vf(S) = m say. This line forms the boundary of a closed half-plane H whose charac-
teristic function χH satisfies cvar(χH ,S) � m−1

2 .
As in Section 9 of [2] we can choose a piecewise planar function fH,δ ∈ AC(σ1)

of norm at most 2 which agrees with χH except on a small strip of width δ along the
boundary of H (see Figure 2). Since S is a finite set, if δ is chosen small enough, then
fH,δ and χH agree on the points in S and hence

cvar(Φh( fH,δ ),h(S)) = cvar( fH,δ ,S) = cvar(χH ,S) � m−1
2

.
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Thus

var(Φh( fH,δ ),σ2) �
cvar(Φh( fH,δ ),h(S))

vf(h(S))

>
m−1

2
· 8K
vf(S)

= 4
(m−1)K

m
� 2K.

We then have that ∥∥Φh( fH,δ )
∥∥

BV (σ2)
> 2K � ‖Φh‖

∥∥ fH,δ
∥∥

BV (σ1)

which is impossible. Therefore vf(h) must be finite, and Φh must be bounded on
BV (σ2) .

An analogous argument using the relationship between the boundedness of Φ−1
h

and the finiteness of vf(h−1) completes the proof. �

δ

fH,δ = 1

fH,δ = 0
xxxxx0

xxxxx1

xxxxx2 xxxxx3

xxxxx4

xxxxx5

xxxxx6

xxxxx7

xxxxx8

xxxxx9

xxxxx10 �

H

Figure 2: Choosing the function fH ,δ ∈ AC(σ1) in the proof of Theorem 4.6. For δ small
enough, fH ,δ (xxxxx j) = χH(xxxxx j) for all j .

Combining the above results gives the following characterization.

THEOREM 4.7. Suppose that σ1,σ2 ⊆ C and that h : σ1 → σ2 is a homeomor-
phism. Then the following are equivalent.

1. Φh is an isomorphism from AC(σ1) to AC(σ2) .

2. Φh is an isomorphism from BV (σ1) to BV (σ2) , h ∈ AC(σ1) and h−1 ∈ AC(σ2)

Proof. (⇒) Suppose that Φh is an isomorphism from AC(σ1) to AC(σ2) . By the
previous theorem, Φh extends to an isomorphism from BV (σ1) to BV (σ2) . The facts
about h and h−1 follow from Lemma 4.3.

(⇐) Suppose that (2) holds. By Lemma 4.5, Φh(p)∈ AC(σ2) for all p∈P2(σ1) .
Since Φh is BV norm bounded this implies that Φh( f ) ∈ AC(σ2) for all f ∈ AC(σ1) .
Similarly Φ−1

h maps AC(σ2) into AC(σ1) and hence Φh is an isomorphism of the
spaces of absolutely continuous functions. �
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5. An application

Berkson and Gillespie [6] introduced the class of trigonometrically well-bounded
operators as a type of Banach space analogue of unitary operators. Trigonometri-
cally well-bounded operators have been used in developing various aspects of operator-
valued harmonic analysis (see for example [7]). It was shown in [4] that for reflexive
Banach spaces, these operators are precisely the AC(T) operators, that is, operators
which possess an AC(T) functional calculus. (On nonreflexive spaces, the definition
of a trigonometrically well-bounded operator requires that this functional calculus is
weakly compact.) Berkson and Gillespie showed that if T is trigonometrically well-
bounded then it admits an integral representation with respect to a suitable family of
projections, and this can be used to extend the AC(T) functional calculus to a BV (T)
functional calculus. An open problem is whether every AC(σ) operator on a reflexive
Banach space admits a BV (σ) functional calculus.

It is not true that AC(σ) is isomorphic to AC(T) for every set σ ⊆ C which is
homeomorphic to T . However one can obtain a Gelfand–Kolmogorov type theorem if
one restricts the class of sets somewhat. In [2] the authors introduce the family PIC
of ‘polygonally inscribed curves’. These are connected sets which can be written as a
finite union of smooth convex curves, subject to some mild conditions about how these
curves meet. PIC contains all the linear graph sets considered in [1]. We omit the full
definition here, but some examples of PIC sets are given in Figure 3.

σ1
σ2 σ3

Figure 3: Three polygonally inscribed curves

THEOREM 5.1. Suppose that T is an AC(σ) operator on a reflexive Banach
space X with σ ∈ PIC. If σ is homeomorphic to T then T admits a BV(σ) func-
tional calculus.

Proof. Let ΨT : AC(σ) → B(X) denote the functional calculus homomorphism
for T . Since σ and T are homeomorphic sets in PIC , it follows from [2, Theorem 7]
that there exists an isomorphism Φ : AC(σ) → AC(T) . Define Γ : AC(T) → B(X)
by Γ = ΨT ◦Φ−1 . Let e(z) = z be the identity function considered as an element of
AC(T) and let U = Γ(e) . Then Γ determines an AC(T) functional calculus for U , and
so U is trigonometrically well-bounded. It follows that Γ extends to a bounded algebra
homomorphism Γ̂ : BV (T) → B(X) . By Theorem 4.6, Φ lifts to an isomorphism Φ̂ :
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BV (σ)→BV (T) . Let Ψ̂T : BV (σ)→B(X) be Ψ̂T = Γ̂◦Φ̂ . Then Ψ̂T defines a BV (σ)
functional calculus for T . �

6. Appendix: The definition of variation

The definition of var( f ,σ) has appeared in various guises since it was introduced
in [3], and it is reasonable to ask whether all the versions used are equal. The aim of
this appendix is to confirm that the various forms of the definition are indeed consistent.

In its original form the variation was defined to be

var( f ,σ) = sup
γ∈Γ

cvar( f ,γ)
vf(γ)

where Γ was the space of continuous curves in the plane parametrized by [0,1] . Even
in [3] it was noted that working with the space Γ was unwieldy and that it was sufficient
to consider the space ΓL of piecewise linear curves. Indeed the proofs of the properties
of variation in [3] all utilized ΓL in place of Γ . Each γ ∈ ΓL can be specified by giving
an ordered list S = [xxxxx0,xxxxx1, . . . ,xxxxxn] of points so that γ is made up of the line segments
xxxxx j xxxxx j+1 , j = 0, . . . ,n−1.

The main issue here is the definition of vf(γ) , which heuristically aims to count
the maximum number of times that γ crosses any line. The challenge was to make
sense of what counts as a crossing. The original definition in [3] involved entry points
of the curve γ on a line � in the plane. If a continuous curve γ is parametrized as γ(t) ,
0 � t � 1, then t is an entry point of γ on � if either:

(1) t = 0 and γ(0) ∈ � , that is the curve starts on � , or

(2) 0 < t � 1, γ(t) ∈ � and for all u ∈ (0,t) there exists s ∈ (u,t) such that γ(s) 	∈ � .

Then vf(γ, �) was defined to be the number of entry points of γ on � and vf(γ) was
defined to be the maximum value of vf(γ, �) over all lines � in the plane.

Suppose that � is a line and that γ = γS is a piecewise linear curve determined by
S = [xxxxx0, . . . ,xxxxxn] , so that xxxxx j = γ(t j) with 0 = t0 < t1 < .. . < tn = 1. The core observation
is that for each j ∈ {0,1, . . . ,n− 1} there can be at most one entry point of γ on � in
[t j,t j+1] . To see this, note that otherwise there would be two points in xxxxx j xxxxx j+1 on � and
hence xxxxx j xxxxx j+1 ⊆ � . But by (2) this would mean that no t ∈ (t j,t j+1] is an entry point.

This led to the concept of a crossing segment, introduced in [9, 10]. There, a
segment xxxxx j xxxxx j+1 was called a crossing segment of S on � if either γ has an entry point
in [t j,t j+1) , or, to deal with the final endpoint, if j = n−1 and tn = 1 is an entry point.
Note that if j = n− 1 and tn is an entry point, then γ does not have an entry point in
[tn−1,tn) . Thus the number of crossing segments is equal to the number of entry points
for γ .

The aim of introducing crossing segments was to avoid dealing with parameteriza-
tions entirely and to express (1) and (2) in terms of the points in S . There are a number
of cases:



ISOMORPHISMS OF BV (σ) SPACES 1593

(a) If t ∈ (t j, t j+1) is an entry point, then xxxxx j and xxxxx j+1 must lie on opposite sides of
� .

(b) Otherwise t j is an entry point for some j .

(b1) If j = 0 this means that xxxxx0 ∈ � .

(b2) If j > 0 then x j ∈ � but x j−1 	∈ � (or else we would have xxxxx j−1 xxxxx j ⊆ � ).

Encoding this in terms of the endpoints of the segments of S gave the following
definition from [9]. (Again it is worth noting that if t0 is an entry point then there is no
entry point in (t0, t1] .)

DEFINITION 6.1. The j th segment s j = xxxxx j xxxxx j+1 is a crossing segment of S on the
line � if any of the following hold.

(I) xxxxx j and xxxxx j+1 lie on (strictly) opposite sides of � .

(II) j = 0 and xxxxx j ∈ � .

(III) j > 0, xxxxx j ∈ � and xxxxx j−1 	∈ � .

(IV) j = n−1, xxxxx j 	∈ � and xxxxx j+1 ∈ � .

Condition (I) corresponds to condition (a) above. Condition (II) is (b1) when
j = 0. Condition (III) is (b2) for 0 < j < n . Condition (IV) covers the case when the
final point (that is tn ) is an entry point.

More recently it was realized that it was in fact simpler to count the cases where
either t0 is an entry point, or else where there is an entry point in (t j,t j+1] . This leads
to the more elegant definition used in [2].

DEFINITION 6.2. The j th segment s j = xxxxx j xxxxx j+1 is a crossing segment of S on the
line � if any of the following hold.

(i) xxxxx j and xxxxx j+1 lie on (strictly) opposite sides of � .

(ii) j = 0 and xxxxx j ∈ � .

(iii) xxxxx j 	∈ � and xxxxx j+1 ∈ � .

Note that Definition 6.2 may label different segments as crossing segments as
compared to Definition 6.1, but it will always produce the same number of crossing
segments. This is best illustrated by an example.

EXAMPLE 6.3. Consider the line � and the ordered list S = [xxxxx0,xxxxx1, . . . ,xxxxx9] shown
in Figure 4. The locations of the five entry points of the curve γ determined by S are
marked in blue. Definition 6.1 will count five crossing segments: xxxxx0 xxxxx1 (rule (II)), xxxxx2 xxxxx3

(rule (I)), xxxxx4 xxxxx5 (rule (III)), xxxxx7 xxxxx8 (rule (I)) and xxxxx8 xxxxx9 (rule (IV)). Definition 6.2 also
counts five crossing segments: xxxxx0 xxxxx1 (rule (ii)), xxxxx2 xxxxx3 (rule (i)), xxxxx3 xxxxx4 (rule (iii)), xxxxx7 xxxxx8

(rule (i)) and xxxxx8 xxxxx9 (rule (iii)).
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xxxxx0

xxxxx1

xxxxx2

vvvvv

xxxxx3

xxxxx4 xxxxx5 xxxxx6

xxxxx7

w

xxxxx8

xxxxx9

�

Figure 4: Crossing segments of S = [xxxxx0,xxxxx1, . . . ,xxxxxn] on � .

This means that the value of vf(S, �) , the number of crossing segments of S on �
and of the variation factor of S , vf(S) = max� vf(S, �) , are consistent between these two
definitions (and the original definition in [3]). Consequently, the definition of var( f ,σ)
is unchanged if one uses either definition for crossing segments.

An alternative way to calculate vf(S, �) is to split the curve γS into connected
sections which are either on or off the line � . (Note that connected here refers to the
parameterizarion of γS . This is different to looking at the connected components of
γS ∩ � .) In Figure 4 the sections which are on the line are xxxxx0 xxxxx1 , {vvvvv} , xxxxx4 xxxxx6 , {w} and
{xxxxx9} .

PROPOSITION 6.4. vf(S, �) is the number of connected sections of γS which are
on � .

Proof. Fix a parameterisation of γS by [0,1] . Then there exist points

0 � b1 � e1 < b2 � e2 < .. . < bm � em � 1

so that the i th connected section of γS that lies on � goes from γS(bi) to γS(ei) . For
each i , bi is an entry point of γS on � . Conversely every entry point is one of the bi s.
Thus the number of connected sections is equal to the number of entry points, and from
the earlier remarks, this is equal to vf(S, �) . �

(We note that a different definition again was used in [1], where condition (IV)
was erroneously omitted from Definition 6.1. This causes no issue in that paper as the
only crossing segments that were needed there were ones which satisfied condition (I).)

It is worth noting that both Definition 6.1 and Definition 6.2 are dependent on
the direction in which the curve γS is traversed. Let Sr = [xxxxxn,xxxxxn−1, . . . ,xxxxx0] denote the
points of S listed in the reverse order. For the example in Figure 4, under Definition 6.2,
xxxxx7 xxxxx6 is a crossing segment for Sr on � while xxxxx6 xxxxx7 is not one for S . By Proposition 6.4
however, it is clear that one always has vf(S, �) = vf(Sr, �) .

A piecewise linear curve γ can be generated by different ordered lists of points.
For example one could omit point xxxxx5 from the list in Figure 4 without changing the
curve. Another consequence of Proposition 6.4 is that if S and Ŝ generate the same
curve γ then vf(S) = vf(Ŝ) .
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In general if one deletes a point from a list, this may decrease the variation factor,
but it will never increase it. The following proposition appeared in [10].

PROPOSITION 6.5. Let S be an ordered list points, and let S+ be a list formed
by adding an additional element into the list at some point. Then for any line � in the
plane vf(S, �) � vf(S+, �) and hence vf(S) � vf(S+) .

It remains now to verify that the original definition of var( f ,σ) agrees with the
one used since [9], that is, that

sup
γ∈ΓL

cvar( f ,γ)
vf(γ)

= sup
S

cvar( f ,S)
vf(S)

. (6.1)

Here cvar( f ,γ) = sup∑m
j=1 | f (γ(t j))− f (γ(t j−1))| where the supremum is taken over

all partitions 0 � t0 < t1 < .. . < tm � 1 such that γ(t j) ∈ σ for all j . If γ does not
intersect σ or if it only meets σ at a single point, then we set cvar( f ,γ) = 0. The
right-hand side is as defined in Section 2.

Given an ordered list S ⊆ σ , one may form γS ∈ ΓL . It is clear that cvar( f ,S) �
cvar( f ,γS) and vf(S) = vf(γS) so the left-hand side of (6.1) is at least as large as the
right-hand side.

On the other hand, suppose that γ ∈ ΓL and that [t j]mj=0 is an ordered list of values

such that vvvvv j = γ(t j) lies in σ for all j . Let Ŝ = [vvvvv0,vvvvv1, . . . ,vvvvvm] . One can write γ as
γS for an ordered list of points S which contains the points vvvvv j in the appropriate order
(see Figure 5). Since Ŝ is a sublist of S , by Proposition 6.5, vf(Ŝ) � vf(S) and so

∑m
j=1 | f (γ(t j))− f (γ(t j−1))|

vf(γ)
=

∑m
j=1 | f (γ(t j))− f (γ(t j−1))|

vf(S)
� cvar( f , Ŝ)

vf(Ŝ)
.

This provides the reverse inequality and hence the two sides of (6.1) are equal.

σ

xxxxx0

xxxxx1

xxxxx2

xxxxx3

xxxxx4

vvvvv0

vvvvv1

vvvvv2

vvvvv3

γ

Figure 5: γ = γS0 for S0 = [xxxxx0,xxxxx1,xxxxx2,xxxxx3,xxxxx4] . If vvvvv j = γ(t j) , are the chosen points on γ which lie
in σ , we can form S = [xxxxx0,vvvvv0,vvvvv1,xxxxx1,xxxxx2,vvvvv2,vvvvv3,xxxxx3,xxxxx4] and γ = γS too. Then Ŝ = [vvvvv0,vvvvv1,vvvvv2,vvvvv3]
is a sublist of S so vf(Ŝ) � vf(S) = vf(γ) .
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