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COMMUTING AND SEMI–COMMUTING TOEPLITZ OPERATORS

ON THE WEIGHTED HARMONIC BERGMAN SPACE

LINGHUI KONG ∗ , SHUANG QU AND SHAN TONG

(Communicated by S. McCullough)

Abstract. In this article, we show that two Toeplitz operators on the weighted harmonic Bergman
space can commute only in the trivial case under certain conditions. The triviality here means a
nonzero linear combination of their symbols is constant. Moreover, we give a characterization
of semi-commuting Toeplitz operators with harmonic or analytic symbols.

1. Introduction

Let D be the unit disk in the complex plane C , and let dA be the normalized area
measure on D . For fixed α > −1, let L2

α = L2(D,dAα) be the Hilbert space of square
integrable functions with respect to the measure dAα(z) = (α +1)(1−|z|2)αdA(z) with
inner product

〈 f ,g〉α =
∫

D

f (z)g(z)dAα(z), f ,g ∈ L2
α .

The Bergman space A2
α is the closed subspace of L2

α consisting of all analytic func-

tions. For z ∈ D , the reproducing kernel K(α)
z of A2

α is given explicitly by

K(α)
z (w) =

1
(1− zw)2+α ,

which has the following reproducing property:

f (z) = 〈 f ,K(α)
z 〉α (1)

for every f ∈ A2
α and z ∈ D . The harmonic Bergman space b2

α is another closed
subspace of L2

α consisting of harmonic functions on D . It is easy to verify that

b2
α = A2

α +A2
α ,

and b2
α is also a reproducing Hilbert space with the reproducing kernel

R(α)
w (z) = K(α)

w (z)+K(α)
w (z)−1, z,w ∈ D. (2)
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Let Pα and Qα be the orthogonal projections from L2
α onto A2

α and b2
α respec-

tively. Then

Pα(ϕ)(z) = 〈ϕ ,K(α)
z 〉α ,

Qα(ϕ)(z) = 〈ϕ ,R(α)
z 〉α ,

for ϕ ∈ L2
α . By (2), we have

Qα(ϕ)(z) = Pα(ϕ)(z)+Pα(ϕ)(z)−Pα(ϕ)(0).

See [1] for more information and related facts.
For u ∈ L2

α , we define the Toeplitz operator Tu with symbol u on b2
α by

Tu( f ) = Qα(u f ), f ∈ b2
α .

The operator Tu is densely defined with its domain containing all bounded harmonic
functions. Clearly, if u ∈ L∞(D) , then Tu is a bounded operator with norm ‖Tu‖ �
‖u‖∞ .

The commuting problem of Toeplitz operators is an open question in the theory of
Toeplitz operators. It can be stated as follows:

For f ,g ∈ L∞(D) , when does Tf Tg = TgTf hold?

Unlike the case of the Hardy space, the commuting problem on the Bergman space
is still far form being totally answered. Nevertheless, many efforts have been made to
resolve it.

On the Bergman space of the unit disk, the first complete result was obtained by
Axler and Čučković in [2], where they characterized commuting Toeplitz operators
with bounded harmonic symbols. Stroethoff [14] extended their result to essentially
commuting Toeplitz operators. Axler et al. [3] showed that if two Toeplitz operators
commute and the symbol of either of them is nonconstant analytic, then the other one
is also analytic. Mellin transform turns out to be a powerful tool to study commuting
Toeplitz operators with quasihomogeneous symbols (see [8], [11]).

In the setting of several complex variables, Zheng [15] completely characterized
commuting Toeplitz operators with pluriharmonic symbols on the Bergman space of
the unit ball in C

n . Choe and Lee [6] studied the corresponding essentially commuting
problem. Lee [9] further generalized the result in [15] to Toeplitz type operators acting
on weighted Bergman spaces. Lu [12] considered the problem on the Bergman space
of the bidisk. Choe et al. [4] obtained characterizations of commuting and essentially
commuting Toeplitz operators on the Bergman space of the polydisk.

The harmonic Bergman space is more complicated than the analytic Bergman
space, since the product of two harmonic functions is no longer harmonic, and this
leads to the lost of effectiveness of many methods which work for the operators on
the analytic Bergman space. On the harmonic Bergman space of the unit disk, Ohno
[13] first characterized commuting Toeplitz operators with analytic symbols, either of
which is a monomial. Then Choe and Lee [5] completely described commuting Toeplitz
operators with two general analytic symbols. Meanwhile, they also studied harmonic
symbols, either of which is a polynomial. Some of these results were subsequently
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extended to the unit ball case in [10] and the polydisk case in [7]. However, the cor-
responding problem for weighted harmonic Bergman space has not been studied so far
and we shall investigate it in what follows.

Our article is organized as follows. In Section 2, we characterize commuting
Toeplitz operators with analytic symbols (see Theorem 2). We also consider harmonic
symbols one of which is the sum of a polynomial and a conjugate-analytic function (see
Theorem 4 and Corollary 1). In Section 3, we characterize normal Toeplitz operators
with analytic or harmonic symbols (see Theorem 5 and Theorem 6). In Section 4, we
characterize semi-commuting Toeplitz operators, that is, when the semi-commutator
Tuv − TuTv is zero (see Theorem 7 and Corollary 2). Our results show that in many
respects, Toeplitz operators on the harmonic Bergman spaces behave very differently
from the ones defined on the Bergman spaces.

2. Commuting Toeplitz operators

LEMMA 1. Let n,m be nonnegative integers, then

Pα(wnwm)(z) =

{
0 n < m,

n!Γ(n−m+2+α)
(n−m)!Γ(n+2+α)z

n−m n � m.

Proof. This is easily verified by a straightforward calculation. �

LEMMA 2. Let f ,g ∈ A2
α . Then Pα( f Pα(wg)) = Pα( f wg) . Moreover, if f (0) =

0 , then Pα(w f )(z) = Pα(wf )(0) for all z ∈ D .

Proof. By the reproducing formula (1), for z ∈ D ,

Pα( f Pα(wg))(z) = 〈 f Pα(wg),K(α)
z 〉α = 〈Pα(wg), f K(α)

z 〉α

= 〈wg, f K(α)
z 〉α = Pα( f wg)(z),

so we have Pα( f Pα(wg))= Pα( f wg) . For the second assertion, we let f (z)= ∑∞
n=1 anzn

be its Taylor series. Then the series converges to f in A2
α (see [16]). By Lemma 1,

Pα(w f )(z) = Pα(a1ww)(z) =
a1

2+ α
.

Similarly,

Pα(w f )(z) = ∑
n�1

Pα(anwwn)(z) = ∑
n�1

ann
n+1+ α

zn−1. (3)

Therefore, Pα(w f )(z) = Pα(w f )(0) = a1/(2+ α) . �

LEMMA 3. { k
k+1+α }k�1 is a strictly monotone increasing sequence.

Proof. Note that the function x/(x+1+α) is a strictly monotone increasing func-
tion on [0,+∞) . �
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THEOREM 1. Suppose u = f + g,v = h+ k are bounded harmonic functions in
D such that Tu commutes with Tv on b2

α . If f and h are not constant, then f ,h and 1
are linearly dependent.

Proof. For simplicity and without loss of generality, we assume that u(0)= v(0) =
0. Otherwise, we can replace u and v with u− u(0) and v− v(0) respectively. It is
clear that the functions f ,g,h and k are in A2

α by the boundedness of the projection Pα
on L2

α . For convenience, we may assume that 0 is a zero point of these four functions.
In the following, we will prove the existence of some constant λ satisfying h = λ f .

Firstly,

Th(w) = Qα(wh)

= Pα(wh)+Pα(wh)−Pα(wh)(0)
= Pα(wh)+Pα(wh)(0)−Pα(wh)(0)
= Pα(wh).

(4)

The third equality above follows from Lemma 2. Consequently,

Tf Th(w) = f Pα(wh).

Secondly,

Tf Tk(w) = Qα [ fQα (wk)] = Qα( f wk)

= Pα( f wk)+Pα( f wk)−Pα( f wk)(0).

Thirdly, combining (4) with Lemma 2 gives

TgTh(w) = Qα [gPα(wh)]

= Pα [gPα(wh)]+Pα [gPα(wh)]−Pα [gPα(wh)](0)

= Pα(gwh)+Pα[gPα(wh)]−Pα(gwh)(0).

Finally,

TgTk(w) = Qα(gQα(kw)) = Qα(gkw) = gkw.

By the computations above, we have

Tf+gTh+k(w) = Tf Th(w)+Tf Tk(w)+TgTh(w)+TgTk(w)

= f Pα(wh)+Pα( f wk)+Pα( f wk)−Pα( f wk)(0)

+Pα(gwh)+Pα [gPα(wh)]−Pα(gwh)(0)+ gkw.

Similarly,

Th+kTf+g(w) = hPα(w f )+Pα(hwg)+Pα(hwg)−Pα(hwg)(0)

+Pα(kw f )+Pα [kPα(w f )]−Pα(kw f )(0)+ kgw.
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Since Tf+gTh+k = Th+kTf+g on b2
α , particularly we have

f Pα(wh)+Pα( f wk)+Pα [gPα(wh)] = hPα(wf )+Pα(hwg)+Pα [kPα(wf )]. (5)

Taking the analytic part on both sides and noting that f (0) = h(0) = 0, we get

f Pα(wh) = hPα(w f ).

Let h(z) = ∑∞
n=1 anzn , f (z) = ∑∞

n=1 bnzn be the Taylor series expansion of h and f ,
respectively. By (3) and the preceding equality, we have

∞

∑
n=2

n−1

∑
k=1

kakbn−k

k+1+ α
zn−1 =

∞

∑
n=2

n−1

∑
k=1

kbkan−k

k+1+ α
zn−1,

which implies
n−1

∑
k=1

kakbn−k

k+1+ α
=

n−1

∑
k=1

kbkan−k

k+1+ α
(6)

for every n � 2. Now we consider the following three cases for the Taylor coefficients
a1 and b1 .

Case 1. If b1 �= 0, put a1
b1

= λ . Let n = 3 in (6), we have

a1b2

2+ α
+

2a2b1

3+ α
=

b1a2

2+ α
+

2b2a1

3+ α
.

Then Lemma 3 implies a1b2 = a2b1 , or a2 = λb2 . Assume ai = λbi for 1 � i � n0

and let n = n0 +2 in (6), we obtain

a1bn0+1

2+ α
+

(n0 +1)an0+1b1

n0 +2+ α
=

b1an0+1

2+ α
+

(n0 +1)bn0+1a1

n0 +2+ α
.

Again by Lemma 3, we have a1bn0+1 = b1an0+1 , or an0+1 = λbn0+1 . By mathematical
induction, ai = λbi for all i � 1, which implies h = λ f .

Case 2. If a1 �= 0, put b1
a1

= λ . By exactly the same way, we obtain f = λh .

Case 3. If a1 = b1 = 0, then the equation (6) turns into

n−2

∑
k=2

kakbn−k

k+1+ α
=

n−2

∑
k=2

kbkan−k

k+1+ α

for every n � 4. By the same argument as above with replacing a1,b1 by a2,b2 re-
spectively, we find also that f and h are linearly dependent unless a2 = b2 = 0.

Repeat this process until there exists some n0 such that an0 �= or bn0 �= 0. Since we
assume f and h are not constant, the integer n0 indeed exists. Now replace a1,b1 by
an0 ,bn0 respectively in Case 1 and Case 2, we conclude that f and h must be linearly
dependent. The proof is completed. �

If we further assume that the symbols are analytic, then we can give a characteri-
zation of commuting Toeplitz operators as follows.
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THEOREM 2. Suppose f ,g are nonconstant functions in A2
α , then Tf and Tg

commute on b2
α if and only if f ,g and 1 are linearly dependent.

Proof. The necessity follows from Theorem 1 and the sufficiency is obvious. �

REMARK 1. On the analytic Bergman space, Toeplitz operators with analytic sym-
bols always commute, as proved in [2] and [9]. This is very different from the case on
the harmonic Bergman space.

Next we focus on Toeplitz operators with harmonic symbols. Intuitively, Theorem
2 suggests that Toeplitz operators with harmonic symbols should only commute in the
trivial case as well. In this direction, we obtain the following results.

THEOREM 3. Let f ,g ∈ A2
α and suppose one of them is a polynomial. Then

Tf Tg = TgTf on b2
α if and only if either f or g is constant.

Proof. We only need to prove the necessity. For simplicity and without loss of
generality, we assume f (0) = g(0) = 0. Otherwise, we can replace f and g with
f − f (0) and g− g(0) respectively. We also assume f is a polynomial with positive
degree, or else we could take the adjoints. In the following, we prove g to be constant.

If g is nonconstant, then 0 is a zero point (with finite multiplicities) of g and hence
g = wkh for some positive integer k and h∈ A2

α with h(0) �= 0. Let f (z) = ∑n
m=1 bmzm ,

g(z) = ∑∞
l=k alzl be their Taylor series, where bn and ak are nonzero. Now we consider

the following two cases by comparison of k and n .

Case 1. k � n . It follows from (5) that

Pα [ f Pα(gw)] = Pα( f gw).

Taking inner product with wn−k+1 on both sides of the preceding identity gives∫
D

f (w)Pα (gw)wn−k+1dAα(w) =
∫

D

f (w)wg(w)wn−k+1dAα(w).

By (3) we have

bnak
k

k+1+ α
= bnak

n+1
n+2+ α

,

which implies that bnak = 0 by Lemma 3, a contradiction.

Case 2. k > n . Since f (z) = ∑n
m=1 bmzm , it follows from Lemma 1 that

Pα( f gwn+1) = Pα( f wn+1) = 0.

Hence we have

Tf Tg(w
n+1) = Tf (gwn+1)

= Pα( f gwn+1)+Pα( f gwn+1)−Pα( f gwn+1)(0)

= Pα( f gwn+1),



COMMUTING AND SEMI-COMMUTING TOEPLITZ OPERATORS 169

and

TgTf (wn+1) = TgQα( f wn+1)

= Tg[Pα( f wn+1)+Pα( f wn+1)−Pα( f wn+1)(0)]

= Tg[Pα( f wn+1)] = gPα( f wn+1).

Then the equality Tf Tg(w
n+1) = TgTf (w

n+1) implies

Pα( f gwn+1) = gPα( f wn+1).

Consequently,
〈Pα( f gwn+1),wk+1〉α = 〈gPα( f wn+1),wk+1〉α .

For the left hand side,

〈Pα( f gwn+1),wk+1〉α = 〈 f gwn+1,wk+1〉α = 〈hwn+k+1, f wk+1〉α

= h(0)bn

∫
D

|w|2(n+k+1)dAα(w)

= h(0)bn
(n+ k+1)!Γ(2+ α)

Γ(n+ k+3+ α)
.

For the right hand side, since

Pα(gwk+1) = Pα(hwkwk+1)

= h(0)Pα(wkwk+1)+h′(0)Pα(|w|2(k+1))

= h(0)
(k+1)!Γ(3+ α)

Γ(k+3+ α)
w+h′(0)

(k+1)!Γ(2+ α)
Γ(k+3+ α)

,

we have

〈gPα( f wn+1),wk+1〉α = 〈Pα( f wn+1), gwk+1〉α = 〈 f wn+1,Pα(gwk+1)〉α

= h(0)bn
(k+1)!Γ(3+ α)

Γ(k+3+ α)
(n+1)!Γ(2+ α)

Γ(n+3+ α)
.

Finally, we obtain

(n+ k+1)!
Γ(n+ k+3+ α)

=
Γ(3+ α)(k+1)!(n+1)!
Γ(k+3+ α)Γ(n+3+ α)

,

which implies

n+ k+1
n+ k+2+ α

· · · k+2
k+3+ α

=
n+1

n+2+ α
· · · 2

3+ α
.

Note that there are n factors in the products on both sides of the preceding equality, by
Lemma 3, this is also a contradiction. The proof is completed. �

THEOREM 4. Suppose u = p+ g,v are bounded harmonic functions in D , where
p is a polynomial of z with positive degree. Then TuTv = TvTu on b2

α if and only if u,v
and 1 are linearly dependent.
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Proof. We only need to consider v as nonconstant. Let v = h+ k , where h,k ∈
A2

α , at least one of which is nonconstant. We will discuss the following six cases.

Case 1. If g,k are constant, then by Theorem 2, p,h and 1 are linearly dependent,
so that u,v and 1 are linearly dependent.

Case 2. If g,h are constant, then by Theorem 3, k is constant, which yields v is
constant, a contradiction.

Case 3. If g is constant, h,k are nonconstant, then by Theorem 1, there exists
some nonzero constant λ such that h = λ p . The assumption TuTv = TvTu implies
TpTk = TkTp . Then it follows from Theorem 3 that k is constant, a contradiction.

Case 4. If g,h,k are nonconstant, then by Theorem 1, there exists some constants
λ ,μ such that h = λ p and k = μg . The assumption TuTv = TvTu then implies that
(λ − μ)(TpTg −TgTp) = 0. Again by Theorem 3, we have λ = μ and so v = λu .

Case 5. If g is nonconstant, h is constant, then by Theorem 1, there exists some
nonzero constant λ such that k = λ g . A discussion similar to Case 3 shows that g is
constant, a contradiction.

Case 6. If g is nonconstant, k is constant, then by Theorem 1, there exists some
nonzero constant λ such that h = λ p . The discussion in Case 3 again shows that g is
constant, a contradiction. �

COROLLARY 1. Let u = f + g,v are bounded harmonic functions, either of f
and g is a nonconstant polynomial. Then TuTv = TvTu on b2

α if and only if u,v and 1
are linearly dependent.

3. Normal Toeplitz operators with harmonic symbols

Normal Toeplitz operators with harmonic symbols on A2
α were completely char-

acterized in [2] (α = 0) and [9] (α > −1). In this section, we investigate the same
problem on b2

α . Unlike the commuting problem, the result for normal Toeplitz oper-
ators on b2

α coincides with that on A2
α . Before doing this, we first consider Toeplitz

operators with analytic symbols.

THEOREM 5. Let f ∈ A2
α . Then Tf is a normal operator if and only if f is

constant.

Proof. We only need to prove the necessity. Without loss of generality, we assume
f (0) = 0. Otherwise, we can replace f with f − f (0) . If Tf is normal, then Tf

commutes with Tf . It follows from (5) that Pα [ f Pα( f w)] = Pα(| f |2w) . Particularly we
have

〈 f Pα( f w),w〉α = 〈| f |2w,w〉α . (7)
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Let f (z) = ∑∞
n=1 anzn be its Taylor series. Then by (3), the left hand side of (7) equals∫

D

f (w)Pα ( f w)wdAα(w) =
∫

D

∞

∑
n=1

anw
n

∞

∑
m=1

am
m

m+1+ α
wm−1wdAα(w)

=
∞

∑
n=1

|an|2 n
n+1+ α

n!Γ(2+ α)
Γ(n+2+ α)

.

On the other hand, the right hand side of (7) equals∫
D

| f (w)|2|w|2dAα(w) =
∫

D

∞

∑
n=1

anw
n

∞

∑
m=1

amwm|w|2dAα(w)

=
∞

∑
n=1

|an|2 (n+1)!Γ(2+ α)
Γ(n+3+ α)

.

By the equality (7), we have
∞

∑
n=1

|an|2 n
n+1+ α

n!Γ(2+ α)
Γ(n+2+ α)

=
∞

∑
n=1

|an|2 (n+1)!Γ(2+ α)
Γ(n+3+ α)

=
∞

∑
n=1

|an|2 n+1
n+2+ α

n!Γ(2+ α)
Γ(n+2+ α)

.

It follows from Lemma 3 that an = 0 for all n � 1, which implies f = 0. This com-
pletes the proof. �

As a consequence of Theorem 5, we obtain the following characterization of nor-
mal Toeplitz operators with harmonic symbols.

THEOREM 6. Suppose u is a bounded harmonic function in D . Then Tu is a
normal operator on b2

α if and only if the range of u lies in a straight line in C .

Proof. Assume u(0) = 0 and u = f + g , then f ,g ∈ A2
α and f (0) = g(0) = 0.

If f or g is constant, then the proof is completed by Theorem 5. So we just need to
consider the case f ,g are nonconstant. If Tu is normal, then Tu commutes with Tu .
By Theorem 1, there exists some constant λ such that g = λ f . Then the equation
Tf+gTf+g = Tf+gTf+g yields

(1−|λ |2)(Tf Tf −Tf Tf ) = 0.

Since f is not constant, Theorem 5 implies that Tf is not normal. Therefore, we must
have |λ | = 1, and it follows that

u = f + g = f + λ f = λ (λ f + f ) = λ u.

This implies that
√

λu is real-valued and hence u(D) lies in a straight line.
Conversely, if u(D) lies in a straight line, then there must be a unimodular con-

stant μ such that μu is a real-valued harmonic function, so Tμu is self-adjoint on b2
α .

Therefore, Tu = Tμu
μ is normal on b2

α . �
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4. Semi-commuting Toeplitz operators

In this section, we characterize when the semi-commutator of two Toeplitz opera-
tors on b2

α is zero. To give a necessary condition for harmonic symbols, we prove the
following lemma.

LEMMA 4. Let f ,g ∈ A2
α . Then

Pα( f gw) = f Pα(gw)

if and only if f is constant or g = 0 .

Proof. Assume f is not constant, we prove g must be zero. Let f (z) = ∑∞
n=0 anzn ,

g(z) = ∑∞
n=0 bnzn be the Taylor series of f and g . Then we have

Pα( f gw)(z) =
∫

D

f (w)g(w)wK(α)
z (w)dAα(w)

=
∫

D

∞

∑
n=0

anw
n ·

∞

∑
m=0

bmwm ·w ·
∞

∑
k=0

Γ(k+2+ α)
k!Γ(2+ α)

zkwkdAα(w)

= ∑
n+m�1

anbm
n+m

n+m+1+ α
zn+m−1.

By (3) we also have

Pα(gw)(z) = ∑
m�1

bm
m

m+1+ α
zm−1.

Hence
f (z)Pα (gw)(z) = ∑

n=0
∑
m�1

anbm
m

m+1+ α
zn+m−1.

By the condition Pα( f gw) = f Pα(gw) , we obtain

∑
n+m�1

anbm
n+m

n+m+1+ α
zn+m−1 = ∑

n=0
∑
m�1

anbm
m

m+1+ α
zn+m−1. (8)

Compare the constant terms of the series on both sides of (8) , we get

a0b1 +a1b0

2+ α
=

a0b1

2+ α
which implies a1b0 = 0, so that a1 = 0 or b0 = 0. We will discuss two cases as follows:

Case 1. If a1 �= 0, then b0 = 0. Comparing the coefficients of z in (8) gives

a0b2
2

3+ α
+a1b1

2
3+ α

= a0b2
2

3+ α
+a1b1

1
2+ α

,

so that b1 = 0 by Lemma 3. Comparing the coefficients of z2 gives

a0b3
3

4+ α
+a1b2

3
4+ α

= a0b3
3

4+ α
+a1b2

2
3+ α

,

and so b2 = 0. Consequently, bm = 0 for all m � 0 by induction. Therefore g = 0.
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Case 2. If a1 = 0. Comparing the coefficients of z implies a2b0 = 0. If a2 �= 0,
then b0 = 0. Compare the coefficients of zk,k � 2 as in Case 1, we will also get g = 0.
If a2 = 0, comparing the coefficients of z2 implies a3b0 = 0. Since we assume f is
not constant, let al be the first nonzero coefficient of the Taylor series of f . Repeat the
preceding process l times, we obtain g = 0 or alb0 = 0. The latter case implies b0 = 0.
A discussion similar to Case 1 then shows that g = 0. The proof is completed. �

THEOREM 7. Let u = f + g , v = h+ k be bounded harmonic functions such that
Tuv = TuTv on b2

α , then at least one of f and h is constant, and at least one of g and k
is constant.

Proof. Without loss of generality we may assume f (0) = g(0) = h(0) = k(0) = 0,
or else we can replace f ,g,h,k with f − f (0) , g−g(0) , h−h(0) , k−k(0) respectively.
By Lemma 2,

Tuv(w) = Qα [( f h+ f k + gh+ gk)w]

= Pα( f hw)+Pα( f kw)+Pα( f kw)−Pα( f kw)(0)

+Pα(ghw)+Pα(ghw)−Pα(ghw)(0)+ gkw,

and

TuTv(w) = f Pα(hw)+Pα( f kw)+Pα( f kw)−Pα( f kw)(0)

+Pα(ghw)+Pα(gPα(hw))−Pα(ghw)(0)+ gkw.

By the condition Tuv = TuTv , we have

Pα( f hw)+Pα(ghw) = f Pα(hw)+Pα(gPα(hw)). (9)

Note that
Pα( f hw)(0) = f (0)Pα(hw)(0) = 0

by our assumption, so taking the analytic part on both sides of (9) gives

Pα( f hw) = f Pα(hw).

Now it follows from Lemma 4 that either f or h is 0.
For the second assertion, just take the adjoints of both sides of the equality Tuv =

TuTv . �
As a corollary of the preceding theorem, we characterize semi-commuting analytic

Toeplitz operators on b2
α .

COROLLARY 2. Let f ,g ∈ A2
α . Then Tfg = Tf Tg if and only if either f or g is

constant.
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